首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The time-course of CO2 assimilation rate and stomatal conductance to step changes in photosynthetic photon flux density (PPFD) was observed in Chrysanthemum × morifolium Ramat. `Fiesta'. When PPFD was increased from 200 to 600 micromoles per square meter per second, the rate of photosynthetic CO2 assimilation showed an initial rapid increase over the first minute followed by a slower increase over the next 12 to 38 minutes, with a faster response in low-light-grown plants. Leaves exposed to small step increases (100 micromoles per square meter per second) reached the new steady-state assimilation rate within a minute. Both stomatal and biochemical limitations played a role during photosynthetic induction, but carboxylation limitations seemed to predominate during the first 5 to 10 minutes. Stomatal control during the slow phase of induction was less important in low-light compared to high-light-grown plants. In response to step decreases in PPFD, photosynthetic rate decreased rapidly and a depression in CO2 assimilation prior to steady-state was observed. This CO2 assimilation `dip' was considerably larger for the large step (400 micromoles per square meter per second) than for the small step. The rapid photosynthetic response seems to be controlled by biochemical processes. High- and low-light-grown plants did not differ in their photosynthetic response to PPFD step decreases.  相似文献   

2.
The effect of photosynthetic photon flux density (PPFD) on photosynthetic response (A) to CO2 partial pressures between 35 pascals and CO2 compensation point (Γ) was investigated, especially below PPFD saturation. Spinacia oleracea cv `Atlanta,' Glycine max cv `Clark,' and Arbutus unedo were studied in detail. The initial slope of the photosynthetic response to CO2 (A/C[Γ]) was constant above a PPFD of about 500 to 600 micromoles per square meter per second for all three species; but declined rapidly with PPFD below this critical level. For Γ there was also a critical PPFD (approximately 200 micromoles per square meter per second for S. oleracea and G. max; 100 for A. unedo) above which Γ was essentially constant, but below which Γ increased with decreasing PPFD. All three species showed a dependence of A/C(Γ) on PPFD at low PPFD. Simulated photosynthetic responses obtained with a biochemically based model of whole-leaf photosynthesis were similar to measured responses.  相似文献   

3.
Irradiance data software developed by the NREL Solar Radiation Laboratory (Simple Model of Atmospheric Radiative Transfer of Sunshine, SMARTS) has been used for modelling photosynthesis. Spectra and total irradiance were expressed in terms of quanta [mol m−2 s−1, photosynthetic photon flux density, PPFD (400–700 nm)]. Using the SMARTS software it is possible to (1) calculate the solar spectrum for a planar surface for any given solar elevation angle, allowing for the attenuating effects of the atmosphere on extraterrestrial irradiance at each wavelength in the 400–700 nm range and for the thickness of atmosphere the light must pass through during the course of a day, (2) calculate PPFD vs. solar time for any latitude and date and (3) estimate total daily irradiance for any latitude and date and hence calculate the total photon irradiance for a whole year or for a growing season. Models of photosynthetic activity vs. PPFD are discussed. Gross photosynthesis (P g) vs. photosynthetic photon flux density (PPFD) (P g vs. I) characteristics of single leaves compared to that of a canopy of leaves are different. It is shown that that the optimum irradiance for a leaf (Iopt) is the half-saturation irradiance for a battery of leaves in series. A C3 plant, with leaves having an optimum photosynthetic rate at 700 μmol m−2 s−1 PPFD, was used as a realistic worked example. The model gives good estimates of gross photosynthesis (P g) for a given date and latitude. Seasonal and annual estimates of P g can be made. Taking cloudiness into account, the model predicts maximum P g rates of about 10 g(C) m−2 d−1, which is close to the maximum reported P g experimental measurements.  相似文献   

4.
The photosynthetic response of leaves to photosynthetic photon flux density (PPFD) may be described by parameters for the rate of dark respiration (R), the initial slope (Ф), the PPFD-saturated rate of net photosynthesis (AmQ) and the apparent convexity (θa). We tested the hypothesis that non-uniformity in stomatal aperture across a leaf results in a clearly lower θa because PPFD saturation will occur at different irradiances in different regions of the leaf. A computer model was constructed to simulate the effects of bell-shaped and other distributions of stomatal conductance for CO2 (gs) across a model leaf. In the model, Ф and AmQ decreased by up to 50% whereas θa decreased by at most 8%, essentially negating the hypothesis. The relationship between photosynthetic rate and gs determined the size of the responses of θa and Ф to non-uniform gs. In support of the model, experiments on sunflower leaves showed that Ф and AmQ decreased by 32 and 52%, respectively, while no measurable change in θa occurred, when abscisic acid was used to induce patchiness in gs. Although not all possible patterns of non-uniform stomatal conductance have been tested, it appears that if large variations in θa occur in nature they do not result from non-uniform gs.  相似文献   

5.
Detailed measurements of diurnal variations in photosynthetic photon flux density (PPFD) were made at seven locations within the canopy of aMiscanthus sinensis grassland to evaluate the light conditions of microsites for heliophilic tree seedlings. Multiple regression analysis revealed that the short-term light fluctuation on a clear day was highly dependent on the wind speed and solar elevation angle, whereas on a cloudy day it was mainly determined by the PPFD incident from above the canopy. The relative PPFD at 40 cm aboveground varied from 0.065 to 0.252, depending on sky conditions and the sensor's position in relation to clumped patches ofM. sinensis. On a clear day, the proportion of PPFD readings above 100 μmol·m−2·s−1 contributed by sunflecks ranged between 25.4% and 82.0%. Computer simulation showed that the contribution of sunflecks to the daily carbon gain ofQuercus serrata seedlings may range from 11% to 65%. The mean relative PPFD measured under diffuse light conditions was linearly related to the daily total PPFD and the daily carbon gain by single leaves ofQ. serrata seedlings. This suggests that the relative PPFD under diffuse light conditions provides an appropriate measure of site-specific light availability within a grass canopy.  相似文献   

6.
No significant differences were found between four mathematical equations describing the response of CO2 exchange rate to photosynthetic photon flux density in seven poplar clones under laboratory conditions. Choice of an optimal equation for poplar may be based on the contemplated aims. High significant differences (at p<0.001) were found among the clones.Research was supported by the Instituut tot Aanmoediging van het Wetenschappelijk Onderzoek in Nijverheid en Landbouw (I.W.O.N.L.), Brussels.  相似文献   

7.
Spatial variation in photosynthetic photon flux density (PPFD) was investigated in detail at different heights within the canopy of aMiscanthus sinensis grassland to evaluate the light environment of microsites for establishment of heliophilic tree seedlings. Highly heterogeneous patterns of light distribution were revealed within the apparently uniform grass canopies, especially under direct light. The frequency distribution patterns of relative PPFD (RPFD) were compared among different solar and sky conditions. With increasing height in the canopy, the mean RPFD value and standard deviation (SD) increased, while the skewness and kurtosis of the distribution decreased. The mean RPFD and SD were higher, especially at higher solar elevation angles, under direct light than those under diffuse light conditions. The frequency distribution of RPFD was more platykurtic under direct light and at higher solar elevation angles.  相似文献   

8.
《Acta Oecologica》2006,29(1):78-84
The aim of the present work was to analyse the relationship of seedlings and saplings of Taxus baccata to the photosynthetic photon flux density (PPFD) reaching the forest floor under natural conditions. Two permanent plots, subdivided into 1 × 1 m square plots, were established in a naturally regenerating population of T. baccata formed during last decades in the Kórnik Arboretum, Poland. All seedlings in every 1 × 1 m plots were counted. Relative PPFD was measured for every plot at the canopy height of the yew seedlings. The dependence of seedling density upon PPFD was examined. We found, that the frequency of the smallest seedlings (to 6.0 cm tall) was highest in the most shaded plots and decreased in plots with increasing PPFD. Thus, the youngest yew seedlings can germinate and grow in very shady conditions. However, the older seedlings (6.1–25.0 and 25.1–100.0 classes) were observed most frequently in 2–7% PPFD. The small numbers of older, taller seedlings in deep shade likely indicate a higher mortality rate of seedlings less than 6 cm in height without promotion to the next height class. Probably the low value of PPFD under the canopy of the stand significantly reduces the competition of other plants with the youngest yew seedlings. At higher light levels they may not be able to compete with more light-demanding plants, such as herbs and seedlings of broad-leaved trees. The seedlings of the second (6.1–25.0 cm) and third (25.1–100.0 cm) height classes were observed most frequently in the plots with 2–7% PPFD (Fig. 1b and c).  相似文献   

9.
A simple and inexpensive feedback control system that provides continuous and precise control of photosynthetic photon flux density (PPFD) in a whole plant cuvette is described. A ‘Plexiglass’ tank is interposed between a light source and cuvette and PPFD changed by varying the level of dyed liquid in the tank. The amount of liquid pumped into or drained from the tank is a function of the difference (error) between a defined set point value of PPFD and that measured in the cuvette. The set point can be varied as a function of time, can follow the output of a quantum sensor measuring ambient PPFD or can be driven by values of PPFD read from a data file. Within the 0.4 to 0.64 μm waveband, the dye acts as a neutral density filter so that there is no change in spectral distribution with PPFD. Photosynthetic photon flux density in the cuvette was controlled to better than 20 μmol m−2s−1 when the set point was varied from 200 to 1100 μmol m−2s−1 over 3 min. When the set point was held constant or changed less rapidly, errors did not exceed 5 μmol m−2s−1. Net photosynthesis of Western redcedar (Thuja plicata Donn.) seedlings held at 18 °C closely followed rapid changes in PPFD.  相似文献   

10.
Malva parviflora L. (mallow) is a species that occupies high-light habitats as a weedy invader in orchards and vineyards. Species of the Malvaceae are known to solar track and anecdotal evidence suggests this species may also. How M. parviflora responds physiologically to light in comparison with other species within the Malvaceae remains unknown. Tracking and photosynthetic responses to photon flux density (PFD) were evaluated on plants grown in greenhouse conditions. Tracking ability was assessed in the growth conditions and by exposing leaves to specific light intensities and measuring changes in the angle of the leaf plane. Light responses were also determined by photosynthesis and chlorophyll fluorescence. Leaves followed a heliotropic response which was highly PFD-dependent, with tracking rates increasing in a curvilinear pattern. Maximum tracking rates were up to 20°h−1 and saturated for light above 1300 μmol (photons) m−2 s−1. This high-light saturation, both for tracking (much higher than the other species), and for photosynthesis, confirmed mallow as a high-light demanding species. Further, because there was no photoinhibition, the leaves could capture the potential of an increased carbon gain in higher irradiance by resorting to solar tracking. Modelling suggested the tracking response could increase the annual carbon gain by as much as 25% compared with leaves that do not track the sun. The various leaf attributes associated with solar tracking, therefore, help to account for the success of this species as a weed in many locations worldwide.  相似文献   

11.
Kaufmann MR 《Plant physiology》1982,69(5):1018-1022
For an entire season of stomatal activity, leaf or needle conductance was observed on four species, each in a different genus: Engelmann spruce (Picea engelmannii Parry ex Engelm.), subalpine fir (Abies lasiocarpa [Hook.] Nutt.), lodgepole pine (Pinus contorta var. latifolia Engelm.), and aspen (Populus tremuloides Michx.). Conductance in the natural environment was described for all species by photosynthetic photon flux density (PPFD) and absolute humidity difference from leaf to air (DAH), as follows: Conductance = b1 (√PPFD/√DAH) + b2 (√PPFD/DAH) + b3 (√PPFD/DAH2). The only data not fitting this relationship were conifer data collected after freezing nights or aspen data collected during a short period in August when water stress occurred. In both cases, leaf conductance was reduced. It is proposed that PPFD and DAH are primary factors controlling stomatal function for plants growing in their native range; secondary factors, such as temperature and water stress, affect conductance intermittently, except when plants are growing outside their normal environmental conditions.  相似文献   

12.
The development of soybean leaves grown at fluctuating photon flux density between 100 and 1500M m-2s-1 with a period of 160 sec were compared to leaves developed under continuous light with the same mean photon flux density. Number of epidermal cells and stomata, leaf area and specific leaf weight were not affected by the periodic fluctuation of photon flux density. Chloroplastic pigment concentration and chlorophyll fluorescence reveal some photoinhibitory effects of the high photon flux density phase. Stomatal and internal CO2 conductance and the quantum yield were not affected by the light regime. In contrast ribulose 1.5 bisphosphate carboxylase/oxygenase activity before in vitro activation by CO2 and Mg++ was stimulated by the periodic illumination whereas the total amount of the enzyme and the internal leaf CO2 conductance remained steady. In conclusion, there was no major difference between leaves of plant grown either under a steady or under a periodic fluctuation of the photon flux density except some photoinhibitory symptoms under fluctuating illumination, and a higher in vivo level of activation of the Rubisco.  相似文献   

13.
Rates of , and CO2 assimilationby the organisms in the shallow and deepchlorophyll layers ofCastle Lake were measured over a gradient of photosyntheticphoton flux densities (PPFD) during the 1979–1980 ice-freeseasons. The results of these experiments could be fitted witha hyperbolic function in the manner of the Michaelis-Mentenequation (excluding rates of dark assimilation) up to –40%of the surface PPFD after which photon inhibition occurred.The half saturation constants relative to incidence PPFD (KLT)for assimilation ( = 1.1 E m–2d–2) were about twice those for ( = 0.5 E m–2d–1).All of the KLT values correspond to depths in thelakerangingfrom 17–29 m(–1% of surface PPFD). Dark assimilationof both and was –50% of the assimilation at saturating PPFD implying that part ofthe immediate energy required for inorganic nitrogen assimilationmay come from intermediary metabolism. This contention was supportedfor assimilation by the results of experiments performed with specific inhibitors of non-cyclic photophosphorylationand oxidative phosphorylation. The KLT values for the assimilationof CO2 were from 2–10 times higher than those for inorganicnitrogen. These values for CO2 assimilation were not significantlyaltered by the addition of either or during 12 h incubations.  相似文献   

14.
15.
红松阔叶混交林林隙光量子通量密度的时空分布格局   总被引:2,自引:1,他引:2  
Li M  Duan WB  Chen LX 《应用生态学报》2011,22(4):880-884
以小兴安岭原始红松阔叶混交林林隙为对象,采用网格法布点,对生长季林隙内各样点光量子通量密度(photosynthetic photon flux density,PPFD)进行连续观测,利用基本统计学和地统计学方法分析其时空分布格局.结果表明:红松阔叶混交林林隙的PPFD高值区日变化明显,最大值出现在12:00,位于林隙北侧.林隙的PPFD 6月最高,7、8、9月依次递减,其中7月PPFD不同位置间的变异系数最大;各月均为中等变异.不同月份林隙PPFD空间异质性的强度和尺度不同,6月变程最大,7月基台值和结构比最大;各月林隙PPFD斑块复杂程度不同,最大值均位于林隙东北侧.郁闭林分和空旷地的月平均PPFD变化次序与林隙一致.各样点月平均PPFD为空旷地最高,林隙次之,郁闭林分最低.  相似文献   

16.
The main objective of the present work was to examine the effects of the red:far-red ratio (R:FR) prevailing during leaf development on the photosynthetic capacity of mature leaves. Plants of Phaseolus vulgaris L. cv. Balin de Albenga were grown from time of emergence in a controlled environment room, 25 ± 3°C, 12-h photoperiod, with different light treatments:a) high photosynthetic photon flux density (PPFD) = 800 μmol m−1 s−1+ high R:FR= 1.3;b) low PPFD= 300 μmol m−2 s−1+ high R:FR= 1.3; c) high PPFD=800 μmol m−2 s−1+ low R:FR= 0.7; d) low PPFD= 300 μmol m−2s−1+ low R:FR=0.7. With an R:FR ratio of 1.3, a decrease in irradiance during leaf growth reduced photosynthesis when measured at moderate to high PPFD; but when measured at low PPFD, leaves expanded under low irradiance actually had photosynthesis rates higher than those of leaves grown in high irradiance. A low R:FR ratio during development reduced the photosynthetic capacity of the leaves. In leaves expanded under R:FR = 0.7 and high irradiance photosynthesis was reduced by 42 to 89%, depending on the PPFD at which measurements were made, whereas for leaves developed at R:FR = 0.7 and low irradiance photosynthesis decreased by 21 to 24%, compared to leaves under R:FR = 1.3 and similar irradiance. The reduced photosynthetic capacity under R:FR = 0.7 and high irradiance. In natural environments, leaves may experience low R:FR conditions temporarily during their development, and this may affect their future photosynthetic capacity in full sunlight.  相似文献   

17.
Isoprene is the primary biogenic hydrocarbon emitted from temperate deciduous forest ecosystems. The effects of varying photon flux density (PFD) and nitrogen growth regimes on rates of isoprene emission and net photosynthesis in potted aspen and white oak trees are reported. In both aspen and oak trees, whether rates were expressed on a leaf area or dry mass basis, (1) growth at higher PFD resulted in significantly higher rates of isoprene emission, than growth at lower PFD, (2) there is a significant positive relationship between isoprene emission rate and leaf nitrogen concentration in both sun and shade trees, and (3) there is a significant positive correlation between isoprene emission rate and photosynthetic rate in both sun and shade trees. The greater capacity for isoprene emission in sun leaves was due to both higher leaf mass per unit area and differences in the biochemical and/or physiological properties that influence isoprene emission. Positive correlations between isoprene emission rate and leaf nitrogen concentration support the existence of mechanisms that link leaf nitrogen status to isoprene synthase activity. Positive correlations between isoprene emission rate and photosynthesis rate support previous hypotheses that isoprene emission plays a role in protecting photosynthetic mechanisms during stress.  相似文献   

18.
Phaseolus vulgaris L. cv. Kinghorn Wax seedlings, supplied with nutrient solution containing either 0 or 5 mM nitrate as sole N source, were exposed to 0.25 μl/l NO2 for 6 hr each day for 10 days at continuous photosynthetic photon flux (PPF) of 100, 300, 500 or 700 μmol m−2 sec−1. There was a significant interaction of PPF and nitrate. Shoot and root dry weights increased with increasing PPFs only when nitrate was supplied. The main effects of NO2 on plant growth were significant; none of the interactions involving NO2 were significant. Exposure to NO2 decreased shoot and root dry weight in both the presence and absence of nutrient N and at all PPF levels. All interactions were significant for in vitro leaf nitrate reductase activity (NRA), which increased markedly at PPFs above 100 μmol m−2 sec−1 when nitrate was supplied. Treatment with NO2 strongly inhibited enzyme activity in the presence of nitrate, particularly at the 300 μmol m−2 sec−1 PPF level. These experiments demonstrated that PPF level does not modify the effect of NO2 on growth but does have a major effect on NRA and on NO2 effects on NRA in the presence of nutrient nitrate.  相似文献   

19.
Response of epidermal diffusive conductance to simultaneous changes in leaf water potential and photon flux density was studied in primary bean leaves. Values of epidermal conductance corresponding to every photon flux density decreased with decreasing leaf water potential below - 6.9 x 105Pa; slight deorease was followed by a rapid one at water potential ranging from - 8.0 to -10.5 x 105 Pa. In the leaves with water potential lower than -10.5 x 105 Pa neither the saturated photon flux density (1200 [xeinstein m-2s-1) induced photoactive stomatal opening. Negative influence of one factor could be partially compensated by positive influence of the other. These results were in good agreement with the considered mechanism of action of leaf water potential and photon flux density on epidermal conductance.  相似文献   

20.
Branching is regulated by environmental signals including phytochrome B (phyB)-mediated responses to the ratio of red to far red light. While the mechanisms associated with phytochrome regulation of branching are beginning to be elucidated, there is little information regarding other light signals, including photosynthetic photon flux density (PPFD) and how it influences phytochrome-mediated responses. This study shows that Arabidopsis (Arabidopsis thaliana) branching is modified by both varying PPFD and phyB status and that significant interactions occur between these variables. While phyB deficiency decreased branching when the PPFD was low, the effect was suppressed by high PPFD and some branching aspects were actually promoted. Photosynthesis measurements showed that PPFD may influence branching in phyB-deficient plants at least partially through a specific signalling pathway rather than directly through energy effects on the shoot. The expression of various genes in unelongated buds of phyB-deficient and phyB-sufficient plants grown under high and low PPFD demonstrated potential roles for several hormones, including auxin, cytokinins and ABA, and also showed imperfect correlation between expression of the branching regulators BRC1 and BRC2 and bud fate. These results may implicate additional undiscovered bud autonomous mechanisms and/or components contributing to bud outgrowth regulation by environmental signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号