首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonspecific endonucleases hydrolyze DNA without sequence specificity but with sequence preference, however the structural basis for cleavage preference remains elusive. We show here that the nonspecific endonuclease ColE7 cleaves DNA with a preference for making nicks after (at 3′O-side) thymine bases but the periplasmic nuclease Vvn cleaves DNA more evenly with little sequence preference. The crystal structure of the ‘preferred complex’ of the nuclease domain of ColE7 bound to an 18 bp DNA with a thymine before the scissile phosphate had a more distorted DNA phosphate backbone than the backbones in the non-preferred complexes, so that the scissile phosphate was compositionally closer to the endonuclease active site resulting in more efficient DNA cleavage. On the other hand, in the crystal structure of Vvn in complex with a 16 bp DNA, the DNA phosphate backbone was similar and not distorted in comparison with that of a previously reported complex of Vvn with a different DNA sequence. Taken together these results suggest a general structural basis for the sequence-dependent DNA cleavage catalyzed by nonspecific endonucleases, indicating that nonspecific nucleases could induce DNA to deform to distinctive levels depending on the local sequence leading to different cleavage rates along the DNA chain.  相似文献   

2.
The bacterial toxin ColE7 contains an H-N-H endonuclease domain (nuclease ColE7) that digests cellular DNA or RNA non-specifically in target cells, leading to cell death. In the host cell, protein Im7 forms a complex with ColE7 to inhibit its nuclease activity. Here, we present the crystal structure of the unbound nuclease ColE7 at a resolution of 2.1A. Structural comparison between the unbound and bound nuclease ColE7 in complex with Im7, suggests that Im7 is not an allosteric inhibitor that induces backbone conformational changes in nuclease ColE7, but rather one that inhibits by blocking the substrate-binding site. There were two nuclease ColE7 molecules in the P1 unit cell in crystals and they appeared as a dimer related to each other by a non-crystallographic dyad symmetry. Gel-filtration and cross-linking experiments confirmed that nuclease ColE7 indeed formed dimers in solution and that the dimeric conformation was more favored in the presence of double-stranded DNA. Structural comparison of nuclease ColE7 with the His-Cys box homing endonuclease I-PpoI further demonstrated that H-N-H motifs in dimeric nuclease ColE7 were oriented in a manner very similar to that of the betabetaalpha-fold of the active sites found in dimeric I-PpoI. A mechanism for the binding of double-stranded DNA by dimeric H-N-H nuclease ColE7 is suggested.  相似文献   

3.
The nuclease domain of ColE7 (N-ColE7) contains an H-N-H motif that folds in a beta beta alpha-metal topology. Here we report the crystal structures of a Zn2+-bound N-ColE7 (H545E mutant) in complex with a 12-bp duplex DNA and a Ni2+-bound N-ColE7 in complex with the inhibitor Im7 at a resolution of 2.5 A and 2.0 A, respectively. Metal-dependent cleavage assays showed that N-ColE7 cleaves double-stranded DNA with a single metal ion cofactor, Ni2+, Mg2+, Mn2+, and Zn2+. ColE7 purified from Escherichia coli contains an endogenous zinc ion that was not replaced by Mg2+ at concentrations of <25 mM, indicating that zinc is the physiologically relevant metal ion in N-ColE7 in host E. coli. In the crystal structure of N-ColE7/DNA complex, the zinc ion is directly coordinated to three histidines and the DNA scissile phosphate in a tetrahedral geometry. In contrast, Ni2+ is bound in N-ColE7 in two different modes, to four ligands (three histidines and one phosphate ion), or to five ligands with an additional water molecule. These data suggest that the divalent metal ion in the His-metal finger motif can be coordinated to six ligands, such as Mg2+ in I-PpoI, Serratia nuclease and Vvn, five ligands or four ligands, such as Ni2+ or Zn2+ in ColE7. Universally, the metal ion in the His-metal finger motif is bound to the DNA scissile phosphate and serves three roles during hydrolysis: polarization of the P-O bond for nucleophilic attack, stabilization of the phosphoanion transition state and stabilization of the cleaved product.  相似文献   

4.
Colicin E7 (ColE7), a nuclease toxin released from Escherichia coli, kills susceptible bacteria under environmental stress. Nuclease colicins are processed during translocation with only the cytotoxic nuclease domains traversing the inner membrane to cleave tRNA, rRNA, or DNA in the cytoplasm of target cells. In this study, we show that the E. coli periplasmic extract cleaves ColE7 between Lys(446) and Arg(447) in the presence or absence of its inhibitor Im7 protein. Several residues near cleavage sites were mutated, but only mutants of Arg(447) completely lost in vivo cell-killing activity. Both the full-length and the nuclease domain of Arg(447) mutants retained their nuclease activities, indicating that failure to kill cells was not a consequence of damage to the endonuclease activity of the enzyme. Moreover, the R447E ColE7 mutant was not cleaved at its 447 site by periplasmic extracts or transported into the cytoplasm of target cells. Collectively, these results suggest that ColE7 is cleaved at Arg(447) during translocation and that cleavage is an essential step for ColE7 import into the cytoplasm of target cells and its cell-killing activity. Conserved basic residues aligned with Arg(447) have also been found in other nuclease colicins, implying that the processing at this position may be common to other colicins during translocation.  相似文献   

5.
Generation of a catalytic sequence-specific hybrid DNase   总被引:1,自引:0,他引:1  
D R Corey  D Pei  P G Schultz 《Biochemistry》1989,28(21):8277-8286
Hybrid nucleases consisting of an oligonucleotide fused to a unique site on the relatively nonspecific phosphodiesterase staphylococcal nuclease have been shown to sequence specifically cleave DNA. We have introduced mutations into the binding pocket of the nuclease which lower the kcat/Km of the enzyme. Hybrid nucleases generated from these mutants sequence selectively hydrolyze single-stranded DNA in a catalytic fashion, and under a much wider range of conditions than was previously possible. One such hybrid nuclease (Y113A, K116C) was able to site selectively cleave single-stranded M13mp7 DNA (7214 nt), primarily at one phosphodiester bond. Another hybrid nuclease (Y113A, L37A, K116C) catalyzed the hydrolysis of a 78-nt DNA substrate with a kcat of 1.2 min-1 and a Km of 120 nM. The effects of variations in the length and sequence of the oligonucleotide binding region were examined, as were changes in the length of the tether between the oligonucleotide and the enzyme. Cleavage specificity was also assayed as a function of substrate DNA primary and secondary structure and added poly(dA).  相似文献   

6.
Li CL  Hor LI  Chang ZF  Tsai LC  Yang WZ  Yuan HS 《The EMBO journal》2003,22(15):4014-4025
The Vibrio vulnificus nuclease, Vvn, is a non-specific periplasmic nuclease capable of digesting DNA and RNA. The crystal structure of Vvn and that of Vvn mutant H80A in complex with DNA were resolved at 2.3 A resolution. Vvn has a novel mixed alpha/beta topology containing four disulfide bridges, suggesting that Vvn is not active under reducing conditions in the cytoplasm. The overall structure of Vvn shows no similarity to other endonucleases; however, a known 'betabetaalpha-metal' motif is identified in the central cleft region. The crystal structure of the mutant Vvn-DNA complex demonstrates that Vvn binds mainly at the minor groove of DNA, resulting in duplex bending towards the major groove by approximately 20 degrees. Only the DNA phosphate backbones make hydrogen bonds with Vvn, suggesting a structural basis for its sequence-independent recognition of DNA and RNA. Based on the enzyme-substrate and enzyme-product structures observed in the mutant Vvn-DNA crystals, a catalytic mechanism is proposed. This structural study suggests that Vvn hydrolyzes DNA by a general single-metal ion mechanism, and indicates how non-specific DNA-binding proteins may recognize DNA.  相似文献   

7.
Single-strand-specific nucleases are a diverse and important group of enzymes that are able to cleave a variety of DNA structures present in duplex molecules. Nuclease SP, an enzyme from spinach, has been purified to apparent homogeneity, allowing for the unambiguous characterization of a number of its physical properties as well as its DNA strand cleavage specificities. The effects of ionic strength, pH, divalent metal cations, and temperature on nuclease SP activity have been examined in detail. Nuclease SP was found to be quite thermostable and could be stimulated by Co2+. In addition, the cleavage of UV-damaged and undamaged supercoiled plasmid substrates under a variety of conditions suggests that at least two types of structures are recognized and processed by nuclease SP: UV photoproduct-induced distortions and unwound "nuclease hypersensitive sites". These studies indicate that nuclease SP is functionally related to other single-strand-specific nucleases and is a potential enzymatic tool for probing and manipulating various types of DNA structures.  相似文献   

8.
We have cloned a nuclease gene, vvn, from Vibrio vulnificus, an estuarine bacterium that causes wound infections and septicemia in humans and eels. The gene contained a 696-bp open reading frame encoding 232 amino acids (aa), including a signal sequence of 18 aa. The deduced amino acid sequence of the mature nuclease predicted a molecular mass of 25 kDa, which was confirmed by vital stain, and a pI of 8.6. Vvn was produced in the periplasm of either V. vulnificus or recombinant Escherichia coli strains and was active in the oxidized (but not the reduced) form. This nuclease was able to digest DNA and RNA, with differential thermostability in DNase and RNase activities. Expression of Vvn in E. coli DH5alpha reduced the frequencies of transformation with the divalent ion-treated cells and electroporation by about 6 and 2 logs, respectively. In addition, the transformation frequency of a Vvn-deficient V. vulnificus mutant (ND) was 10-fold higher than that of the parent strain. These data suggested that Vvn may be involved in preventing uptake of foreign DNA by transformation. However, Vvn expressed in the recipients had little effect on the conjugation frequency in either E. coli or V. vulnificus. Some other DNase(s) may be present in the periplasm and responsible for a residual DNase activity, which was about one-fourth of that of the parent strain, detected in the ND mutant. We also demonstrated that Vvn was not required for the virulence of V. vulnificus mice.  相似文献   

9.
Mineta Y  Okamoto T  Takenaka K  Doi N  Aoyama Y  Sera T 《Biochemistry》2008,47(47):12257-12259
To enhance DNA cleavage by zinc-finger nucleases (ZFNs), we sandwiched a DNA cleavage enzyme with two artificial zinc-finger proteins (AZPs). Because the DNA between the two AZP-binding sites is cleaved, the AZP-sandwiched nuclease is expected to bind preferentially to a DNA substrate rather than to cleavage products and thereby cleave it with multiple turnovers. To demonstrate the concept, we sandwiched a staphylococcal nuclease (SNase), which cleaves DNA as a monomer, between two three-finger AZPs. The AZP-sandwiched SNase cleaved large amounts of dsDNA site-specifically. Such multiple-turnover cleavage was not observed with nucleases that possess a single AZP. Thus, AZP-sandwiched nucleases will further refine ZFN technology.  相似文献   

10.
We have employed a DNA molecular beacon with a real abasic site, namely a 2-deoxyribose, in a fluorescent high-throughput assay to identify artificial nucleases that cleave at abasic sites. We screened a 1280 compound chemical library and identified a compound that functions as an artificial nuclease. We validated a key structure-activity relationship necessary for abasic site cleavage using available analogs of the identified artificial nuclease. We also addressed the activity of the identified compound with dose titrations in the absence and presence of a source of non-specific DNA. Finally, we characterized the phosphodiester backbone cleavage at the abasic site using denaturing gel electrophoresis. This study provides a useful template for researchers seeking to rapidly identify new artificial nucleases.  相似文献   

11.
We have cloned a nuclease gene, vvn, from Vibrio vulnificus, an estuarine bacterium that causes wound infections and septicemia in humans and eels. The gene contained a 696-bp open reading frame encoding 232 amino acids (aa), including a signal sequence of 18 aa. The deduced amino acid sequence of the mature nuclease predicted a molecular mass of 25 kDa, which was confirmed by vital stain, and a pI of 8.6. Vvn was produced in the periplasm of either V. vulnificus or recombinant Escherichia coli strains and was active in the oxidized (but not the reduced) form. This nuclease was able to digest DNA and RNA, with differential thermostability in DNase and RNase activities. Expression of Vvn in E. coli DH5α reduced the frequencies of transformation with the divalent ion-treated cells and electroporation by about 6 and 2 logs, respectively. In addition, the transformation frequency of a Vvn-deficient V. vulnificus mutant (ND) was 10-fold higher than that of the parent strain. These data suggested that Vvn may be involved in preventing uptake of foreign DNA by transformation. However, Vvn expressed in the recipients had little effect on the conjugation frequency in either E. coli or V. vulnificus. Some other DNase(s) may be present in the periplasm and responsible for a residual DNase activity, which was about one-fourth of that of the parent strain, detected in the ND mutant. We also demonstrated that Vvn was not required for the virulence of V. vulnificus mice.  相似文献   

12.
The positions and relative frequencies of the primary cleavages made by micrococcal nuclease on the DNA of nucleosome core particles have been found by fractionating the double-stranded products of digestion and examining their single-stranded compositions. This approach overcomes the problems caused by secondary events such as the exonucleolytic and pseudo-double-stranded actions of the nuclease and, combined with the use of high resolution gel electrophoresis, enables the cutting site positions to be determined with a higher precision than has been achieved hitherto. The micrococcal nuclease primary cleavage sites lie close (on average, within 0.5 nucleotide) to those previously determined by Lutter (1981) for the nucleases DNase I and DNase II. These similarities show that the accessible regions are the same for all three nucleases, the cleavage sites being dictated by the structure of the nucleosome core. The differences in the final products of the digestion are explained in terms of secondary cleavage events of micrococcal nuclease. While the strongly protected regions of the nucleosome core DNA are common to all three nucleases, there are differences in the relative degrees of cutting at the more exposed sites characteristic of the particular enzyme. In particular, micrococcal nuclease shows a marked polarity in the 3'-5' direction in the cutting rates as plotted along a single strand of the nucleosomal DNA. This is explained in terms of the three-dimensional structure of the nucleosome where, in any accessible region of the double helix, the innermost strand is shielded by the outermost strand on the one side and the histone core on the other. The final part of the paper is concerned with the preference of micrococcal nuclease to cleave at (A,T) sequences in chromatin.  相似文献   

13.
SV40 DNA FO I is randomly cleaved by S1 nuclease both at moderate (50 mM) and higher salt concentrations (250 mM NaC1). Full length linear S1 cleavage products of SV40 DNA when digested with various restriction endonucleases revealed fragments that were electrophoretically indistinguishable from the products found after digestion of superhelical SV40 DNA FO I with the corresponding enzyme. Concordingly, when the linear S1 generated duplexes were melted and renatured, circular duplexes were formed in addition to complex larger structures. This indicated that cleavage must have occurred at different sites. The double-strand-cleaving activity present in S1 nuclease preparations requires circular DNA as a substrate, as linear SV40 DNA is not cleaved. With regard to these properties S1 nuclease resembles some of the complex type I restriction nucleases from Escherichia coli which also cleave SV40 DNA only once, and, completely at random.  相似文献   

14.
植物CRISPR/Cas9基因组编辑系统与突变分析   总被引:1,自引:0,他引:1  
马兴亮  刘耀光 《遗传》2016,38(2):118-125
  相似文献   

15.
Possible mechanisms of internucleosomal DNA fragmentation in thymocytes of irradiated rats were studied. It was shown that thymocyte nuclei contain at least two nucleases that cleave DNA between nucleosomes — a Ca2+/Mg2+-dependent nuclease and an acidic one which does not depend on bivalent ions. 2 and 3 h after irradiation at a dose of 10 Gy the initial rate of DNA cleavage by Ca2+/Mg2+-dependent nuclease in isolated nuclei increased three and seven times, respectively, but the kinetics of DNA digestion by acidic nuclease did not change. The experiments with cycloheximide indicated that Ca2+/Mg2+-dependent endonuclease turns over at a high rate. The activity of the cytoplasmic acidic and Mg2+-dependent nucleases was shown to increase (by 40 and 50%, respectively) 3 h after irradiation. The effect is caused by the de novo synthesis of the nucleases. At the same time the activity of nuclear nucleases did not essentially change. The chromatin isolated from rat thymocytes 3 h after irradiation did not differ in its sensitivity to some exogenic nucleases (DNAase I, micrococcal nuclease and nuclease from Serratia marcescens) from the control. Thus, Ca2+/Mg2+-dependent endonuclease seems to be responsible for the postirradiation internucleosomal DNA fragmentation in dying thymocytes.  相似文献   

16.
Duché D 《Journal of bacteriology》2007,189(11):4217-4222
Colicins reach their targets in susceptible Escherichia coli strains through two envelope protein systems: the Tol system is used by group A colicins and the TonB system by group B colicins. Colicin E2 (ColE2) is a cytotoxic protein that recognizes the outer membrane receptor BtuB. After gaining access to the cytoplasmic membrane of sensitive Escherichia coli cells, ColE2 enters the cytoplasm to cleave DNA. After binding to BtuB, ColE2 interacts with the Tol system to reach its target. However, it is not known if the entire colicin or only the nuclease domain of ColE2 enters the cell. Here I show that preincubation of ColE2 with Escherichia coli cells prevents binding and translocation of pore-forming colicins of group A but not of group B. This inhibition persisted even when cells were incubated with ColE2 for 30 min before the addition of pore-forming colicins, indicating that ColE2 releases neither its receptor nor its translocation machinery when its nuclease domain enters the cells. These competition experiments enabled me to estimate the time required for ColE2 binding to its receptor and translocation.  相似文献   

17.
Zinc finger nucleases can be engineered to create highly efficient and precise changes to the genetic information within living cells. We report the investigation of an important parameter that defines the type of target site the nuclease can cleave. The active nuclease is a dimer, requiring that the DNA target site contain two zinc finger binding sites separated by a short spacer. Using a plasmid-based recombination assay in HEK 293T cells, we show that a 6 amino acid linker between the zinc finger DNA-binding domain and the FokI cleavage domain restricts nuclease activity to sites containing a 6 bp spacer. These observations concur with other recent studies, suggesting this information will be useful in the design of new potent and accurate zinc finger nucleases.  相似文献   

18.
In vitro compartmentalization (IVC) uses water-in-oil emulsions to create artificial cell-like compartments in which genes can be individually transcribed and translated. Here, we present a new application of IVC for the selection of DNA-nuclease inhibitors. We developed a nano-droplets delivery system that allows the transport of various solutes, including metal ions, into the emulsion droplets. This transport mechanism was used to regulate the activity of colicin nucleases that were co-compartmentalized with the genes, so that the nucleases were activated by nickel or cobalt ions only after the potential inhibitor genes have been translated. Thus, genes encoding nuclease inhibitors survived the digestion and were subsequently amplified and isolated. Selection is therefore directly for inhibition, and not for binding of the nuclease. The stringency of selection can be easily modulated to give high enrichments (100-500-fold) and recoveries. We demonstrated its utility by selecting libraries of the gene encoding the cognate inhibitor of colicin E9 (immunity protein 9, or Im9) for inhibition of another colicin (ColE7). The in vitro evolved inhibitors show significant inhibition of ColE7 both in vitro and in vivo. These Im9 variants carry mutations into residues that determine the selectivity of the natural counterpart (Im7) while completely retaining the residues that are conserved throughout the family of immunity protein inhibitors. The in vitro evolution process confirms earlier hypotheses regarding the "dual recognition" binding mechanism and the way in which new colicin-immunity pairs diverged from existing ones.  相似文献   

19.
ColE1 DNA was isolated from Escherichia coli as a relaxation complex of supercoiled DNA and proteins. Treatment of the complex with either protein-denaturing agents (SDS, phenol etc.) or proteolytic enzymes converted the supercoiled DNA to an open-circular form (relaxation). The relaxation complex was separately labelled in vivo with [3H]Leu or [14C]Leu, [35S]Met or (32P)phosphate and extensively purified. Complete hydrolysis of the relaxed complex with DNase I and P1 nuclease produced a 36-kDa protein which, we believe, is covalently bound to ColE1 DNA. On the other hand, the relaxed complex was treated with tosylphenylalanylchloromethane-treated-trypsin and the DNA-peptide(s) produced was (were) isolated and digested with the nucleases as above. The resulting nucleotidylpeptide(s) was (were) isolated by DEAE-Sephadex chromatography. The only 5'-dCMP was released from the nucleotidylpeptide(s) by snake venom phosphodiesterase treatment. O-Phosphoserine was found in acid hydrolysates of the DNA-peptide(s). We suggest that in the relaxation event the 36-kDa protein becomes covalently linked to ColE1 DNA via a phosphodiester bond between dC and the serine residue.  相似文献   

20.
The bacterial toxin ColE7 bears an HNH motif which has been identified in hundreds of prokaryotic and eukaryotic endonucleases, involved in DNA homing, restriction, repair, or chromosome degradation. The crystal structure of the nuclease domain of ColE7 in complex with a duplex DNA has been determined at 2.5 A resolution. The HNH motif is bound at the minor groove primarily to DNA phosphate groups at and beyond the 3' side of the scissile phosphate, with little interaction with ribose groups and bases. This result provides a structural basis for sugar- and sequence-independent DNA recognition and the inhibition mechanism by inhibitor Im7, which blocks the substrate binding site but not the active site. Structural comparison shows that two families of endonucleases bind and bend DNA in a similar way to that of the HNH ColE7, indicating that endonucleases containing a "betabetaalpha-metal" fold of active site possess a universal mode for protein-DNA interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号