首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A small DNA fragment having a characteristic sequence d(GCGAAAGC) has been shown to form an extraordinarily stable mini-hairpin structure and to have an unusually rapid mobility in polyacrylamide gel electrophoresis, even when containing 7M urea. Here, we have studied the stability of the various sequence variants of d(GCGAAAGC) and the corresponding RNA fragments. Many such sequence variants form stable mini-hairpins in a similar manner to the d(GCGAAAGC) sequence. The RNA fragment, r(GCGAAAGC) also forms a mini-hairpin structure with less stability. The DNA mini-hairpins with GAAA or GAA loop are much more stable than DNA and RNA mini-hairpins with other loop sequence so far as has been examined. The stability difference between DNA and RNA mini-hairpins may be deduced to the stem structures formed by DNA (B form) and RNA (A form). The stable hairpins consisting of the GCGAAAGC sequence cause strong band compression on the sequencing gel. This phenomenon should be carefully considered in DNA sequencing.  相似文献   

2.
A 410 base-pair (bp) Sau3A restriction fragment derived from a Leishmania tarentolae kinetoplast DNA minicircle, which is known to have slower than expected electrophoretic mobilities in polyacrylamide gels, has been cloned in a plasmid and deletions from one end of the cloned segment have been constructed. Analysis of the gel electrophoretic mobility data of a large number of restriction fragments derived from the kinetoplast DNA clone and its deletion subclones has led to the conclusion that two sequences, one in the region bp 100 to 170 and the other bp 190 to 250, both numbered from one end of the 410 bp kinetoplast DNA segment, are important for the abnormal gel electrophoretic behavior of the kinetoplast DNA fragment. One common feature of these sequences is the periodic presence of short runs of A residues (3 to 6 As in each); auto-correlation analysis of these runs of A residues shows a strong harmonic component with a period around 11 bp. These results support and extend the previous analysis of Wu & Crothers (1984). The abnormal electrophoretic behavior is accentuated at low temperature and by the addition of Mg2+ to the electrophoresis buffer; addition of Na+ has the opposite effect. Insertion of sequences derived from the kinetoplast DNA fragment into nicked circular DNA causes no unexpected change in its electrophoretic mobility in agarose gel, suggesting that the 410 bp sequence, or segments of it, has no significant spatial writhe. Abnormal shifts in agarose gel mobilities are observed, however, when certain segments of the kinetoplast DNA are inserted into positively or negatively supercoiled DNA topoisomers. These results are consistent with a bent structure of the kinetoplast DNA in which the bend has zero writhe in its undistorted form but is easily distorted.  相似文献   

3.
H Bading 《Nucleic acids research》1988,16(12):5241-5248
A protein-DNA complex has less gel electrophoretic mobility than the free DNA fragment. One parameter for the degree of retardation of a linear DNA fragment in a protein-DNA complex is the molecular weight of the bound protein(s). The quotient of the migration distances of free DNA (m) and protein-DNA complex (m') is a function of the molecular weight (MW) of the bound protein(s). Based on the evaluation of the lac repressor induced mobility shift of a 203 bp DNA fragment containing the lac operator in a 5% non-denaturating polyacrylamide gel a direct proportionality could be shown between (m/m'-1) and MW with the proportionality factor K = 215 kDa. The factor K depends on the acrylamide concentration in the gel, getting lower values with increasing acrylamide concentrations. A calculation is given to determine the molecular weight of DNA-binding factors responsible for the decreased electrophoretic mobility of a linear DNA fragment. As an example this calculation was used in order to analyse DNA-binding of the isolated viral myb protein. It could be demonstrated that the viral myb protein binds to DNA as a monomer and as a dimer.  相似文献   

4.
J Kim  C Zwieb  C Wu  S Adhya 《Gene》1989,85(1):15-23
The binding of a protein to its specific sequence, borne on a DNA fragment, retards the mobility of the fragment in a characteristic way during gel electrophoresis. If the protein induces bending in the DNA, the contortion can also be monitored by gel electrophoresis, because the amount of retardation of the mobility of the DNA-protein complex is dependent upon the position and the degree of the bend induced in the DNA fragment [Wu and Crothers, Nature 308 (1984) 509-513]. We have constructed a plasmid, pBend2, which can generate a large number of DNA fragments of identical length in which the protein-binding nucleotide sequence is located in circular permutations. The vector contains two identical DNA segments containing 17 restriction sites in a direct repeat spanning a central region containing cloning sites. The protein-binding sequence is inserted at one of these cloning sites. To investigate the functional significance of bending, we have compared, using pBend2, the cAMP.cAMP-receptor protein (CPR)-induced bending of CRP-binding sites found in five different genes of Escherichia coli. We have also shown that the bacteriophage lambda 0R1 operator DNA is bent when complexed with the CI or Cro repressor of the phage.  相似文献   

5.
Replication of chloroplast DNA (ctDNA) in several plants and in Chlamydomonas reinhardii has been shown to occur by a double displacement loop (D-loop) mechanism and potentially also by a rolling circle mechanism. D-loop replication origins have been mapped in several species. Minimal replication origin sequences used as probes identified two potential binding proteins by southwestern blot analysis. A 28 kDa (apparent molecular weight by SDS-PAGE analysis) soybean protein has been isolated by origin sequence-specific DNA affinity chromatography from total chloroplast proteins. Mass spectrometry analysis identified this protein as the product of the soybean C6SY33 gene (accession number ACU14156), which is annotated as encoding a putative uncharacterized protein with a molecular weight of 25,897 Da, very near the observed molecular weight of the purified protein based on gel electrophoresis. Western blot analysis using an antibody against a homologous Arabidopsis protein indicates that this soybean protein is localized specifically in chloroplasts. The soybean protein shares some homology within a single-stranded DNA binding (SSB) domain of E. coli SSB and an Arabidopsis thaliana mitochondrial-localized SSB of about 21 kDa (mtSSB). However, the soybean protein induces a specific electrophoretic mobility shift only when incubated with a double-stranded fragment containing the previously mapped ctDNA replication oriA region. This protein has no electrophoretic mobility shift activity when incubated with single-stranded DNA. In contrast, the Arabidopsis mtSSB causes a mobility shift only with single-stranded DNA but not with the oriA fragment or with control dsDNA of unrelated sequence. These results suggest that the 26 kDa soybean protein is a specific origin binding protein that may be involved in initiation of ctDNA replication.  相似文献   

6.
The interaction of E. coli's integration Host Factor (IHF) with fragments of lambda DNA containing the cos site has been studied by gel-mobility retardation and electron microscopy. The cos fragment used in the mobility assays is 398 bp and spans a region from 48,298 to 194 on the lambda chromosome. Several different complexes of IHF with this fragment can be distinguished by their differential mobility on polyacrylamide gels. Relative band intensities indicate that the formation of a complex between IHF and this DNA fragment has an equilibrium binding constant of the same magnitude as DNA fragments containing lambda's attP site. Gel-mobility retardation and electron microscopy have been employed to show that IHF sharply bends DNA near cos and to map the bending site. The protein-induced bend is near an intrinsic bend due to DNA sequence. The position of the bend suggests that IHF's role in lambda DNA packaging may be the enhancement of terminase binding/cos cutting by manipulating DNA structure.  相似文献   

7.
The effects of Trp to Phe exchanges in the Tet repressor on the thermal stability of the proteins and their complexes with operator DNA and inducer have been studied by temperature gradient polyacrylamide gel electrophoresis. The denaturation temperatures obtained by this method are compared with the results from temperature-dependent fluorescence and binding activities of the proteins. It is established that exchanging the interior Trp75 to Phe reduces the thermal stability of the Tet repressor by 8 degrees C while exchanging the exterior Trp43 to Phe has no effect on the stability of the protein. Binding of the inducer tetracycline increases the thermal stability of wild-type and Trp43 to Phe mutant Tet repressors by 5 degrees C, while the ones with the Trp75 to Phe mutation are stabilized by 10 degrees C. The stabilizing effect of operator binding is 20 degrees C in the Trp75 to Phe mutant and only 9 degrees C in the ones with the Trp43 to Phe exchange. In addition to the denaturation temperatures, the gel mobility shifts observed in temperature gradient gel electrophoresis reveal also information about the intermediates of the denaturation reaction. The free proteins and their complexes with the inducer tetracycline exhibit monophasic transitions upon denaturation. The operator complexes of wild-type and Trp75 to Phe mutant repressors denature in more complex reactions. At low temperature they exhibit a stoichiometry of two repressor dimers per tandem tet operator DNA. Upon elevating the temperature they form complexes with only one repressor dimer per DNA fragment. When the temperature is further increased the double-stranded DNA begins to melt from one end resulting in a complex with partially single-stranded DNA which exists only in a narrow temperature range. Finally, the denatured protein and single-stranded DNA are formed at high temperature. The associated mobility shifts are analyzed by changing the ionic strength and characterizing multiphasic melting of a pure DNA fragment by temperature gradient gel electrophoresis.  相似文献   

8.
A series of computer simulations of gel patterns assuming non-cooperative binding of a protein to two targets on the same DNA fragment was performed and applied to interprete gel mobility shift experiments of Tet repressor-tet operator binding. While a high binding affinity leads to the expected distribution of free DNA, DNA bound by one repressor dimer and DNA bound by two repressor dimers, a lower affinity or an increased electrophoresis time results in the loss of the band corresponding to the singly occupied complex. The doubly occupied complex remains stable under these conditions. This phenomenon is typical for protein binding to DNA fragments with two identical sites. It results from statistical disproportionation of the singly occupied complex in the gel. The lack of the singly occupied complex is commonly taken to indicate cooperative binding, however, our analysis shows clearly, that cooperativity is not needed to interprete these results. Tet repressor proteins and small DNA fragments with two tet operator sites have been prepared from four classes of tetracycline resistance determinants. The results of gel mobility shift analyses of various complexes of these compounds confirm the predictions. Furthermore, calculated gel patterns assuming different gel mobilities of the two singly occupied complexes show discrete bands only if the electrophoresis time is shorter than the inverse of the microscopic dissociation rate constant. Simulations assuming increasing dissociation rates predict that the two bands first merge into one, which then disappears. This behavior was verified by gel mobility analyses of Tet repressor-tet operator titrations at increased salt concentrations as well as by direct footprinting of the complexes in the gel. It is concluded that comparison of the intensities of the single and the double occupation bands allow a rough estimation of the dissociation rate constant. On this basis the sixteen possible Tet repressor-tet operator combinations can be ordered with decreasing binding affinities by a simple gel shift experiment. The implications of these results for gel mobility analyses of other protein-DNA complexes are discussed.  相似文献   

9.
We describe a method for rapid purification of the integration host factor (IHF) homolog of Rhodobacter capsulatus that has allowed us to obtain microgram quantities of highly purified protein. R. capsulatus IHF is an alpha beta heterodimer similar to IHF of Escherichia coli. We have cloned and sequenced the hip gene, which encodes the beta subunit. The deduced amino acid sequence (10.7 kDa) has 46% identity with the beta subunit of IHF from E. coli. In gel electrophoretic mobility shift DNA binding assays, R. capsulatus IHF was able to form a stable complex in a site-specific manner with a DNA fragment isolated from the promoter of the structural hupSL operon, which contains the IHF-binding site. The mutated IHF protein isolated from the Hup- mutant IR4, which is mutated in the himA gene (coding for the alpha subunit), gave a shifted band of greater mobility, and DNase I footprinting analysis has shown that the mutated IHF interacts with the DNA fragment from the hupSL promoter region differently from the way that the wild-type IHF does.  相似文献   

10.
11.
The DNA structure of a fragment containing the SV40 termination sequences was examined using gel mobility assays. The region is shown to contain a DNA bend as evidenced by an abnormal mobility that is progressively accentuated as the temperature is lowered. This represents the strongest example of DNA bending among the collection of SV40 fragments studied. The same fragment was shown previously to uniquely support hyper-stable nucleosome formation in vitro, suggesting a possible relationship between DNA bending and nucleosome stability.  相似文献   

12.
The removal of inherent curving in Crithidia fasciculata kinetoplast DNA by various small DNA ligands, groove binders and mono- and bisintercalators, has been studied by gel retardation and electron microscopy. The migration of the kinetoplast DNA fragment is highly retarded during gel electrophoresis. We demonstrate that this retardation is suppressed by DNA ligands such as distamycin and ditercalinium, which have different modes of binding and sequence specificities. Observation by electron microscopy confirms that the effect of ditercalinium on gel migration of curved DNA is linked to DNA uncurving. As the drug is progressively added to DNA, a large broadening of the retarded band is observed during gel electrophoresis for distamycin and ditercalinium. In the case of distamycin, the retarded DNA band splits into two broad bands, whereas the noncurved DNA bands remain homogeneous. This indicates that the drug-DNA exchange is extremely slow in the gel and that a limited number of specific sites on DNA are critical for the removal of bending. GC-specific quinomycin, monointercalators, and bisintercalators act in a manner similar to that of AT-specific distamycin. This indicates that direct drug binding at the dAn tracts is not required for DNA uncurving. We propose that the uncurving of kinetoplast DNA by drugs is caused by a global alteration of DNA structure; subsequent increased flexibility leads to the suppression of rigid bending at the AT tract junctions.  相似文献   

13.
We found a synthetic GCGAAAGC fragment with a mobility greater than that of other oligodeoxyribonucleotides in gel electrophoresis to take on a stable hairpin structure possessing two terminal G-C base pairs. The GCGAAAGC sequence is also found in the replication origin of phage G4 single-stranded DNA, but the hairpin structure originally proposed differs from that of the GCGAAAGC fragment we have studied. Possibility of rearrangement of the secondary structure in the replication origin of phage G4 was examined in relation to its replication initiation mechanism.  相似文献   

14.
15.
Scrambling of bands in gel electrophoresis of DNA.   总被引:1,自引:1,他引:0       下载免费PDF全文
Under certain conditions of agarose gel electrophoresis, larger DNA molecules migrate faster than smaller ones. This anomalous mobility of DNA, which can lead to serious errors in the measurement of DNA fragment lengths, is related to near-zero velocity conformations which can trap DNA chains during electrophoresis. Intermittent electric fields can be used to alter the chain conformations so as to restore the monotonic mobility-size relationship which is necessary for a correct interpretation of the gel. These data are in agreement with the results of a computer simulation based on a theoretical model of electrophoresis.  相似文献   

16.
17.
Centromeres on chromosomes in the yeast Saccharomyces cerevisiae contain approximately 140 base pairs (bp) of DNA. The functional centromere (CEN) region contains three important sequence elements (I, PuTCACPuTG; II, 78 to 86 bp of high-AT DNA; and III, a conserved 25-bp sequence with internal bilateral symmetry). Various point mutations or deletions in the element III region have a profound effect on CEN function in vivo, indicating that this DNA region is a key protein-binding site. This has been confirmed by the use of two in vitro assays to detect binding of yeast proteins to DNA fragments containing wild-type or mutationally altered CEN3 sequences. An exonuclease III protection assay was used to demonstrate specific binding of proteins to the element III region of CEN3. In addition, a gel DNA fragment mobility shift assay was used to characterize the binding reaction parameters. Sequence element III mutations that inactivate CEN function in vivo also prevent binding of proteins in the in vitro assays. The mobility shift assay indicates that double-stranded DNAs containing sequence element III efficiently bind proteins in the absence of sequence elements I and II, although the latter sequences are essential for optimal CEN function in vivo.  相似文献   

18.
Over the past 10 years, fluorescent end-labeling of DNA fragments has evolved into the preferred method of DNA detection for a wide variety of applications, including DNA sequencing and PCR fragment analysis. One of the advantages inherent in fluorescent detection methods is the ability to perform multi-color analyses. Unfortunately, labeling DNA fragments with different fluorescent tags generally induces disparate relative electrophoretic mobilities for the fragments. Mobility-shift corrections must therefore be applied to the electrophoretic data to compensate for these effects. These corrections may lead to increased errors in the estimation of DNA fragment sizes and reduced confidence in DNA sequence information. Here, we present a systematic study of the relationship between dye structure and the resultant electrophoretic mobility of end-labeled DNA fragments. We have used a cyanine dye family as a paradigm and high-resolution capillary array electrophoresis (CAE) as the instrumentation platform. Our goals are to develop a general understanding of the effects of dyes on DNA electrophoretic mobility and to synthesize a family of DNA end-labels that impart identically matched mobility influences on DNA fragments. Such matched sets could be used in DNA sequencing and fragment sizing applications on capillary electrophoresis instrumentation.  相似文献   

19.
R T Kovacic  J C Wang 《Plasmid》1979,2(3):394-402
A new two-dimensional technique for the mapping of restriction sites is presented. Linear DNA labeled at both ends is first partially digested with the restriction endonuclease for which a map is desired. Following electrophoresis of the partial digest in an agarose gel, complete digestion of the fragments in the gel matrix with a second restriction enzyme is carried out. Electrophoresis in the second dimension resolves two sets of labeled spots: one set from the left and the other from the right end. For a given band of the autoradiogram of the first dimension gel, the mobility of the band gives the size of the DNA fragment, and therefore the distance of a particular restriction site from one of the ends of the original linear DNA. The mobility of the labeled spot derived from this band in the second dimension gel allows one to distinguish whether the distance deduced above is from one end or the other. Additional information about the location of one set of restriction sites for one enzyme relative to those for a second enzyme can also be obtained using the two-dimensional method. The advantages of the technique are the small amount of DNA required and the rapidity with which many maps can be constructed from one labeled DNA. As a test of the method, maps for the HindIII and HaeIII cleavage sites of circular phage PM2 DNA have been obtained, after first converting the DNA to the linear form by digestion with HpaII.  相似文献   

20.
Cis-regulatory elements involved in the activation of the plant defense-related gene encoding chalcone synthase 1 (PsChs1) in pea (Pisum sativum L.) were examined by transient transfection, gel mobility shift assay andin vitro DNase I-footprinting analysis. Transient transfection assay revealed that a 61 bp DNA fragment spanning from –242 to –182 ofPsChs1 was required for the maximal promoter activity and possibly involved in the enhancement of elicitor-mediated activation. Nuclear isolate from elicitor-treated pea epicotyl tissues contained some factor(s) that specifically bound to this DNA fragment to form a complex with low mobility (LMC, low mobility complex) in gel mobility shift assay. DNase I-footprinting analysis of LMC revealed that among three protected regions detected in a 61 bp DNA fragment, two regions contained identical AT-rich sequence, TAAAATACT. Site directed mutation in either or both identical sequences, TAAAATACT to TGGAATACT, resulted in the reduction or loss in the ability to form LMC. Detailed analysis of 61 bp DNA fragment demonstrated that the region from –242 to –226 containing promoter-distal TAAAATACT motif was imperative for the maximal elicitor-mediated activation ofPsChs1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号