首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uterine slices obtained from estrogen-treated rabbits were incubated in vitro with N-acetyl-D-[1-3H]glucosamine together with D-[U-14C]glucose. The isotope-labelled acidic complex saccharides were then isolated by pronase digestion, Dowex 1 column chromatography and preparative electrophoresis on cellulose acetate membrane, in succession. In this way, individual acidic complex saccharides (hyaluronic acid, heparan sulfate, chondroitin sulfate A, chondroitin sulfate C, dermatan sulfate, sulfated glycopeptide, and sialoglycopeptide) were separated into 2-5 subfractions. The specific radioactivity of hexosamine in the subfractions indicated that the metabolic rate of the uterine complex saccharides as follows: hyaluronic acid greater than sulfated glycopeptide greater than heparan sulfate greater than chondroitin sulfate C greater than dermatan sulfate. In addition, metabolic heterogeneity of heparan sulfate, chondroitin sulfate A, chondroitin sulfate C, and dermatan sulfate was suggested.  相似文献   

2.
Rat liver parenchymal cells were evaluated after 2 days of primary culture for their ability to synthesize and accumulate heparan sulfate as the major component and low-sulfated chondroitin sulfate, dermatan sulfate, chondroitin sulfate and hyaluronic acid as the minor ones. The newly synthesized glycosaminoglycans secreted into the medium were different from those remaining with and/or on the cell layer. Low-sulfated chondroitin 4-sulfate, a major glycosaminoglycan in blood, was synthesized in the order of 320 μg/liver per day, more than 90% of which was secreted into the medium within 16 h and 40% of the glycan secreted was degraded during that time. On the other hand, heparan sulfate, the major glycosaminoglycan synthesized by the parenchymal cells, was mainly distributed in the cell layer. After 8 days of culture, the synthesis of glycosaminoglycans by the cells increased markedly, especially dermatan sulfate, chondroitin sulfate and hyaluronic acid.  相似文献   

3.
Aggregation of cultured mouse cells was measured by the rate of disappearance of particles from a suspension of single cells. Treatment with several enzymes which degrade hyaluronic acid (testicular hyaluronidase, streptomyces hyaluronidase, streptococcal hyaluronidase and chondroitinase ABC) inhibited the aggregation of SV-3T3 and several other cell types. Since streptomyces and streptococcal hyaluronidases are specific for hyaluronic acid, it is suggested that hyaluronic acid is involved in the observed aggregation. Hyaluronidase-induced inhibition of aggregation was complete in the absence of divalent cations, but only partial in their presence. This finding is consistent with the hypothesis that two separate mechanisms are responsible for aggregation; one dependent upon and the other independent of calcium and magnesium. Aggregation was also inhibited by high levels of hyaluronic acid. A similar effect was obtained with fragments of hyaluronic acid consisting of six sugar residues or more. Chondroitin (desulfated chondroitin 6-sulfate) and to a lesser extent desulfated dermatan sulfate also inhibited aggregation. Other glycosaminoglycans (chondroitin 4-sulfate, chondroitin 6-sulfate, heparin and heparan sulfate) had little or no effect on aggregation. It is suggested that the hyaluronic acid inhibits aggregation by competing with endogenous hyaluronic acid for cell surface binding sites.  相似文献   

4.
We investigated the influence of various kinds of glycosaminoglycans (GAGs) in collagen gels on the maintenance of albumin synthesis in primary culture of rat hepatocytes. Among the GAGs examined (heparin, heparan sulfate, keratan sulfate, chondroitin sulfate A, dermatan sulfate, and hyaluronic acid), only heparin-containing collagen gel cultures could significantly sustain albumin synthesis. However, other GAGs, such as heparan sulfate and keratan sulfate, had almost no effect on the maintenance of albumin synthesis. Heparin in collagen gels exhibited a dose-dependent effect on albumin synthesis: heparin at 400 μg/ml-collagen solution maintained albumin synthesis for over 3 weeks. On the other hand, when an equivalent amount of heparin was added directly to the collagen gel culture medium, it prolonged albumin synthesis for only 10 days. The results demonstrate that specific regulation of albumin synthesis by heparin was significantly promoted by coincubating it with collagen, suggesting that some specific interaction between heparin and collagen might be of importance for the maintenance of hepatocyte functions.  相似文献   

5.
The synthesis of glycosaminoglycans by human skin fibroblasts derived from normal subjects, Hurler and Marfan patients before and after transformation by SV40 virus has been studied. Virus transformation results in a marked increase in hyaluronic acid synthesis in normal and Hurler fibroblasts and, to a lesser extent, in Marfan fibroblasts which show augmented synthesis of this polysaccharide before transformation. There is also an increase in heparan sulfate synthesis but a moderate decrease in dermatan sulfate synthesis on transformation. Incubation of transformed fibroblasts with 4-methylumbelliferyl-beta-D-xyloside results in a marked increase in synthesis of free chondroitin sulfate chains. The synthesis of hyaluronic acid, but not of dermatan sulfate, is inversely proportional to cell density in normal fibroblasts but not in transformed fibroblasts.  相似文献   

6.
The synthesis of metabolically labeled proteoglycans and glycosaminoglycans from medium, cell layer and substrate attached material by rat glomerular mesangial cells in culture was characterized. The cellular localization of the labeled proteoglycans and glycosaminoglycans was determined by treating the cells with Flavobacterial heparinase. Of the total sulfated glycosaminoglycans, 33% were heparan sulfate; 55% of the cell layer material was heparan sulfate; 80% of sulfated proteins in the medium were chondroitin sulfate/dermatan sulfate. Putative glycosaminoglycan free chains of heparan sulfate and chondroitin sulfate were found in both the medium and cell layer; 95% of total proteoglycans and most (90%) of the putative heparan sulfate free chains were removed from the cell layer by the heparinase, whereas only 50% of the chondroitin sulfate and 25% of dermatan sulfate were removed. Large amounts of hyaluronic acid labeled with 3H glucosamine were found in the cell layer. In summary, approximately 60% of total sulfated glycoproteins was in the form of putative glycosaminoglycan free chains. Thus rat mesangial cells may synthesize large amounts of putative glycosaminoglycan free chains, which may have biological functions in the glomerulus independent of proteoglycans.  相似文献   

7.
A simple procedure for the isolation of heparan sulfates from pig lung using a poly-L-lysine-Sepharose column is described. Glycosaminoglycans are absorbed on poly-L-lysine-Sepharose at pH 7.5 and eluted with an NaCl linear gradient in the following order: hyaluronic acid (0.32 M NaCl), chondroitin (0.36 M NaCl), keratan sulfate (0.80 M NaCl), chondroitin 4-sulfate (0.86 M NaCl), chondroitin 6-sulfate (0.95 M NaCl), dermatan sulfate (0.91 M NaCl), heparan sulfate (1.2 M NaCl), and heparin (1.35 M NaCl). Based on these observations, isolation of heparan sulfate from pig lung crude heparan sulfate fractions which contain chondroitin sulfates and dermatan sulfate was attempted, using this chromatographic technique.  相似文献   

8.
Collagen-fibronectin complexes, formed by binding of fibronectin to gelatin or collagen insolubilized on Sepharose, were found to bind 20–40% of radioactivity in [35S]heparin. Fibronectin attached directly to Sepharose also bound [35S]heparin, while gelatin-Sepharose without fibronectin did not. Unlabeled heparin and highly sulfated heparan sulfate efficiently inhibited the binding of [35S]heparin, hyaluronic acid and dermatan sulfate were slightly inhibitory, while chondroitin sulfates and heparan sulfate with a low sulfate content did not inhibit.The interaction of heparin with fibronectin bound to gelatin resulted in complexes which required higher concentrations of urea to dissociate than complexes of fibronectin and gelatin alone. Heparin as well as highly sulfated heparan sulfate and hyaluronic acid brought about agglutination of plastic beads coated with gelatin when fibronectin was present. Neither fibronectin nor glycosaminoglycans alone agglutinated the beads.It is proposed that the multiple interactions of fibronectin, collagen and glycosaminoglycans revealed in these assays could play a role in the deposition of these substances as an insoluble extracellular matrix. Alterations of the quality or quantity of any one of these components could have important effects on cell surface interactions, including the lack of cell surface fibronectin in malignant cells.  相似文献   

9.
Albumin-producing rat liver parenchymal cell clones (BB and BC) and their subclones in the confluent culture synthesized heparan sulfate as the major component and dermatan sulfate, chondroitin sulfate and hyaluronic acid as the minor ones. Their relative contents were similar to those present in the rat liver.Analyses of glycosaminoglycans synthesized by subclone cells (BB1S) at various cell densities, cell growth phases and passage levels have shown that relative content of heparan sulfate remained constant, suggesting that the epithelial cell possesses a stable heparan sulfate-producing capacity. On the other hand, the level of hyaluronic acid production was high at low cell density, though it remained constant during cell proliferation.Chemically transformed rat liver parenchymal cells (M) produced relatively higher amount of chondrotin sulfate than non-transformed cells did, as observed with 4-nitroquinoline-1-oxide-transformed 3T3 cells, compared to 3T3 714 cells.The results obtained in this study strongly suggest that the liver parenchymal cells synthesize a major part of the glycosaminoglycans of the liver and chondroitin sulfate production is closely related to cellular proliferations.  相似文献   

10.
A mouse monoclonal antibody, ST-1, was raised against heparin complexed to Salmonella minnesota. Characterization of this antibody showed that it recognizes an epitope in the intact molecule of heparin that is present regardless of its source or anticoagulant activity. ST-1 is the first monoclonal antibody specific for the intact unmodified molecule of heparin to be described. 3H-labeled heparin in solution was immunoprecipitated by ST-1, and the formation of the 3H-labeled immunocomplex was selectively inhibited by unlabeled heparin. No cross-reactivity of ST-1 was observed with other glycosaminoglycans such as heparan sulfate, chondroitin sulfate, hyaluronic acid, dermatan sulfate, and keratan sulfate, or with polyanionic polymers such as dextran sulfate. Selective removal of the N-sulfate groups or N,O-desulfation of heparin strongly reduced the binding of ST-1. Inhibition of binding was also observed after carbodiimide reduction of the carboxyl groups of the uronic acid units of heparin. Competitive assays of ST-1 binding to heparin immobilized on poly-L-lysine-coated plates using oligosaccharides of different sizes that arose from HNO2 cleavage of heparin showed that the minimum fragment required for reactivity of ST-1 is a decasaccharide.  相似文献   

11.
Glomerular basement membranes (GBM's) were subjected to digestion in situ with glycosaminoglycan-degrading enzymes to assess the effect of removing glycosaminoglycans (GAG) on the permeability of the GBM to native ferritin (NF). Kidneys were digested by perfusion with enzyme solutions followed by perfusion with NF. In controls treated with buffer alone, NF was seen in high concentration in the capillary lumina, but the tracer did not penetrate to any extent beyond the lamina rara interna (LRI) of the GBM, and litte or no NF reached the urinary spaces. Findings in kidneys perfused with Streptomyces hyaluronidase (removes hyaluronic acid) and chondroitinase-ABC (removes hyaluronic acid, chondroitin 4- and 6-sulfates, and dermatan sulfate, but not heparan sulfate) were the same as in controls. In kidneys digested with heparinase (which removes most GAG including heparan sulfate), NF penetrated the GBM in large amounts and reached the urinary spaces. Increased numbers of tracer molecules were found in the lamina densa (LD) and lamina rara externa (LRE) of the GBM. In control kidneys perfused with cationized ferritin (CF), CF bound to heparan- sulfate rich sites demonstrated previously in the laminae rarae; however, no CF binding was seen in heparinase-digested GBM's, confirming that the sites had been removed by the enzyme treatment. The results demonstrated that removal of heparan sulfate (but not other GAG) leads to a dramatic increase in the permeability of the GBM to NF.  相似文献   

12.
The glycosaminoglycan of rat liver can be separated into five distinct fractions; a hyaluronic acid franction, a heparan sulfate fraction with a molar ratio of sulfate to hexosamine (S/HexN) around 0.7, a heparan sulfate fraction with a S/HexN ratio around 1.4, a dermatan sulfate fraction with a S/HexN ratio near unity, and a dermatan sulfate fraction with a S/HexN ratio around 1.3.Enzymatic analysis of the two dermatan sulfate fractions indicates that they differ significantly in that the high sulfated fraction contains relatively more N-acetylgalactosamine 4,6-bissulfate units (about 26% of the total hexosamine). In experimental injury produced by carbon tetrachloride, the low sulfated fraction increases as much as 9-fold on a dry weight basis, bearing no linear relationship to the amount of the high sulfated fraction which increases only 2-fold. A significant shift is also observed in the levels of the two heparan sulfate fractions. In this case, however, the high sulfated fraction shows a much more pronounced increase than does the low sulfated fraction. On the basis of these observations, it is suggested that for each of the dermatan sulfate and heparan sulfate classes are at least two pools, distinguished by sulfation degree and perhaps by turnover rate and physiological function.  相似文献   

13.
The glycosaminoglycan of rat liver can be separated into five distinct fractions; a hyaluronic acid fraction, a heparan sulfate fraction with a molar ratio of sulfate to hexosamine (S/HexN) around 0.7, a heparan sulfate fraction with a S/HexN ratio around 1.4, a dermatan sulfate fraction with a S/HexN ratio near unity, and a dermatan sulfate fraction with a S/HexN ratio around 1.3. Enzymatic analysis of the two dermatan sulfate fractions indicates that they differ significantly in that the high sulfated fraction contains relatively more N-acetylgalactosamine 4,6-bissulfate units (about 26% of the total hexosamine). In experimental injury produced by carbon tetrachloride, the low sulfated fraction increases as much as 9-fold on a dry weight basis, bearing no linear relationship to the amount of the high sulfated fraction which increases only 2-fold. A significant shift is also observed in the levels of the two heparan sulfate fractions. In this case, however, the high sulfated fraction shows a much more pronounced increase than does the low sulfated fraction. On the basis of these observations, it is suggested that for each of the dermatan sulfate and heparan sulfate classes there are at least two pools, distinguished by sulfation degree and perhaps by turnover rate and physiological function.  相似文献   

14.
The binding of the basement-membrane glycoprotein laminin to glycosaminoglycans (aggregating and non-aggregating subsets of heparan sulphates and dermatan sulphates, as well as heparin, chondroitin sulphates and hyaluronic acid) was studied by affinity chromatography. Partially periodate-oxidized chains of glycosaminoglycans were coupled to adipic acid dihydrazide-substituted agarose. Co-polymeric glycosaminoglycans reveal high affinity for laminin, whereas hyaluronic acid does not. Competitive-release experiments indicate that glycosaminoglycans share a common binding site on the laminin molecule.  相似文献   

15.
The preparation of heparan sulfate from the mitral valve of the human heart   总被引:1,自引:0,他引:1  
A study has been made of the glycosaminoglycan composition of the mitral valve of the normal human heart. Five glycosaminoglycans were isolated from tryptic digest of the material and were assayed by determining the carbohydrate content. Separation of these five polymers was achieved by Dowex 1 X 2 column chromatography. They were identified as hyaluronic acid, heparan sulfate, chondroitin-4-sulfate, dermatan sulfate and chondroitin-6-sulfate, respectively. As far as the authors are aware, this is the first isolation of heparan sulfate from the preparation of the mitral valve of the normal human heart.  相似文献   

16.
Glycosaminoglycan-binding proteins, with specific emphasis on dermatan sulfate, have been investigated in human plasma by affinity chromatography, mass spectrometry and Western blotting. Diluted plasma was applied to affinity columns and bound protein was eluted with 500 mM NaCl. Dermatan sulfate and heparan sulfate bound 7% of the total protein. Heparin bound 22% of the total protein, but chondroitin sulfate A bound only 0.23%. Mass spectrometric analysis identified 20 proteins as dermatan-sulfate-binding proteins, most of which were confirmed by Western blotting. Some of these binding proteins, such as fibrinogen, fibronectin, apolipoprotein B, LMW kininogen, inter-alpha-trypsin inhibitor, and factor H, were degraded to various extents during the chromatography step, but this degradation could be prevented by the inclusion of a serine protease inhibitor. The protein fraction binding to the dermatan sulfate column showed amidase activity, whereas that binding to the heparan sulfate and heparin columns showed 1/2 and 1/20, respectively, of the activity of the dermatan sulfate binding fraction. Dermatan sulfate was similar to heparan sulfate with respect to its capacity to bind plasma proteins and its activation of protease, but differed from chondroitin sulfate and heparin in these properties.  相似文献   

17.
The glycosaminoglycan composition of human amniotic fluid between 12–21 weeks gestation has been studied by Dowex column chromatography coupled with enzymatic analyses of the specific glycosaminoglycan in each column fraction. The total uronic acid recovered from the columns consisted of “glycopeptides” (7%), hyaluronic acid (34%), nonsulfated chondroitin (14%), chondroitin-4-sulfate (13%), chondroitin-6-sulfate (20%), dermatan sulfate (5%), and heparan sulfate (6%). Based on these studies a simple screening procedure was devised to detect increased quantities of heparan sulfate and dermatan sulfate in 5–10-ml samples of amniotic fluid and tested in the antenatal diagnosis of Hurler and Hunter's syndrome. A false negative result was recorded in a Hunter fluid obtained early gestation and a false positive result recorded in a normal fluid obtained at weeks. These data suggest that the time in gestation when amniotic fluid is sampled for chemical analysis is an important variable affecting glycosaminoglycan composition in both normal and pathological pregnancies.  相似文献   

18.
Hypoxia, a consequence of interstitial lung diseases, may lead to secondary pulmonary hypertension and pulmonary vascular remodeling. Hypoxia induces activation and proliferation of lung cells and enhances the deposition of extracellular matrix including glycosaminoglycans (GAGs). To elucidate the cell biological mechanisms underlying the development of secondary pulmonary hypertension, we studied the effect of hypoxia on GAG synthesis by human lung cells. GAG synthesis was measured by incorporation of [(3)H]glucosamine; GAGs were isolated, purified, and characterized with GAG-degrading enzymes. Fibroblasts and vascular smooth muscle cells (VSMCs) synthesized hyaluronic acid, heparan sulfate, and chondroitin sulfates, whereas dermatan sulfate was found only in fibroblasts. Hypoxia did not influence the size or charge of the individual GAGs. However, hypoxia inhibited platelet-derived growth factor-induced [(3)H]glucosamine incorporation in secreted GAGs, especially hyaluronic acid, in VSMCs. In contrast, it stimulated GAG secretion, specifically heparan sulfate, by fibroblasts. Our results indicate that hypoxia induces modifications in GAG synthesis by human lung VSMCs and fibroblasts that may be correlated to pathophysiological manifestations in lung diseases causing hypoxia.  相似文献   

19.
The effect of various sulfated glycosaminoglycans on glycoconjugates syntheses in synovial membranes of rabbit knee joints in culture was investigated by two different approaches. In the first approach, synovial membranes isolated from rabbit knee joints were cultured in the presence of sulfated glycosaminoglycans and [14C]glucosamine. In the second approach, solutions of sulfated glycosaminoglycans were injected into rabbit knee joints and synovial membranes isolated from the joints were cultured in the presence of [14C]glucosamine. The major part of [14C]glucosamine-labeled glycoconjugates associated with the synovial membranes and secreted into culture medium was hyaluronic acid. Of the natural glycosaminoglycans tested, dermatan sulfate gave the maximum stimulation of hyaluronic acid synthesis followed by chondroitin 4- and 6-sulfate. Heparin, heparan sulfate, keratan sulfate, keratan polysulfate, and hyaluronic acid had no significant effect. Of the chemically polysulfated glycosaminoglycans, GAGPS (a persulfated derivative of chondroitin sulfate) gave high stimulation but N-acetylchitosan 3,6-disulfate had no effect. The effect of sulfated glycosaminoglycans on hyaluronic acid synthesis was the same in both experimental approaches. The increase in the amount of secreted hyaluronic acid in culture medium paralleled that in synovial membranes. The results indicate that the galactosamine-containing sulfated glycosaminoglycans have a specific stimulatory effect on hyaluronic acid synthesis. A high degree of sulfation of the molecules appeared to potentiate the stimulatory effect.  相似文献   

20.
Glycosaminoglycan synthesis during cell growth has been studied in terms of unit cell numbers, using 16-day-old embryonic chick tendon cell cultures. Hyaluronic acid production was found to be inversely proportional to the cell density, while the levels of sulfated-glycosaminoglycan synthesis remained constant. On the other hand, hyaluronic acid production remained constant during cell proliferation, though chondroitin sulfate synthesis increased rapidly during an actively growing phase of the cultured cells, and dermatan sulfate and heparan sulfate syntheses increased gradually.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号