首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of forskolin (FK) on in vitro oocyte maturation and production of steroids were examined in Oryzias latipes. When oocytes within preovulatory follicles were preincubated in the presence of FK for 2-10 hr, they matured normally after additional incubation for 10-20 hr in plain culture medium. Naked (follicle cell-free) oocytes did not mature under these conditions. FK stimulated dose-dependent production of steroids (estradiol-17 beta, E2, and 17 alpha,20 beta-dihydroxy-4-pregnen-3-one, 17 alpha,20 beta-diOHprog) and cAMP in follicle (granulosa) cells. On the other hand, exposure to FK within 2 hr after 17 alpha,20 beta-diOH prog stimulation caused reversible inhibition of gonadotropin (PMS)- or 17 alpha,20 beta-diOH prog-induced maturation of the intrafollicular oocytes in vitro. FK also significantly inhibited the 17 alpha,20 beta-diOHprog-induced maturation of naked oocytes, suggesting the existence of adenylate cyclase in fish oocytes. These data indicate that in Oryzias latipes, FK induces oocyte maturation by stimulating follicular production of maturation-inducing steroid (MIS), probably 17 alpha,20 beta-diOH prog, via an increase in cAMP, and that it may inhibit oocyte maturation by increasing ooplasmic cAMP and some inhibitory interaction between the granulosa cells and the oocyte through intercellular communication.  相似文献   

2.
Mos plays a crucial role in meiotic cell division in vertebrates. In Xenopus, Mos is involved in the initiation of oocyte maturation as an initiator and in the arrest at the metaphase II stage (MII) as a component of the cytostatic factor (CSF). The function of Mos is mediated by MAP kinase (MAPK). We investigated the function of the Mos/MAPK pathway during goldfish oocyte maturation induced by 17α,20β-dihydroxy-4-pregnen-3-one (17α,20β-DP), a natural maturation-inducing hormone in fishes. Mos was absent in immature goldfish oocytes. It appeared before the onset of germinal vesicle breakdown (GVBD), increased to a maximum in mature oocytes arrested at MII and disappeared after fertilization. MAPK was activated after Mos synthesis but before maturation-promoting factor (MPF) activation, and its activity reached maximum at MII. Injection of either Xenopus or goldfish c-mos mRNA into one blastomere of 2-cell-stage Xenopus and goldfish embryos induced metaphase arrest, suggesting that goldfish Mos has a CSF activity. Injection of constitutively active Xenopus c-mos mRNA into immature goldfish oocytes induced MAPK activation, but neither MPF activation nor GVBD occurred. Conversely, the injection of goldfish c-mos antisense RNA inhibited both Mos synthesis and MAPK activation in the 17α,20β-DP-treated oocytes, but these oocytes underwent GVBD. These results indicate that the Mos/MAPK pathway is not essential for initiating goldfish oocyte maturation despite its general function as a CSF. We discuss the general role of Mos/MAPK during oocyte maturation, with reference to the difference in contents of inactive MPF (pre-MPF) stored in immature oocytes. Received: 10 February 2000 / Accepted: 25 April 2000  相似文献   

3.
The metabolism of 14C-labeled steroid precursors by cell-free homogenates of medaka ( Oryzias latipes , a daily spawner) ovarian follicles at 12 different developmental stages was examined using thin layer chromatography (TLC). The radioactive metabolites produced were identified and tested for their ability to induce germinal vesicle breakdown (GVBD) in oocytes in an in vitro homologous bioassay. When homogenates of follicles isolated during oocyte maturation were incubated with 14C-labeled 17α-hydroxyprogesterone, 13 metabolites were detected in TLC. Among these metabolites, one metabolite exhibited very high maturation inducing activity by the in vitro bioassay. This metabolite was identified as 17α,20β-dihydroxy-4-pregnen-3-one (17α,20β-DP) by its chromatographic mobility in TLC and recrystallization to constant specific activity. 17α,20β-DP production was high in follicles collected between 10 and 6 hr before spawning. A much less biologically active metabolite, 17α,20β-dihydroxy-5β-pregnane-3-one appeared in follicles immediately after the formation of 17α,20β-DP. A similar pattern of steroidogenesis was observed when the follicles were incubated with 14C-labeled pregnenolone and progesterone. The timely synthesis of 17α,20β-DP in medaka at the onset of oocyte maturation, together with the demonstration that this progestogen is the most potent inducer of oocyte maturation in vitro , provides further evidence that 17α,20β-DP is the naturally occurring maturation-inducing hormone in the medaka. The results also suggest that the conversion of 17α,20β-DP to its 5β-reduced metabolite may be an inactivation process.  相似文献   

4.
Exposure of fully grown fish and amphibian oocytes to a maturation-inducing steroid (MIS) activates numerous signal transduction pathways to initiate the final stage of oocyte maturation. These events culminate in the activation of maturation-promoting factor and germinal vesicle breakdown (GVBD). In most species, exposure to MIS causes a transient decrease in oocyte cAMP levels. Whether this reduction in oocyte cAMP concentration is sufficient to induce GVBD is unclear. The current study tested the hypothesis that activation of cAMP-independent signal transduction pathways by the naturally occurring MIS, 17,20beta,21-trihydroxy-4-pregnen-3-one (20beta-S), is necessary for GVBD in Atlantic croaker (Micropogonias undulatus) oocytes. Results indicate that although 20beta-S treatment of oocyte membranes significantly reduced cAMP production, incubation of follicles with the cell-permeable cAMP-dependent protein kinase (Prka) inhibitors Rp-cAMP or KT5720 did not promote GVBD in the absence of 20beta-S. Additionally, treatment of follicles with the phosphodiesterase (Pde) inhibitors Cilostamide (Pde3) or Rolipram (Pde4) significantly reduced GVBD, but they were not able to completely block it. In contrast, pharmacologic inhibition of the cAMP-independent phosphatidylinositol 3-kinase (Pik3)/Akt signal transduction pathway using the Pik3 inhibitors Wortmannin or LY294002, or the Akt inhibitor ML-9, blocked 20beta-S-induced GVBD. Finally, mitogen-activated protein kinase (Mapk1/3) activity increased after treatment with 20beta-S; however, inhibition of Mapk1/3 activity using PD98059 or U0126 had no effect on GVBD. These results demonstrate that activation of cAMP-independent signaling pathways, especially the Pik3/Akt pathway, is necessary for 20beta-S-induced GVBD in Atlantic croaker oocytes.  相似文献   

5.
This study directly tested the hypothesis that the induction of oocyte maturation in the catfish Clarias batrachus is followed by a transient decrease in oocyte cyclic AMP (cAMP) level that is due to an increase in phosphodiesterase (PDE) activity. Further, the PDE inhibitor theophylline was used to investigate the possible role of PDE in the maturation-inducing action of 17alpha,20beta-dihydroxy-4-pregnen-3-one (17alpha,20beta-DP), the physiological maturation-inducing steroid of this catfish species. The results obtained from batches of oocytes taken from the same donor at the same time clearly show a close relationship between dose-dependent induction of germinal vesicle breakdown (GVBD) and PDE activity with a concomitant decrease in cAMP in the oocytes treated with different concentrations of 17alpha,20beta-DP. In contrast, theophylline prevents GVBD and inhibits PDE activity by promoting cAMP accumulation in oocytes. A time-dependent decrease in PDE activity and an increase in cAMP content with a marked inhibition of GVBD were recorded even in oocytes pre-stimulated with 1 microgram/ml 17alpha,20beta-DP for 6 h and then treated with 1 mM theophylline for various times. These results suggest that cAMP plays a key role in the regulation of oocyte maturation in C. batrachus which may be mediated by PDE activity.  相似文献   

6.
The study objectives aimed to investigate the maturation-inducing steroid (MIS) in marine protandrous black porgy, Acanthopagrus schlegeli. The characteristics of oocyte maturation were also described. Females were injected with two successive doses of LHRH analog (LHRH-A, 10 and 50 microg/kg of fish). The ovarian tissue was obtained at 6-h intervals for in vitro oocyte maturation. Both 17,20 beta-dihydroxy-4-pregnen-3-one (DHP) and 17,20 beta,21-trihydorxy-4-pregnen-3-one (20 beta-S) were the most effective steroids to induce in vitro maturation (e.g. germinal vesicle breakdown, GVBD) in oocytes cultured for either 24 h or 1 min. 20 beta-S had a better potency than DHP in inducing oocyte maturation. 17-hydroxyprogesterone, 11-deoxycortisol, and 20 beta-21-dihydroxy-4-pregnen-3-one also significantly induced oocyte maturation at high concentrations. The process of oocyte maturation (after the injection of LHRH analog) was founded to be divided into four stages: hormone-insensitive stage (insensitive to gonadotropin and MIS); MIS-insensitive (respond to gonadotropin, but not MIS); MIS-sensitive (respond to MIS); and spontaneous stage (GVBD in the hormone-free condition), respectively. Cycloheximide blocked GVBD at the MIS-insensitive stage, control (hormone-free), and hormone-induced GVBD at the MIS-sensitive stage in a dose-dependent effect.  相似文献   

7.
The effect of 5-hydroxytryptamine (5-HT) on steroidogenesis and oocyte maturation in pre-ovulatory follicles of the medaka Oryzias lalipes was examined using in vitro culture system. The earliest breakdown of the germinal vesicle of intrafollicular oocytes occurred about 17 hr after the beginning of incubation in the presence of 5-HT at concentration of 10 ng/ml or more. 5-HT induced oocyte maturation in a dose-dependent manner. Cyanoketone inhibited this stimulation. The concentration of 5-HT required to induce oocyte maturation corresponded to that required to enhance the production (secretion) of estradiol-17β and 17α,20β-dihydroxy-4-pregnen-3-one by pre-ovulatory follicle cells. At a concentration of 1 μg/ml, the follicle had to be exposed to 5-HT for at least 4 hr for oocyte maturation accompanied by ovulation to occur. These results indicate that 5-HT induces in vitro maturation of medaka oocytes by stimulating 17α,20β-dihydroxy-4-pregnen-3-one production by pre-ovulatory follicular cells.  相似文献   

8.
An increase in the percentage of germinal vesicle breakdown (GVBD) with a corresponding decrease in cAMP was found in the oocytes which were incubated for 36 hr with different concentrations of 17 alpha,20 beta-dihydroxy-4-pregnen-3-one (17 alpha,20 beta-DP). At its highest concentration (1 microgram/ml), 17 alpha,20 beta-DP induced 91.9 +/- 2.3% GVBD and decreased cAMP level to 0.8 +/- 0.1 pmol/oocyte from 2.9 +/- 0.2 pmol/oocyte (control). The two different known inhibitors of phosphodiesterase viz. 3-isobutyl-1-methyl-xanthine (IBMX) and theophylline inhibited GVBD in vitro and promoted the accumulation of cAMP in a dose-dependent manner irrespective of whether the oocytes were treated for a short duration (2 hr) or for a long duration (36 hr). Evaluation of time course response to 1 mM IBMX or 1 mM theophylline revealed that cAMP levels increased at all the time points when compared with their respective controls and blocked maturation. In contrast, 1 microgram/ml 17 alpha,20 beta-DP not only induced oocyte maturation but also caused an immediate decrease in cAMP within the first 2 hr (from 3.2 +/- 1.3 to 1.3 +/- 0.1 pmol/oocyte) of incubation which was maintained till the end of experiment (36 hr). Likewise, a significant inhibition of GVBD and accumulation of cAMP was recorded even in oocytes pre-stimulated with 1 microgram/ml 17 alpha,20 beta-DP for 6 hr and then treated with different concentrations of IBMX or theophylline. Taken together, these data strongly suggest that in C. batrachus a decrease of oocyte cAMP concentration is a prerequisite for the induction of oocyte maturation, and its increase is associated with the maintenance of meiotic arrest.  相似文献   

9.
The effect of N alpha-tosyl-L-lysine chloromethylketone (TLCK), an inhibitor of trypsin-type proteases, on luteinizing hormone (LH)-induced and spontaneous meiotic maturation and follicular production of cAMP in mice was determined. When follicle-enclosed mouse oocytes were incubated with LH (1 micron/ml), they underwent the breakdown of the germinal vesicle (GVBD). TLCK (0.02-0.5 mM) inhibited LH-induced GVBD in folliculated oocytes. The concentration (0.5 mM) of TLCK that inhibited LH-induced GVBD did not significantly suppress LH-induced cAMP production by follicle cells. The effect of TLCK on spontaneous maturation in cumulus cell-enclosed and denuded oocytes was also determined. TLCK strongly inhibited spontaneous maturation in denuded oocytes only if it was added to the incubation medium for 1-3 h before oocytes were liberated from the follicular tissue. The inhibition of oocyte maturation by TLCK was significantly greater in cumulus cell-enclosed oocytes than in denuded oocytes, either with or without preincubation with TLCK. These results suggest that trypsin-type protease in oocytes participates in the process of meiotic maturation in mouse oocytes.  相似文献   

10.
In the nemertean worms Cerebratulus lacteus and Micrura alaskensis, 5-HT (=5-hydroxytryptamine, or serotonin) causes prophase-arrested oocytes to mature and complete germinal vesicle breakdown (GVBD). To identify the intracellular pathway that mediates 5-HT stimulation, follicle-free oocytes of nemerteans were assessed for GVBD rates in the presence or absence of 5-HT after being treated with various modulators of cAMP, a well known transducer of 5-HT signaling and an important regulator of hormone-induced maturation in general. Unlike in many animals where high levels of intra-oocytic cAMP block maturation, treatment of follicle-free nemertean oocytes with agents that elevate cAMP (8-bromo-cAMP, forskolin or inhibitors of phosphodiesterases) triggered GVBD in the absence of added 5-HT. Similarly, 5-HT caused a substantial cAMP increase prior to GVBD in nemertean oocytes that had been pre-injected with a cAMP fluorosensor. Such a rise in cAMP seemed to involve G-protein-mediated signaling and protein kinase A (PKA) stimulation, based on the inhibition of 5-HT-induced GVBD by specific antagonists of these transduction steps. Although the downstream targets of activated PKA remain unknown, neither the synthesis of new proteins nor the activation of MAPKs (mitogen-activated protein kinases) appeared to be required for GVBD after 5-HT stimulation. Alternatively, pre-incubation in roscovitine, an inhibitor of maturation-promoting factor (MPF), prevented GVBD, indicating that maturing oocytes eventually need to elevate their MPF levels, as has been documented for other animals. Collectively, this study demonstrates for the first time that 5-HT can cause immature oocytes to undergo an increase in cAMP that stimulates, rather than inhibits, meiotic maturation. The possible relationship between such a form of oocyte maturation and that observed in other animals is discussed.  相似文献   

11.
Effects of β-adrenoceptor antagonists propranolol and alprenolol in the oocyte maturation of the catfish (Clarias batrachus) were investigated under in vitro. Cyclic AMP (cAMP) levels were also measured in the control, propranolol and phosphodiesterase (PDE) inhibitor treated oocytes. When full-grown folliculated oocytes were cultured in vitro in the presence of different concentrations of propranolol or alprenolol, both the substances induced germinal vesicle breakdown (GVBD) in a dose-dependent manner. The maturational effect of alprenolol at the concentration of 1.0 mM was similar to that of the 1.5 mM dose of propranolol inducing more than 88% GVBD. In the time course study, when the oocytes were treated with 1.5 mM propranolol or with 1.0 mM alprenolol for various times, both the antagonists induced more than 80% GVBD after 4 h of incubations and this induction gradually increased with the increased duration of treatments. On the other hand, 1.5 mM propranolol treatment caused a significant decrease in oocyte cAMP which was maintained upto the duration of the study (36 h). When the oocytes were first stimulated by 1.5 mM propranolol or 1.0 mM alprenolol for 4 h and then treated with various doses of cAMP or PDE inhibitors (IBMX and theophylline), all these substances effectively blocked β-adrenoceptor antagonist-induced GVBD. Both these PDE inhibitors promoted the accumulation of cAMP in the oocytes. These results provide the first example of an existence of a cAMP-mediated mechanism of action of β-adrenoceptor antagonists in the induction of oocyte maturation in fish.  相似文献   

12.
The results of the present study demonstrate the probable involvement of adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinase (PKA) in the regulation of oocyte maturation in the catfish, Clarias batrachus. A decrease in total PKA activity with a concomitant increase in the percentage of germinal vesicle breakdown (GVBD) was found in oocytes treated with different doses of N-(2-[p-bromocinnamylamino]ethyl)-5-isoquinoline sulfonamide (H-89), a selective, potent inhibitor of PKA and 17 alpha, 20 beta-dihydroxy-4-pregnen-3-one (17 alpha, 20 beta-DP), the natural maturation-inducing steroid of this catfish. Evaluation of time-course of response to H-89 and 17 alpha, 20 beta-DP revealed that PKA activity decreased, and incidence of GVBD increased at all the time points when compared with their respective controls. The data further indicate that the decrease in PKA activity in H-89-treated oocytes was more prominent, but the induction of maturation was slower than that induced by 17 alpha, 20 beta-DP. Moreover, cyanoketone (CK), an inhibitor of steroidogenesis that blocks the salmon gonadotropin (SG-G100)-induced GVBD, failed to abolish the maturational effect of H-89, suggesting that H-89 directly promotes GVBD by reducing PKA activity in oocytes. Taken together, these results indicate that inhibition of PKA activity in the oocyte of C. batrachus is directly involved in the mechanism leading to oocyte maturation.  相似文献   

13.
The potential action of purines, such as hypoxanthine and adenosine, in meiotic arrest was examined using denuded mouse oocytes. The spontaneous meiotic maturation of denuded oocytes was significantly inhibited by hypoxanthine and/or adenosine in a dose-dependent manner. Germinal vesicle breakdown (GVBD) was inhibited even at a low concentration (1 nM) of hypoxanthine, when hypoxanthine was microinjected into the cytoplasm of denuded oocytes. This inhibitory action was potentiated by co-injection with allopurinol, a metabolic blocker of hypoxanthine that can block a metabolic pathway to uric acid. By contrast, a microinjection of adenosine was no longer effective in inhibiting GVBD. Inhibitory action of purines in meiotic maturation was correlated with sustaining intracellular cAMP levels. GVBD was resumed by econazole, one of the nitroimidazole derivatives which act as inhibitors of catalytic subunit of adenylate cyclase. This compound was effective in counteracting the effect of adenosine, but not the action of 3-isobutyl-1-methylxanthine (IBMX) on GVBD, indicating that adenosine is probably exerted at the level of oocyte plasmalemma. These data suggest that the inhibitory action of hypoxanthine and adenosine in oocyte meiotic maturation may be involved in the regulation of cAMP metabolism in a differential manner.  相似文献   

14.
The maturation of brittle-star (Amphipholis kochii) oocytes, i.e., the reinitiation of meiosis accompanied by germinal vesicle breakdown (GVBD) and the acquisition of fertilizability, was induced by acid (pH 3.0) seawater containing 10 mM cAMP. Oocyte maturation was also induced by seawater of normal pH (pH 8.0) that contained either an inhibitor of cyclic nucleotide phosphodiesterase (25 mM theophylline, 25 mM caffeine) or an activator of adenylate cyclase (100 microM forskolin, 0.6 microM cholera toxin). Experiments in which the oocytes were treated with forskolin or theophylline for various periods of time demonstrated that there was a positive correlation between the oocyte cAMP level measured by radioimmunoassay and the extent of GVBD induced in each treatment: both increased as the treatment period became longer and about a threefold increase in cAMP level induced 50% GVBD. These results indicate that an increase in cAMP level initiates maturation of the brittle-star oocytes.  相似文献   

15.
Postvitellogenic follicles of freshwater perch Anabas testudineus incubated with [(3)H]pregnenolone as exogenous precursor produced several metabolites, including 17 alpha, 20 beta-dihydroxy-4-pregnen-3-one (DHP) and 5 beta-pregnane-3 alpha, 17 alpha,20 beta-triol (5 beta-3 alpha,17 alpha,20 beta-P). These were identified by chromatography, microchemical reactions, and crystallization to constant specific activity. Following stimulation with fish (perch) pituitary extract (FPE) there was significant high production of DHP and 5 beta-3 alpha,17 alpha,20 beta-P, concomitant with a high percentage of germinal vesicle breakdown (GVBD). Inhibitor of steroidogenesis (trilostane) and inhibitors of protein synthesis (cycloheximide and actinomycin-D) completely blocked FPE-induced pregnenolone metabolism and oocyte maturation. The effectiveness of various C(21) steroids in inducing GVBD was examined. Results indicate that DHP was the most potent inducer of GVBD than other structurally related C(21) steroids. In intact follicles, FPE-stimulated production of DHP was shown to be mediated through the adenylate cyclase-cAMP pathway. Addition of IBMX or forskolin, which increases the endogenous cAMP level, as well as directly supplementing dbcAMP to the incubation medium, had no inhibitory effect on DHP-induced GVBD in the intact follicles. But all these agents were shown to inhibit GVBD in fully denuded oocytes. This study provides evidence that DHP, produced by postvitellogenic follicles through the adenylate cyclase-cAMP pathway, is the maturation-inducing steroid in freshwater perch and that the role played by cAMP in the induction of GVBD in intact follicles is different from that in the denuded oocytes. J. Exp. Zool. 287:294-303, 2000.  相似文献   

16.
The cycle of oocyte development of the bambooleaf wrasse, Pseudolabrus japonicus, was studied to elucidate the endocrinological mechanism of oocyte maturation in a marine teleost. A single female reared with two males spawned every day for 17 days in captivity, indicating that this species is a daily spawner. Ovarian histology revealed that germinal vesicle migration of the largest oocytes progressed from 12:00 to 3:00 h, and germinal vesicle breakdown (GVBD) was completed at 6:00 h. Ovulation and spawning occurred between 6:00 and 9:00 h. The effectiveness of human chorionic gonadotropin (HCG) and 17,20-dihydroxy-4-pregnen-3-one (17,20-P), which is one of the most potent steroidal inducers of GVBD in bambooleaf wrasse oocytes, in inducing final oocyte maturation was examined at eight different times of the day. The responsiveness of the oocyte to HCG and steroid differed at different times of the day. The GVBD could be induced by HCG but not 17,20-P at 9:00 h. Between 12:00 and 18:00 h, not only HCG but also 17,20-P induced GVBD. Both GVBD and ovulation spontaneously occurred between 0:00 and 6:00 h without any hormonal treatment. These results clearly showed that the oocyte of the bambooleaf wrasse possessed a diurnal maturation cycle. Responsiveness of oocytes to HCG appeared earlier than responsiveness to 17,20-P. This suggests that sensitivity to 17,20 -P is induced by gonadotropic hormone (GTH).  相似文献   

17.
Cyclic AMP phosphodiesterase activity was measured in vivo after microinjection of [3H]cAMP into intact Xenopus oocytes. This activity was inhibited by extracellular application of methylxanthines, and the dose-dependent inhibition of phosphodiesterase activity correlated with the abilities of isobutylmethylxanthine and theophylline to inhibit oocyte maturation induced by progesterone, with IC50 values of approximately 0.3 and 1.5 mM, respectively. Insulin stimulated in vivo phosphodiesterase activity measured after microinjection of 200 microM [3H]cAMP in a time- and dose-dependent fashion without affecting phosphodiesterase activity measured after microinjection of 2 microM [3H]cAMP. Although progesterone alone had no effect on in vivo phosphodiesterase activity, low concentrations of progesterone (0.01 microM) accelerated the time course of insulin stimulation of both phosphodiesterase activity and oocyte maturation. The EC50 for stimulation of in vivo phosphodiesterase activity by insulin correlated with the IC50 for inhibition of oocyte membrane adenylate cyclase activity measured in vitro (2 and 4 nM, respectively). Twenty-fold higher concentrations of insulin were required to stimulate oocyte maturation. In contrast, insulin-like growth factor 1 stimulated in vivo phosphodiesterase, inhibited in vitro adenylate cyclase, and induced oocyte maturation at concentrations of 0.3-1.0 nM. These results demonstrate a dual regulation of oocyte phosphodiesterase and adenylate cyclase by insulin and insulin-like growth factor 1.  相似文献   

18.
Forskolin and mouse oocyte maturation in vitro   总被引:1,自引:0,他引:1  
Oocytes isolated from mature follicles undergo spontaneous maturation when cultured in vitro. Forskolin, an adenylate cyclase stimulator, inhibited resumption of meiosis of cumulus-free mouse oocytes in vitro. Germinal vesicle breakdown (GVBD) was prevented in more than 85% of the oocytes treated by forskolin at concentrations of 20 micrograms/ml and higher. The inhibiting effect of forskolin was dose-dependent and reversible. FSH, LH, FSH plus LH, estrogen, progesterone, and estrogen plus progesterone did not reverse the block induced by forskolin in cumulus-free and cumulus-enclosed oocytes. The present results suggest that intracellular cAMP may play a role in the regulation of oocyte maturation.  相似文献   

19.
Rat oocytes resume meiosis spontaneously in vitro within 3 h after their isolation from the ovarian follicles. We report here that the spontaneous maturation of isolated rat oocytes is preceded by a drop in intracellular levels of cyclic adenosine 3',5'-monophosphate (cAMP). Further experiments were carried out to examine the possible correlation between the meiotic status and cAMP levels within the oocyte. To challenge rat cumulus-free oocytes to generate cAMP, bypassing their own adenylate cyclase, a preparation of an invasive adenylate cyclase from Bordetella pertussis was used. We found a dose-dependent elevation of cAMP levels within these oocytes that corresponded to inhibition of their spontaneous maturation. Persistent inhibition of meiosis was obtained with the continuous presence of the enzymatic preparation, whereas its removal resulted in a transient inhibition associated with a drop in cAMP. We suggest that the presence of elevated cAMP levels in the oocyte is directly responsible for the maintenance of meiotic arrest.  相似文献   

20.
Several studies have indicated that glucocorticoids are involved in maturation of mammalian oocytes. Recently, maturation of porcine oocytes in culture was shown to be inhibited by glucocorticoids in a time- and dose-dependent manner. In addition, levels of cortisol available for biological action in fluid of preovulatory follicles are higher than that present in circulation. The present study evaluates the effect of cortisol and dexamethasone on mouse cumulus enclosed oocytes (CEO) undergoing spontaneous- and FSH-induced maturation during a 24 h culture period using breakdown of the germinal vesicle (GVBD) as end-point. FSH-induced oocyte maturation was studied using media containing 4.5 mM hypoxanthine to maintain levels of cAMP elevated, whereas spontaneous oocyte maturation was studied in a medium without hypoxanthine. In the presence of FSH (25 IU/l) the rate of GVBD was significantly elevated compared to the control. Dexamethasone (1–20 μg/ml) in combination with FSH resulted in a rate of GVBD similar to FSH alone. Cortisol (0.1–10 μg/ml) resulted in a significant higher rate of GVBD in combination with a physiological concentration of FSH (10 IU/l) as compared to the control but similar to that caused by FSH alone. Nearly all CEO that matured spontaneously resumed meiosis irrespective of whether or not cortisol was present. In conclusion, these results indicate that glucocorticoids have little or no influence on the regulation of oocyte maturation in the mouse. Species differences between mouse and pig oocytes may exist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号