首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spin-trapping of superoxide ion, O2-, which is produced from two different sources (OH(-)-DMSO and xanthine-xanthine oxidase systems), was investigated by use of a water-soluble, notroso-aromatic spin trap, sodium 3,5-dibromo-4-nitrosobenzene-sulfonate (DBNBS). It was found that O2- from all sources was easily trapped by DBNBS to yield the stable O2- adduct showing the ESR spectrum consisting of a triplet of a triplet [aN (1) = 12.63 G and aH (2) = 0.71 G]. Hydroperoxy radical (HO2.), which can be generated from the oxidation of hydrogen peroxide with Ce4+ ion, was not trapped by DBNBS. These results indicate that the trapped radical is O2-, but not HO2..  相似文献   

2.
Aqueous solutions of cyanide react with hydrogen peroxide/horseradish peroxidase and form the cyanyl radical, which can be trapped by 2-methyl-2-nitrosopropane (t-nitrosobutane, tNB) at pH 9.8. At lower pH a variety of radical adducts are formed; at higher pH, the main product was the spin adduct of the formamide radical with tNB. The use of deuterated tNB and 15N-labeled potassium cyanide allowed the observation of the very small nitrogen coupling of this radical adduct. Experiments using 3,5-dibromo-4-nitrosobenzenesulfonic acid (DBNBS) as the spin trap yielded only the formamide radical adduct, which was identified by an independent synthesis starting from formamide. Both hydrogen splittings of its amino group could be resolved using deuterated DBNBS as the spin trap.  相似文献   

3.
The aim of the present study was to apply spin trapping/EPR spectroscopy to investigate the existence and biological role of the L-arginine/nitric oxide pathway in human platelet aggregation. Three different spin traps were used: two nitroso, 3,5-dibromo-4-nitrosobenzenesulfonate (DBNBS) and 2-methyl-2-nitrosopropane (MNP), and a nitrone, 5,5-dimethyl-1-pyrroline N-oxide (DMPO). The effect of spin-trap concentration on the collagen-induced human platelet aggregation was compared to the anti-aggregatory effect caused by L-arginine. The results show that the nitroso spin traps (DBNBS and MNP) are more effective than L-arginine in preventing platelet aggregation. DMPO has virtually no effect on the collagen-induced aggregation except at a high concentration (300 mM). Furthermore, activation of platelets with a low concentration of collagen (17 micrograms/ml) and in the presence of DBNBS or MNP yields several EPR-detectable spin adducts. Some of the observed spin adducts do not correspond to those originating from the interaction of a free radical, nitric oxide (NO.) gas, with the spin traps [Arroyo, C.M. & Kohno, M. (1991) Free Radical Res. Commun. 14, 145-155]. Only one adduct of DBNBS, with a relative intensity of 0.1, observed in the washed-platelet experiment and in the presence of superoxide dismutase, is similar to the EPR spectrum obtained following a reaction of pure NO. gas with DBNBS. This suggests that the EPR spectrum of the DBNBS adduct consisting of a triplet may originate from the production of NO. by these cells. Additional DBNBS and MNP spin adducts were generated during platelet activation in the presence of Ca2+ and of a cytosol-depleted L-arginine preparation from washed platelets to which L-arginine was subsequently added. The formation of these DBNBS and MNP spin adducts were inhibited by N omega-methyl-L-arginine (MeArg, 100 microM), suggesting that these originated from a product of NO synthase. Furthermore, the formation of DBNBS and MNP spin adducts in platelet suspensions was enhanced by the presence of superoxide dismutase; however, their formation was prevented by the endothelial-derived relaxing factor (EDRF) inhibitors methylene blue and hemoglobin. The results from the MeArg and EDRF inhibitor experiments support the existence of the L-arginine/NO pathway in platelets. In addition, the prevention of spin-adduct formation by EDRF inhibitors, suggests that the mechanisms of EDRF formation and the L-arginine/NO pathway in endothelial cells and platelets are similar.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
We have studied receptor-mediated generation of an activator of soluble guanylate cyclase in cultured mouse neuroblastoma cells (clone N1E-115) by ESR/spin trapping spectroscopy. A spin adduct was detected during the activation of muscarinic receptors by carbamylcholine in the presence of the spin trap 3,5-dibromo 4-nitrosobenzene sulphonate (DBNBS). The spin adduct does not correspond to that originating from the free radical nitric oxide or hydroxylamine. The same adduct was generated in cytosol preparations from N1E-115 cells incubated with L-arginine, NADPH, in the presence of calcium. The use of isotopically labelled guanidino-N15-L-arginine supported the generation of a DBNBS spin trapped adduct originating from the guanidino moiety of L-arginine. Superoxide dismutase (SOD) stabilized the precursor of the spin adduct as well as the activator of soluble guanylate cyclase derived from L-arginine. Our results provide direct evidence for the receptor-mediated formation of a diffusible precursor of NO. derived from L-arginine.  相似文献   

5.
Sulfite radical anion, SO3-., which is generated either by non-enzymatic reaction of hydrogen peroxide (H2O2-) with sulfite (SO3(2-)) or by the oxidation of bisulfite (HSO3) with Ce4+ ion, can be trapped with a water-soluble, nitroso-aromatic spin-trap, sodium 3,5-dibromo-4-nitrosobenzenesulfonate (DBNBS, 1), yielding an ESR spectrum with coupling constants [aN (1) = 12.9 G, aH (2) = 0.8 G] and a g-value of 2.0063. The SO3- radical adduct (spin adduct) was observed even in the presence of the very low concentration of H2O2 (1.21 X 10(-2) mumol).  相似文献   

6.
The one-electron oxidation of (bi)sulfite is catalyzed by peroxidases to yield the sulfur trioxide radical anion (SO3-), a predominantly sulfur-centered radical as shown by studies with 33S-labeled (bi)sulfite. This radical reacts with molecular oxygen to form a peroxyl radical. The subsequent reaction of this peroxyl radical with (bi)sulfite has been proposed to form the sulfate anion radical, which is nearly as strong an oxidant as the hydroxyl radical. We used the spin trapping electron spin resonance technique to provide for the first time direct evidence for sulfate anion radical formation during (bi)sulfite peroxidation. The sulfate anion radical is known to react with many compounds more commonly thought of as hydroxyl radical scavengers such as formate and ethanol. Free radicals derived from these scavengers are trapped in systems where (bi)sulfite peroxidation has been inhibited by these scavengers.  相似文献   

7.
Summary

Photo-oxidation of bovine serum albumin (BSA) by porphyrins produces protein-centred radicals that can be spin trapped by 3, 5-dibromo-4-nitrosobenzenesulphonic acid (DBNBS) and 5, 5-dimethyl-1-pyrroline-N-oxide (DMPO). In the case of DMPO, a thiyl radical from the Cys-34 residue is trapped, whereas with DBNBS signals from both this thiyl and tertiary carbon-centred species are observed. However, specific chemical modification of the Cys-34 residue, in combination with dual-isotope spin-trapping techniques, shows that the signal assigned to the Cys-34 thiyl adduct with DBNBS is a nitroxide artefact resulting from sequential (non-radical) nucleophilic addition and oxidation. In contrast, both the Cys-34 thiyl DMPO adduct and the tertiary carbon-centred DBNBS adducts result from genuine spintrapping. This study shows that such artefacts can be detected—even with anisotropic EPR spectra—through the use of appropriately substituted spin-traps, and that nitroso spin-traps need to be employed with great care in systems containing free thiol groups.  相似文献   

8.
Protein-based radicals generated in the reaction of ferricytochrome c (cyt c) with H(2)O(2) were investigated by electrospray mass spectrometry (ESI-MS) using 3,5-dibromo-4-nitrosobenzenesulfonate (DBNBS). Up to four DBNBS-cyt c adducts were observed in the mass spectra. However, by varying the reaction conditions (0-5 molar equivalents of H(2)O(2) and substituting cyt c with its cyanide adduct which is resistant to peroxidation), noncovalent DBNBS adduct formation was inferred. Nonetheless, optical difference spectra revealed the presence of a small fraction of covalently trapped DBNBS. To probe the nature of the noncovalent DBNBS adducts, the less basic proteins, metmyoglobin (Mb) and alpha-lactalbumin, were substituted for cyt c in the cyt c/H(2)O(2)/DBNBS reaction. A maximum of two DBNBS adducts were observed in the mass spectra of the products of the Mb/H(2)O(2)/DBNBS reactions, whereas no adducts were detected following alpha-lactalbumin/H(2)O(2)/DBNBS incubation, which is consistent with adduct formation via spin trapping only. Titration with DBNBS at pH 2.0 yielded noncovalent DBNBS-cyt c adducts and induced folding of acid-denatured cyt c, as monitored by ESI-MS and optical spectroscopy, respectively. Thus, the noncovalent DBNBS-cyt c mass adducts observed are assigned to ion pair formation occurring between the negatively charged sulfonate group on DBNBS and positively charged surface residues on cyt c. The results reveal the pitfalls inherent in using mass spectral data with negatively charged spin traps such as DBNBS to identify sites of radical formation on basic proteins such as cyt c.  相似文献   

9.
X Sun  X Shi  N S Dalal 《FEBS letters》1992,303(2-3):213-216
In the presence of hydrogen peroxide (H2O2), xanthine oxidase has been found to catalyze sulfur trioxide anion radical (SO3.-) formation from sulfite anion (SO3(2-)). The SO3.- radical was identified by ESR (electron spin resonance) spin trapping, utilizing 5,5-dimethyl-l-pyrroline-l-oxide (DMPO) as the spin trap. Inactivated xanthine oxidase does not catalyze SO3.- radical formation, implying a specific role for this enzyme. The initial rate of SO3.- radical formation increases linearly with xanthine oxidase concentration. Together, these observations indicate that the SO3.- generation occurs enzymatically. These results suggest a new property of xanthine oxidase and perhaps also a significant step in the mechanism of sulfite toxicity in cellular systems.  相似文献   

10.
In the present study dibromonitrosobenzene sulfonate (DBNBS) was examined for its suitability for spin trapping for ESR detection of superoxide radicals in biological systems. This nitroso spin trap recently has been reported to yield very persistent spin adducts with O2. as well as with various carbon-centered radicals. In the present work the possible toxicity of DBNBS, the partitioning of its spin adducts into cells, and the stability of the adducts and the parent compound inside cells were studied. No significant toxicity was found. In cellular systems, however, DBNBS did not produce detectable adducts with O2.; it also did not detectably trap superoxide generated in the xanthine/xanthine oxidase system. Both DBNBS and a DBNBS adduct performed extracellularly and then added to cell suspensions were rapidly metabolized by cells. Intracellular spin adducts were not detected under any condition. Evidently, in spite of its promising features, DBNBS will not be useful for spin trapping radicals in cellular systems or for detecting superoxide radicals in any biological system.  相似文献   

11.
DBNBS (3,5-dibromo-4-nitrosobenzenesulphonate) reacts with nitric oxide (NO) produced from nitrite ions in acid solution to give a radical with a characteristic electron spin resonance spectrum, attributable to a 'DBNBS-NO' product, and comprising a triplet with alphaN=0.96 mT. This is identical with the spectrum obtained when NO, introduced from the gas phase, reacts with DBNBS. Under certain conditions, an additional signal is observed, attributable to oxidation of DBNBS to the radical cation, DBNBS*+ (a triplet with alphaN=1.32 mT). Conditions are described for the determination of nitrite, which avoid this DBNBS oxidation. The height of the low-field signal from the DBNBS-NO product is directly proportional to the nitrite concentration up to about 0.08 mM nitrite. The method has been applied to the measurement of nitrite concentrations in whole blood, plasma and synovial fluid taken from rheumatoid arthritis patients. In order to avoid the oxidation of DBNBS when analysing biological samples of this type, it is necessary to treat the specimen by ultrafiltration as soon as possible after collection and before addition of DBNBS.  相似文献   

12.
When dimethyl sulfoxide (DMSO) is oxidized via hydroxyl radical (HO(.-)), it forms methyl radicals ((.-)CH(3)) that can be spin trapped and detected by electron spin resonance (ESR). This ESR spin trapping technique has been widely used in many biological systems to indicate in vivo HO(.-) formation. However, we recently reported that (.-)CH(3) might not be the only carbon-centered radical that was trapped and detected by ESR from in vivo DMSO oxidation. In the present study, newly developed combination techniques consisting of dual spin trapping (free radicals trapped by both regular and deuterated alpha-[4-pyridyl 1]-N-tert-butyl nitrone, d(0)/d(9)-POBN) followed by LC/ESR and LC/MS were used to characterize and quantify all POBN-trapped free radicals from the interaction of HO(.-) and DMSO. In addition to identifying the two well-known free radicals, (.-)CH(3) and (.-)OCH(3), from this interaction, we also characterized two additional free radicals, (.-)CH(2)OH and (.-)CH(2)S(O)CH(3). Unlike ESR, which can measure POBN adducts only in their radical forms, LC/MS identified and quantified all three redox forms, including the ESR-active radical adduct and two ESR-silent forms, the nitrone adduct (oxidized adduct) and the hydroxylamine (reduced adduct). In the bile of rats treated with DMSO and POBN, the ESR-active form of POBN/(.-)CH(3) was not detected. However, with the addition of the LC/MS technique, we found approximately 0.75 microM POBN/(.-)CH(3) hydroxylamine, which represents a great improvement in radical detection sensitivity and reliability. This novel protocol provides a comprehensive way to characterize and quantify in vitro and in vivo free radical formation and will have many applications in biological research.  相似文献   

13.
EPR spin trapping using the spin traps 5,5-dimethyl-1-pyrroline N-oxide (DMPO) and 3,5-dibromo-4-nitrosobenzene sulphonic acid (DBNBS) has been employed to examine the generation of radicals produced on reaction of a number of primary, secondary and lipid hydroperoxides with rat liver microsomal fractions in both the presence and absence of reducing equivalents. Two major mechanisms of radical generation have been elucidated. In the absence of NADPH or NADH, oxidative degradation of the hydroperoxide occurs to give initially a peroxyl radical which in the majority of cases can be detected as a spin adduct to DMPO; these radicals can undergo further reactions which result in the generation of alkoxyl and carbon-centered radicals. In the presence of NADPH (and to a lesser extent NADH) alkoxyl radicals are generated directly via reductive cleavage of the hydroperoxide. These alkoxyl radicals undergo further fragmentation and rearrangement reactions to give carbon-centered species which can be identified by trapping with DBNBS. The type of transformation that occurs is highly dependent on the structure of the alkoxyl radical with species arising from beta-scission, 1,2-hydrogen shifts and ring closure reactions being identified; these processes are in accord with previous chemical studies and are characteristic of alkoxyl radicals present in free solution. Studies using specific enzyme inhibitors and metal-ion chelators suggest that most of the radical generation occurs via a catalytic process involving haem proteins and in particular cytochrome P-450. An unusual species (an acyl radical) is observed with lipid hydroperoxides; this is believed to arise via a cage reaction after beta-scission of an initial alkoxyl radical.  相似文献   

14.
Using the spin trap 3,5-dibromo-4-nitrosobenzene sulfonate (DBNBS), an oxidant was previously detected in the plasma of patients with renal failure and the synovial tissue of rheumatoid arthritis patients. This oxidant has been shown to react with DBNBS to give a 3-line electron paramagnetic resonance (EPR) spectrum, previously assigned to the DBNBS radical cation (DBNBS*(+). However, confusion has arisen as to whether this paramagnetic species is indeed DBNBS*(+) or, rather, the DBNBS sulfite radical adduct (DBNBS-SO(3)*(-)). In the present study, DBNBS*(+) (a(N)=1.32 mT) was distinguished from DBNBS-SO(3)*(-) (a(N)=1.32 mT with an additional splitting of a(H)=0.06 mT) by (a) using different EPR parameters, (b) determining the effect of addition of sulfite on the EPR spectrum resulting from the incubation of DBNBS with either human biofluids or the horseradish peroxidase (HRP)-hydrogen peroxide (H(2)O(2)) system, and (c) replacing DBNBS with its analogues (DBNBS-d(2,) DBNBS-15N and DBNBS-d(2)-15N) in the two systems.  相似文献   

15.
Incubation of myeloperoxidase (MPO) with H(2)O(2) in the presence of the spin trap DBNBS (3,5-dibromo-4-nitrosobenzenesulfonic acid) results in the EPR-detectable formation of a partially immobilized protein radical. The radical was only formed in the presence of both MPO and H(2)O(2), indicating that catalytic turnover of the protein is required. The changes in the EPR spectrum of the adduct upon treatment with pronase confirm that the spin trap is bound to a protein residue. These results establish that MPO, like lactoperoxidase [Lardinois, O. M., Medzihradszky, K. F., and Ortiz de Montellano, P. R. (1999) J. Biol. Chem. 274, 35441-35448], reacts with H(2)O(2) to give a protein radical intermediate. The protein radical may have a catalytic role, may be related to covalent binding of the prosthetic heme group to the protein, or may reflect a process that leads to inactivation of the enzyme.  相似文献   

16.
Measurement of hydroxyl radical (*OH) in living animals irradiated with ionizing radiation should be required to clarify the mechanisms of radiation injury and the in vivo assessment of radiation protectors, because generation of *OH is believed to be one of the major triggers of radiation injury. In this study, *OH generation was monitored by spin trapping the secondary methyl radical formed by the reaction of *OH with dimethyl sulfoxide (DMSO). Rats were injected intraperitoneally with a DMSO solution of alpha-phenyl-N-tert-butylnitrone (PBN). X-irradiation of the rats remarkedly increased the six-line EPR signal in the bile. The strengthened signal was detectable above 40 Gy. Use of 13C-substituted DMSO revealed that the signal included the methyl radical adduct of PBN as a major component. The EPR signal of the PBN-methyl radical adduct was completely suppressed by preadministration of methyl gallate, a scavenger of *OH but not of methyl radical. Methyl gallate did not reduce the spin adducts to EPR-silent forms. These observations indicate that what we were measuring was *OH generated in vivo by x-irradiation. This is the first report of the in vivo monitoring of *OH generation at a radiation dose close to what people might receive in the case of radiological accident or radiation therapy.  相似文献   

17.
The sonolysis of aqueous solutions of various dihydropyrimidines and substituted pyrimidines was investigated by ESR and spin trapping with the nonvolatile, water soluble spin trap, 3,5-dibromonitrosobenzene sulfonate (DBNBS) and its deuterated analog to examine the possibility of detecting new radicals specifically generated in the high temperature zones produced by collapsing cavitation bubbles. Similar ESR spectra were obtained from sonolysis of argon-saturated aqueous solutions, from uv photolysis of aqueous solutions containing H2O2, and from gamma radiolysis of nitrous oxide saturated solutions, although sonolysis of aqueous solutions leads to the formation of pyrimidine radicals by H atom as well as OH radical addition to the 5,6 double bond of pyrimidines. No evidence for specific new radicals formed in the high temperature regions induced by cavitation could be found. For the reactions of dihydropyrimidines with hydroxyl radicals additional spin adducts could be detected and identified with the spin trap DBNBS compared to 2-methyl-2-nitrosopropane which was used in previous studies; however, for alkylpyrimidines fewer spin adducts were observed. The use of the deuterated analog of DBNBS is helpful for unambiguous radical structure assignment.  相似文献   

18.
We have studied the effects of oxygen radical scavengers on the inactivation of ss ΦX174 DNA by the semi-quinone free radical of the antitumor agent etoposide (VP 16-213), which was generated from the ortho-quinone of etoposide at pH ≥ 7.4. A semi-quinone free radical of etoposide is thought to play a role in the inactivation of ss ΦDX174 DNA by its precursors 3',4'-ortho-quinone and 3',4'-ortho-dihydroxy-derivative. The possible role of oxygen radicals formed secondary to semi-quinone formation in the inactivation of DNA by the semi-quinone free radical was investigated using the hydroxyl radical scavengers t-butanol and DMSO. the spin trap DMPO, the enzymes catalase and superoxide dismutase, the iron chelator EDTA and potassium superoxide. Hydroxyl radicals seem not important in the process of inactivation of DNA by the semi-quinone free radical, since t-butanol, DMSO, catalase and EDTA had no inhibitory effect on DNA inactivation. The spin trapping agent DMPO strongly inhibited DNA inactivation and semi-quinone formation from the ortho-quinone of etoposide at pH ≥ 7.4 with the concomitant formation of a DMPO-OH adduct. This adduct probably did not arise from OH· trapping but from trapping of O2-. DMSO increased both the semi-quinone formation from and the DNA inactivation by the ortho-quinone of etoposide at pH ≥ 7.4. Potassium superoxide also stimulated ΦDX174 DNA inactivation by the ortho-quinone at pH ≤ 7. From the present study, it is also concluded that superoxide anion radicals probably play an important role in the formation of the semi-quinone free radical from the orthoquinone of etoposide, thus indirectly influencing DNA inactivation.  相似文献   

19.
The hydroxyl and superoxide anion spin adducts of DMPO and 4-MePyBN, respectively, were obtained during photoirradiation of adriamycin and daunomycin solutions with visible light. Ethanol and dimethyl sulfoxide did not scavenge hydroxyl radicals in the photoirradiated drug solutions. Furthermore, the hydroxyl-DMPO spin adduct is not formed in the photolysis of air-free drug solutions, indicating that hydroxyl radicals are not directly produced in the photochemical reactions. Instead, the observed hydroxyl-DMPO is formed from the decay of the superoxide anion-DMPO spin adduct. The mechanism for generating the superoxide anion radical appears to be a direct electron transfer from the photoexcited adriamycin and daunomycin to dissolved oxygen.  相似文献   

20.
Aromatic nitroso compounds, nitrosobenzene (NB), N, N-dimethyl-4-nitrosoaniline (DMNA) and 3,5-dibromo-4-nitrosobenzene sulfonate (DBNBS), caused DNA single strand breaks in the presence of thiol compounds. The strand breaking was inhibited completely by free radical scavenger ethanol. Electron spin resonance (ESR) studies showed that hydronitroxyl (or sulfur-substituted nitroxyl) radicals were generated in the early stage of the interactions. Formation of these radicals was not inhibited by ethanol, indicating that these radicals did not directly contribute to the strand breaking. The DNA strand breaking was inhibited partially by superoxide dismutase and catalase under the limited conditions, but not by removal of oxygen from or addition of metal chelators to the reaction mixture. By ESR-spin trapping technique using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), the DMPO-OH spin adduct was detected. Formation of the spin adduct was inhibited by superoxide dismutase and catalase. The hydronitroxyl (or the sulfur-substituted nitroxyl) radicals may reduce oxygen into active oxygen species and also transformed by themselves into other unidentified free radical species to cause the DNA strand breaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号