首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Diphtheria fusion proteins are chimeric proteins consisting of the catalytic and translocation domains of diphtheria toxin (DT(388)) linked through an amide bond to one of a variety of peptide ligands. The ligand targets the molecule to cells and the toxin enters the cell, inactivates protein synthesis and induces cell death. Diphtheria fusion proteins directed to human myeloid leukemic blasts are a novel class of therapeutics for patients with chemotherapy refractory myeloid leukemia. Because of the presence of interleukin-3 (IL3) receptors on myeloid leukemic progenitors and its absence from mature myeloid cells, we synthesized four bacterial expression vectors encoding DT(388) fused to human IL3. Different molecules were engineered to assess the effects of modifications on yield, purity and potency of product. The constructs differed in the size of the linker peptide between the DT(388) and IL3 domains and in the presence or absence of an oligohistidine tag on the N- or C-terminus. Escherichia coli were transformed and recombinant protein induced and purified from inclusion bodies. Similar final yields of 3-6 mg of purified protein per liter of bacterial culture were obtained with each of the four molecules. Purity ranged from 70 to 90% after partial purification by anion-exchange, size-exclusion chromatography and/or nickel affinity chromatography. Proteins were soluble and stable at 4 degrees C and -80 degrees C in phosphate-buffered saline at 0.03-0.5 mg/ml. The fusion proteins showed predicted molecular weights by SDS-PAGE, HPLC and tandem mass spectrometry and had full ADP-ribosylating activities. Each was immunoreactive with antibodies to DT(388) and IL3. Each of the fusion proteins with the exception of the one with an N-terminal oligohistidine tag showed full IL3 receptor binding affinity (K:(d) = 3 nM) and potent and selective cytotoxicity to IL3 receptor positive human myeloid leukemia cell lines (IC(50) = 5-10 pM). In contrast, the N-terminal histidine-tagged fusion protein bound IL3 receptor with a 10-fold lower affinity and was 10-fold less cytotoxic to IL3 receptor positive blasts. Thus, we report a series of novel, biologically active DT(388)IL3 fusion proteins for potential therapy of patients with receptor positive myeloid leukemias.  相似文献   

2.
Designing a chimeric protein and developing a procedure for its stable production as a biologically active protein, are key steps in its potential application to clinical trails. IL2-Caspase3 chimeric protein designed to target activated T lymphocytes was found to be a promising molecule for targeted treatment, however was found to be difficult to produce as a biological active molecule. Thus, we designed a new version of the molecule, IL2-Caspase3s, in which six amino acids (aa 29-34) from the N-terminus of the large subunit of caspase 3 were excluded. Repeated expressions, productions, and partial purifications of the IL2-Caspase3s yielded reproducible batches with consistent results. We found that IL2-Caspase3s causes cell death in a specific, dose-, and time-dependent manner. Cell death due to IL2-Caspase3s is caused by apoptosis. This improved and biologically stable IL2-Caspase3s chimeric protein may be developed in the future for clinical trails as a promising therapy for several pathologies involving activated T-cells. Moreover, this truncated caspase 3 sequence, lacking the N-terminal six amino acids of its large subunit, may be used in other caspase 3-based chimeric proteins targeted against various human diseases, using the appropriate targeting moiety.  相似文献   

3.
Fusion proteins composed of tumor binding agents and potent catalytic toxins show promise for intracranial therapy of brain cancer and an advantage over systemic therapy. Glioblastoma multiforme (GBM) is the most common form of brain cancer and overexpresses IL-13R. Thus, we developed an interleukin-13 receptor targeting fusion protein, DT(390)IL13, composed of human interleukin-13 and the first 389 amino acids of diphtheria toxin. To measure its ability to inhibit GBM, DT(390)IL13 was tested in vitro and found to inhibit selectively the U373 MG GBM cell line with an IC(50) around 12 pmol/l. Cytotoxicity was neutralized by anti-human-interleukin-13 antibody, but not by control antibodies. In vivo, small U373 MG glioblastoma xenografts in nude mice completely regressed in most animals after five intratumoral injections of 1 microg of DT(390)IL13 q.o.d., but not by the control fusion protein DT(390)IL-2. DT(390)IL13 was also tested against primary explant GBM cells of a patient's excised tumor and the IC(50) was similar to that measured for U373 MG. Further studies showed a therapeutic window for DT(390)IL13 of 1-30 microg/injection and histology studies and enzyme measurements showed that the maximum tolerated dose of DT(390)IL13 had little effect on kidney, liver, spleen, lung and heart in non-tumor-bearing immunocompetent mice. Together, these data suggest that DT(390)IL13 may provide an important, alternative therapy for brain cancer.  相似文献   

4.
To produce a molecule that will kill activated T cells as well as lymphomas and leukemias expressing interleukin 2 (IL2) receptors, we have created a recombinant chimeric protein in which IL2 is attached in peptide linkage to a truncated mutant form of Pseudomonas exotoxin (PE) (Lorberboum-Galski, H., FitzGerald, D.J.P., Chandhary, V.K., Adhya, S., and Pastan, I. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 1922-1926). Although this molecule was very active on rodent cells, it had lower activity on some human cell types. A new chimeric protein termed IL2-PE664Glu has been constructed that is extremely toxic to both phytohemagglutinin blasts and mixed leukocyte reaction blasts prepared from monkey and human lymphocytes. The chimeric gene encoding this protein was constructed by fusing a cDNA clone for human interleukin 2 to the 5' end of a mutated cDNA encoding a full-length PE molecule. Four amino acids in domain I of PE were changed thus decreasing its nonspecific toxicity. IL2-PE664Glu is a much more active cytotoxic molecule for primate and human-activated T cells than IL2-PE40 which is a chimeric protein that was found to be an effective immunosuppressive agent in rodent models. Our results indicate that IL2-PE664Glu should be evaluated as an immunosuppressive agent for the treatment of human immune disorders in which activated T cells expressing the IL2 receptor are prominent.  相似文献   

5.
B Kaluza  H Lenz  E Russmann  H Hock  O Rentrop  O Majdic  W Knapp  U H Weidle 《Gene》1991,107(2):297-305
We have determined the sequence of the light and heavy chains of mAb 3G-10 (IgG1), a monoclonal antibody competing with interleukin 2 (IL2) for binding to the human IL2 receptor Tac protein. The antibody-encoding genes were chimerized by introducing splice donor and part of the intron sequences into the cDNA and subsequently linking it to the constant parts of the human IgG1 gene. The chimeric mAb was produced in mouse myeloma cells and purified. Murine and chimeric mAbs showed similar properties with respect to inhibition of T-cell proliferation. In contrast to its murine counterpart, the chimeric mAb exhibited Ab-dependent cellular cytotoxicity and, when combined with an Ab recognizing a different epitope on the IL2 receptor Tac protein, was able to activate human complement. The chimerized mAb might therefore have improved therapeutic efficacy.  相似文献   

6.
Leukotactin-1 (Lkn-1) is a human CC chemokine that binds to both CC chemokine receptor 1 (CCR1) and CCR3. Structurally, Lkn-1 is distinct from other human CC chemokines in that it has long amino acid residues preceding the first cysteine at the NH(2) terminus, and contains two extra cysteines. NH(2)-terminal amino acids of Lkn-1 were deleted serially, and the effects of each deletion were investigated. In CCR1-expressing cells, serial deletion up to 20 amino acids (Delta20) did not change the calcium flux-inducing activity significantly. Deletion of 24 amino acids (Delta24), however, increased the agonistic potency approximately 100-fold. Deletion of 27 or 28 amino acids also increased the agonistic potency to the same level shown by Delta24. Deletion of 29 amino acids, however, abolished the agonistic activity almost completely showing that at least 3 amino acid residues preceding the first cysteine at the NH(2) terminus are essential for the biological activity of Lkn-1. Loss of agonistic activity was due to impaired binding to CCR1. In CCR3-expressing cells, Delta24 was the only form of Lkn-1 mutants that revealed increased agonistic potency. Our results indicate that posttranslational modification is a potential mechanism for the regulation of biological activity of Lkn-1.  相似文献   

7.
白细胞介素 4受体 (IL-4R)特异地存在于多种肿瘤细胞表面 ,这为某些肿瘤的治疗提供了一个靶向标记。在以前的研究中 ,人白细胞介素-4(Hil-4)与白喉毒素 (DT)的融合蛋白 (DT4H)被构建 ,且它对某些肿瘤细胞系的高毒性得到了证明。但是 ,由于毒素部分的强免疫原性 ,它可以诱导人体的免疫反应。该研究中我们构建了白细胞介素 4与绿脓杆菌外毒素 (PE) 253~608aa的融合蛋白 ,并在其N端添加了 6×His标记方便纯化 ,在其C端添加了KDEL提高毒性。为了改善与IL-4R的亲和力我们将IL-4进行了环式重组 ,构建的融合毒素 ,H404K ,经DEAE$CSepharoseFastFlow及Ni-NTA纯化后 ,纯度达 90 %。纯化后的H404K与DT4H相似 ,对U251高度敏感 ,对MCF7及HepG2中度敏感 ,且我们首次证实该毒性不会被兔抗白喉毒素的多克隆抗体所抑制。这些研究表明 ,H404K与DT4H可以以一种互为替代的方式用于某些恶性肿瘤的治疗  相似文献   

8.
Broad host range plasmid RK2 encodes two versions of its essential replication initiation protein, TrfA, using in-frame translational starts spaced 97 amino acids apart. The smaller protein, TrfA-33, is sufficient for plasmid replication in many bacterial hosts. Efficient replication in Pseudomonas aeruginosa, however, specifically requires the larger TrfA-44 protein. With the aim of identifying sequences of TrfA-44 required for stable replication of RK2 in P. aeruginosa, specific deletions and a substitution mutant within the N terminus sequence unique to TrfA-44 were constructed, and the mutant proteins were tested for activity. Deletion mutants were targeted to three of the four predicted helical regions in the first 97 amino acids of TrfA-44. Deletion of TrfA-44 amino acids 21-32 yielded a mutant protein, TrfA-44Delta2, that had lost the ability to bind and load the DnaB helicase of P. aeruginosa or Pseudomonas putida onto the RK2 origin in vitro and did not support stable replication of an RK2 mini-replicon in P. aeruginosa in vivo. A substitution of amino acid 22 within this essential region resulted in a protein, TrfA-44E22A, with reduced activity in vitro, particularly with the P. putida helicase. Deletion of amino acids 37-55 (TrfA-44Delta3) slightly affected protein activity in vitro with the P. aeruginosa helicase and significantly with the P. putida helicase, whereas deletion of amino acids 71-88 (TrfA-44Delta4) had no effect on TrfA activity in vitro with either helicase. These results identify regions of the TrfA-44 protein that are required for recruitment of the Pseudomonas DnaB helicases in the initiation of RK2 replication.  相似文献   

9.
《Cytotherapy》2014,16(8):1121-1131
Background aimsOutcomes for patients with glioblastoma remain poor despite aggressive multimodal therapy. Immunotherapy with genetically modified T cells expressing chimeric antigen receptors (CARs) targeting interleukin (IL)13Rα2, human epidermal growth factor receptor 2, epidermal growth factor variant III or erythropoietin-producing hepatocellular carcinoma A2 has shown promise for the treatment of glioma in preclinical models. On the basis of IL13Rα2 immunotoxins that contain IL13 molecules with one or two amino acid substitutions (IL13 muteins) to confer specificity to IL13Rα2, investigators have constructed CARS with IL13 muteins as antigen-binding domains. Whereas the specificity of IL13 muteins in the context of immunotoxins is well characterized, limited information is available for CAR T cells.MethodsWe constructed four second-generation CARs with IL13 muteins with one or two amino acid substitutions, and evaluated the effector function of IL13-mutein CAR T cells in vitro and in vivo.ResultsT cells expressing all four CARs recognized IL13Rα1 or IL13Rα2 recombinant protein in contrast to control protein (IL4R) as judged by interferon-γ production. IL13 protein produced significantly more IL2, indicating that IL13 mutein–CAR T cells have a higher affinity to IL13Rα2 than to IL13Rα1. In cytotoxicity assays, CAR T cells killed IL13Rα1- and/or IL13Rα2-positive cells in contrast to IL13Rα1- and IL13Rα2-negative controls. Although we observed no significant differences between IL13 mutein–CAR T cells in vitro, only T cells expressing IL13 mutein–CARs with an E13K amino acid substitution had anti-tumor activity in vivo that resulted in a survival advantage of treated animals.ConclusionsOur study highlights that the specificity/avidity of ligands is context-dependent and that evaluating CAR T cells in preclinical animal model is critical to assess their potential benefit.  相似文献   

10.
Interleukin-2 (IL-2) is a potent activator of cellular immunity and has been utilized as an immunotherapeutic agent. We stably immobilized human IL-2 to collagen by covalently binding it to the N-terminus of human type III collagen (3A1) as IL2-3A1 chimeric protein using recombinant technology. The present study was aimed at liberating IL-2 from the immobilized chimeric protein by treating the chimera with bacterial collagenase. These IL2-3A1 chimeras were synthesized in insect cells which had been infected with baculovirus vectors carrying IL2-3A1 cDNA. The IL2-3A1 protein produced was shown to be in a pepsin-resistant triple helical structure and exhibited IL-2 activity to a similar extent as IL-2 itself. IL2-3A1 could be immobilized on the surface of plastic dishes by incubating it in the dishes. The IL-2 region of the immobilized IL2-3A1 was liberated to culture media by collagenase treatment and this freed IL-2 stimulated the growth of lined T cells. Thus, IL2-3A1 chimeric protein could be utilized as an IL-2 deliverer whose T cell mitogenic activity can be liberated by a collagenolytic environment.  相似文献   

11.
P2X receptors are ATP-gated ion channels found in a variety of tissues and cell types. Seven different subunits (P2X(1)-P2X(7)) have been molecularly cloned and are known to form homomeric, and in some cases heteromeric, channel complexes. However, the molecular determinants leading to the assembly of subunits into P2X receptors are unknown. To address this question we utilized a co-immunoprecipitation assay in which epitope-tagged deletion mutants and chimeric constructs were examined for their ability to co-associate with full-length P2X subunits. Deletion mutants of the P2X(2) receptor subunit were expressed individually and together with P2X(2) or P2X(3) receptor subunits in HEK 293 cells. Deletion of the amino terminus up to the first transmembrane domain (amino acid 28) and beyond (to amino acid 51) did not prevent subunit assembly. Analysis of the carboxyl terminus demonstrated that mutants missing the portion of the protein downstream of the second transmembrane domain could also still co-assemble. However, a mutant terminating 25 amino acids before the second transmembrane domain could not assemble with other subunits or itself, implicating the missing region of the protein in assembly. This finding was supported and extended by data utilizing a chimera strategy that indicated TMD2 is a critical determinant of P2X subunit assembly.  相似文献   

12.
应用PCR技术分别扩增出编码白喉毒素氨基端 389个氨基酸 (DT3 89)的基因片段及人IL 2全基因 ,将两基因串连插入 pET3a载体 ,构建成含有DT3 89 IL 2融合基因的表达载体 ,转化大肠杆菌BL2 1,经表达、纯化后 ,用3 H Leucine掺入法测定其对HUT 10 2细胞的蛋白合成抑制作用。SDS PAGE电泳分析表明 ,表达产物分子质量 (Mr)约为 5 8kD ;重组嵌合毒素能够特异性地抑制高表达IL 2受体的HUT 10 2细胞的蛋白生物合成 ,且有一定的剂量反应关系 ,其细胞半数抑制浓度 (IC50 )约为 3 3× 10 -11mol/L。为进一步研制特异性的抗IL 2受体高表达肿瘤和相关疾病的药物打下了基础。  相似文献   

13.
During the past few years many chimeric proteins have been developed to target and kill cells expressing specific surface molecules. Generally, these molecules carry a bacterial or plant toxin that destroys the unwanted cells. The major obstacle in the clinical application of such chimeras is their immunogenicity and non-specific toxicity. We have developed a new generation of chimeric proteins, taking advantage of apoptosis-inducing proteins, such as the human Bax protein, as novel killing components. The first prototype chimeric protein, IL2-Bax, directed toward IL2R-expressing cells, was constructed, expressed in Escherichia coli and partially purified. IL2-Bax increased the population of apoptotic cells in a variety of target T cell lines, as well as in human fresh PHA-activated lymphocytes, in a dose-dependent manner and had no effect on cells lacking IL2R expression. The IL2-Bax chimera represents an innovative approach for constructing chimeric proteins comprising a molecule that binds a specific cell type and an apoptosis-inducing protein. Such new chimeric proteins could be used for targeted treatment of human diseases.  相似文献   

14.
15.
The cell fusion activity of most paramyxoviruses requires coexpression of a fusion protein (F) and a hemagglutinin-neuraminidase protein (HN) which are derived from the same virus type. To define the domain of the HN protein which interacts with the F protein in a type-specific manner a series of chimeric HN proteins between two different paramyxoviruses, Sendai virus (SN) and human parainfluenza virus type 3 (PI3), was constructed and coexpressed with the SN-F protein by using the vaccinia virus T7 RNA polymerase transient-expression system. Quantitative assays were used to evaluate cell surface expression as well as fusion-promoting activities of the chimeric HN molecules. A chimeric HN protein [SN(140)] containing 140 N-terminal amino acids derived from SN-HN and the remainder (432 amino acids) derived from PI3-HN was found to promote cell fusion with the SN-F protein. In contrast, a second chimeric HN with 137 amino acids from SN-HN at the N terminus could not promote fusion with SN-F, even though the protein was expressed on the cell surface. A construct in which the PI3-HN cytoplasmic tail and transmembrane domain were substituted for those of SN in the SN(140) chimera still maintained the ability to promote cell fusion. These results indicate that a region including only 82 amino acids in the extracellular domain, adjacent to the transmembrane domain of the SN-HN protein, is important for interaction with the SN-F protein and promotion of cell fusion.  相似文献   

16.
Prostate-specific membrane antigen (PSMA) is a transmembrane protein expressed at high levels in prostate cancer and in tumor-associated neovasculature. In this study, we report that PSMA is internalized via a clathrin-dependent endocytic mechanism and that internalization of PSMA is mediated by the five N-terminal amino acids (MWNLL) present in its cytoplasmic tail. Deletion of the cytoplasmic tail abolished PSMA internalization. Mutagenesis of N-terminal amino acid residues at position 2, 3, or 4 to alanine did not affect internalization of PSMA, whereas mutation of amino acid residues 1 or 5 to alanine strongly inhibited internalization. Using a chimeric protein composed of Tac antigen, the alpha-chain of interleukin 2-receptor, fused to the first five amino acids of PSMA (Tac-MWNLL), we found that this sequence is sufficient for PSMA internalization. In addition, inclusion of additional alanines into the MWNLL sequence either in the Tac chimera or the full-length PSMA strongly inhibited internalization. From these results, we suggest that a novel MXXXL motif in the cytoplasmic tail mediates PSMA internalization. We also show that dominant negative micro2 of the adaptor protein (AP)-2 complex strongly inhibits the internalization of PSMA, indicating that AP-2 is involved in the internalization of PSMA mediated by the MXXXL motif.  相似文献   

17.
To minimize ovarian dysfunction subsequent to immunization with zona pellucida (ZP) glycoproteins, synthetic peptides encompassing the antigenic B cell epitopes as immunogens have been proposed. In this study, attempts have been made to clone and express a recombinant chimeric protein encompassing the epitopes corresponding to bonnet monkey (Macaca radiata) ZP glycoprotein-1 (bmZP1, amino acid residues 132-147), ZP glycoprotein-2 (bmZP2, amino acid residues 86-113), and ZP glycoprotein-3 (bmZP3, amino acid residues 324-347). The above chimeric recombinant protein (r-bmZP123) was expressed as a polyhistidine fusion protein in Escherichia coli. Immunoblot with murine monoclonal antibody, MA-813, generated against recombinant bmZP1 revealed a major band of approximately 10 kDa. The r-bmZP123 was purified on nickel-nitrilotriacetic acid resin under denaturing conditions. The female rabbits immunized with purified r-bmZP123 conjugated to diphtheria toxoid (DT) generated antibodies that reacted with r-bmZP123 and DT in an ELISA. In addition, the immune sera also reacted with E. coli expressed recombinant bmZP1, bmZP2, and bmZP3. In an indirect immunofluorescence assay, the antibodies against r-bmZP123 recognized native ZP of bonnet monkey as well as human. The immune sera also inhibited, in vitro, the binding of human spermatozoa to the human zona in the hemizona assay (HZA). These studies, for the first time, demonstrate the feasibility of assembling multiple epitopes of different ZP glycoproteins as a recombinant protein that elicit antibodies which are reactive with native zona and also inhibit, in vitro, human sperm-oocyte binding.  相似文献   

18.
以人粒细胞-巨噬细胞集落刺激因子(GM-CSF)受体(GM-CSFR)为靶向的白喉毒素(DT)与GM-CSF免疫毒素DT386-GMCSF为急性髓系白血病提供了一种新的替代治疗途径,但该蛋白在E.coli中的表达量很低,难以进行工业化生产。为探索造成其低表达的关键影响因素,对DT386-GMCSF中的GM-CSF进行了C端的截短表达,发现GM-CSF中L114编码序列可明显影响融合蛋白的表达量。在此基础上,构建了一系列突变体,发现保留1-123位氨基酸且将L114L115V116突变为G114V115T116的突变体DF123GVT的表达量高于DT386-GMCSF,且对来源于高表达GM-CSF受体的HL60细胞的肿瘤单细胞具有相似的细胞毒作用。DF123GVT突变体的获得为GM-CSFR靶向的免疫毒素的开发应用打下了基础。  相似文献   

19.
Interleukin 1 (IL 1) is a polypeptide hormone produced by activated macrophages that affects many different cell types involved in immune and inflammatory responses. The cloning and expression of a murine IL 1 cDNA in Escherichia coli encoding a polypeptide precursor of 270 amino acids has been reported, and expression of the carboxy-terminal 156 amino acids of this precursor in E. coli yields biologically active IL 1. By using the murine IL 1 cDNA as a probe, we have isolated its human homolog from cDNA generated to lipopolysaccharide-stimulated human leukocyte mRNA. Nucleotide sequence analysis of this cDNA predicts a protein of analysis of this cDNA predicts a protein of 271 amino acids (termed IL 1 alpha) which shows congruent to 61% homology to its murine counterpart but only 27% homology to a recently characterized human IL 1 precursor (IL 1 beta). We have expressed the carboxy-terminal 154 amino acids of IL 1 alpha in E. coli, purified this protein to homogeneity, and have compared it with pure recombinant murine IL 1 in several different IL 1 assays based on murine and human cells. Recombinant IL 1 is capable of stimulating T cell and fibroblast proliferation and inducing fibroblast collagenase and prostaglandin production, thus proving that a single molecule has many of the activities previously ascribed to only partially purified IL 1 preparations. Our results indicate that there exists a family of at least two human IL 1 genes (alpha and beta) whose dissimilar protein products have similar biological activities.  相似文献   

20.
The Survival of Motor Neurons (SMN) is the disease gene of spinal muscular atrophy. We have previously established a genetic system based on the chicken pre-B cell line DT40, in which expression of SMN protein is regulated by tetracycline, to study the function of SMN in vivo. Depletion of SMN protein is lethal to these cells. Here we tested the functionality of mutant SMN proteins by determining their capacity to rescue the cells after depletion of wild-type SMN. Surprisingly, all of the spinal muscular atrophy-associated missense mutations tested were able to support cell viability and proliferation. Deletion of the amino acids encoded by exon 7 of the SMN gene resulted in a partial loss of function. A mutant SMN protein lacking both the tyrosine/glycine repeat (in exon 6) and exon 7 failed to sustain viability, indicating that the C terminus of the protein is critical for SMN activity. Interestingly, the Tudor domain of SMN, encoded by exon 3, does not appear to be essential for SMN function since a mutant deleted of this domain restored cell viability. Unexpectedly, a chicken SMN mutant (DeltaN39) lacking the N-terminal 39 amino acids that encompass the Gemin2-binding domain also rescued the lethal phenotype. Moreover, the level of Gemin2 in DeltaN39-rescued cells was significantly reduced, indicating that Gemin2 is not required for DeltaN39 to perform the essential function of SMN in DT40 cells. These findings suggest that SMN may perform a novel function in DT40 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号