首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Native microtubules prepared from extruded and dissociated axoplasm have been observed to transport organelles and vesicles unidirectionally in fresh preparations and more slowly and bidirectionally in older preparations. Both endogenous and exogenous (fluorescent polystyrene) particles in rapid Brownian motion alight on and adhere to microtubules and are transported along them. Particles can switch from one intersecting microtubule to another and move in either direction. Microtubular segments 1 to 30 microns long, produced by gentle homogenization, glide over glass surfaces for hundreds of micrometers in straight lines unless acted upon by obstacles. While gliding they transport particles either in the same (forward) direction and/or in the backward direction. Particle movement and gliding of microtubule segments require ATP and are insensitive to taxol (30 microM). It appears, therefore, that the mechanisms producing the motive force are very closely associated with the native microtubule itself or with its associated proteins. Although these movements appear irreconcilable with several current theories of fast axoplasmic transport, in this article we propose two models that might explain the observed phenomena and, by extension, the process of fast axoplasmic transport itself. The findings presented and the possible mechanisms proposed for fast axoplasmic transport have potential applications across the spectrum of microtubule-based motility processes.  相似文献   

2.
Native microtubules from extruded axoplasm of squid giant axons were used as a paradigm to characterize the motion of organelles along free microtubules and to study the dynamics of microtubule length changes. The motion of large round organelles was visualized by AVEC-DIC microscopy and analyzed at a temporal resolution of 10 frames per second. The movements were smooth and showed no major changes in velocity or direction. During translocation, the organelles paused very rarely. Superimposed on the rather constant mean velocity was a velocity fluctuation, which indicated that the organelles are subject to considerable thermal motion during translocation. Evidence for a regular low-frequency oscillation was not found. The thermal motion was anisotropic such that axial motion was less restricted than lateral motion. We conclude that the crossbridge connecting the moving organelle to the microtubule has a flexible region that behaves like a hinge, which permits preferential movement in the direction parallel to the microtubule. The dynamic changes in length of native microtubules were studied at a temporal resolution of 1 Hz. About 98% of the native microtubules maintained their length ("stable" microtubules), while 2% showed phases of growing and/or shrinking typical for dynamic instability ("dynamic" microtubules). Gliding and organelle motion were not influenced by dynamic length changes. Transitions between growing and shrinking phases were low-frequency events (1-10 minutes per cycle). However, a new type of microtubule length fluctuation, which occurred at a high frequency (a few seconds per cycle), was detected. The length changes were in the 1-3 micron range. The latter events were very prominent at the (+) ends. It appears that the native axonal microtubules are much more stable than the purified microtubules and the microtubules of cultured cells that have been studied thus far. Potential mechanisms accounting for the three states of microtubule stability are discussed. These studies show that the native microtubules from squid giant axons are a very useful paradigm for studying microtubule-related motility events and microtubule dynamics.  相似文献   

3.
Existing morphological and physiological evidence indicates that axoplasm of squid axons sequesters calcium by both mitochondrial and non-mitochondrial buffers. The present work demonstrates that essentially all of the non-mitochondrial component is located in organelles. Extruded axoplasm was loaded with varying amounts of calcium by mixing with small volumes of solutions containing pH buffered 45Ca. Ethyleneglycol-bis(β-amino-ethyl ether)N,N′-tetraacetic acid (EGTA) or diethylenetriamine pentaacetic acid (DTPA) was used to stabilize the free calcium. The axoplasm was then sucked up in a polyethylene tube and centrifuged at 100,000 g for 2–3 hours to produce a loose pellet comprising 10–20% of the axoplasm volume. After centrifugation, the tube was frozen, sliced into segments, and counted by liquid scintillation. No significant pellet accumulation of exogenous calcium occurred at physiological concentrations of free calcium (ca. 50 nM); however, a threshold for accumulation existed at 150–200 nM. Essentially complete pellet sequestration of the exogenous load occurred at a free calcium concentration above 1 μM. About half of the pellet buffering capacity was sensitive to carbonyl cyanide, p-trifluoromethoxy phenylhydrazone (FCCP). Variation of exogenous load between 0.1 – 3 mmole/kg axoplasm did not affect the buffering capacity of either the FCCP sensitive or insensitive components when the free calcium concentration was above threshold.  相似文献   

4.
R D Vale  B J Schnapp  T S Reese  M P Sheetz 《Cell》1985,40(2):449-454
Cytoplasmic filaments, separated from the axoplasm of the squid giant axon and visualized by video-enhanced differential interference contrast microscopy, support the directed movement of organelles in the presence of ATP. All organelles, regardless of size, move continuously along isolated transport filaments at 2.2 +/- 0.2 micron/sec. In the intact axoplasm, however, movements of the larger organelles are slow and saltatory. These movements may reflect a resistance to movement imposed by the intact axoplasm. The uniform rate of all organelles along isolated transport filaments suggests that a single type of molecular motor powers fast axonal transport. Organelles can attach to and move along more than one filament at a time, suggesting that organelles have multiple binding sites for this motor.  相似文献   

5.
To assay the detailed structural relationship between axonally transported vesicles and their substrate microtubules, vesicle transport was focally cold blocked in axoplasm that was extruded from the squid giant axon. A brief localized cold block concentrated anterogradely and retrogradely transported vesicles selectively on either the proximal or or distal side of the block. Normal movement of the concentrated vesicles was reactivated by rewarming the cold-blocked axoplasm. At the periphery of the axoplasm, moving vesicles were located on individual microtubules that had become separated from the other cytomatrix components. The presence of moving vesicles on isolated microtubules permitted the identification of the structural components required for vesicle transport along microtubules. The results show that 16-18-nm cross-bridges connect both anterogradely and retrogradely moving vesicles to their substrate microtubules. These observations demonstrate that cross-bridges are fundamental are fundamental components of vesicle transport along axonal microtubules. Thus, vesicle transport can now be included among those cell motile systems such as muscle and axonemes that are based on a cross-bridge-mediated mechanism.  相似文献   

6.
Video microscopy of isolated axoplasm from the squid giant axon permits correlated quantitative analyses of membrane-bounded organelle transport both in the intact axoplasm and along individual microtubules. As a result, the effects of experimental manipulations on both anterograde and retrograde movements of membrane-bounded organelles can be evaluated under nearly physiological conditions. Since anterograde and retrograde fast axonal transport are similar but distinct cellular processes, a systematic biochemical analysis is important for a further understanding of the molecular mechanisms for each. In this series of experiments, we employed isolated axoplasm of the squid to define the nucleoside triphosphate specificity for bidirectional organelle motility in the axon. Perfusion of axoplasm with 2-20 mM ATP preserved optimal vesicle velocities in both the anterograde and retrograde directions. Organelle velocities decreased to less than 50% of optimal values when the axoplasm was perfused with 10-20 mM UTP, GTP, ITP, or CTP with simultaneous depletion of endogenous ATP with hexokinase. Under the same conditions, TTP and ATP-gamma-S were unable to support significant levels of transport. None of the NTPs tested had a differential effect on anterograde vs. retrograde movement of vesicles. Surprisingly, several inconsistencies were revealed when a comparison was made between these results and nucleoside triphosphate specificities that have been reported for putative organelle motors by using in vitro assays. These data may be used in conjunction with data from well-defined in vitro assays to develop models for the molecular mechanisms of axonal transport.  相似文献   

7.
Microtubules have been demonstrated to be a substrate for organelle transport and particle translocation in vitro and in vivo. Subsequent to a previous report of inhibition of axonal transport of exogenous tracers in vivo using antiserum NS-20 against tubulin (Johnston et al: Brain Res. 1986), we now show disruption of particle movement in extruded squid axoplasm using this unique immunological probe. Using video-enhanced contract-differential interference contrast (AVEC-DIC) microscopy, we examined the properties of particle movement along microtubules and demonstrated that both the velocity of particle movement and the numbers of particles moving are decreased in the presence of NS-20 antiserum or NS-20 affinity-purified antibodies but not in the presence of another antiserum against tubulin. The amount of microtubule substrate does not change in the presence of any of the antisera. In conclusion, we suggest that NS-20 antibodies bind near or at a site on the tubulin molecule which is critical in the mechanism of particle transport, and provide a direct immunological probe to examine the mechanism of microtubule involvement in axonal transport.  相似文献   

8.
Resistivity of axoplasm. I. Resistivity of extruded squid axoplasm   总被引:1,自引:1,他引:0       下载免费PDF全文
Six methods have given squid axoplasm resistivities of from 1.0 to 6.9 times seawater (X SW), so another was tried. A 100-mum platinized electrode was to be inserted from each end of an axion in iso-osmotic sucrose and impedance between them measured vs. separation. But observations that the resistance of axons in sucrose increased steadily ruled this out. Axoplasm from two or three axons was transferred to a glass capillary, 0.6 mm ID, and the 1-kHz series resistance and reactance were measured at electrode separations from 16 to 2 mm. The resistance was linear vs. distance, giving the resistivity, while the reactance was nearly constant, implying constant electrode contributions. Frequency runs from 10 Hz to 30 kHz at 10 mm gave electrode impedances of the form (jomega)-alpha, allowing 1-2% effects on the axoplasm resistivities. In nine experiments, one was discarded for cause, the range and average resistivities were, respectively, 1.2-1.6 and 1.4 times those of artificial seawater (19.7 omegacm at 24.4 degrees C). No single cause for the variability was apparent. These experiments essentially confirm the means and variations of two early experiments with intact axons and recent results with a single internal electrode to give overall resistivities of 1.4 +/- 0.2 X SW.  相似文献   

9.
10.
Axoplasm from freshly isolated Myxicola giant axons was mixed with small volumes of 'artificial axoplasm' containing 45Ca and either CaEGTA/EGTA or CaDTPA/DTPA buffers giving various nominal values of [Ca2+]. The axoplasm samples were centrifuged at 100 000 X g for 30 min to form a pellet and the percentage of 45Ca bound to the pellet was determined. The fraction of bound calcium rose with increasing values of [Ca2+] along an S-shaped curve. Carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) was used to reveal the presence of mitochondrial Ca uptake. At physiological values of [Ca2+], around 100 nM, Ca uptake was insensitive to FCCP. As [Ca2+] was elevated, increasing sensitivity to FCCP was noted above [Ca2+] = 0.5 microM. At low values of [Ca2+], including the physiological range, Ca binding was significantly reduced by vanadate and quercetin, agents known to inhibit Ca uptake mediated by Ca2+-activated ATPase reactions. Inhibition of Ca binding by these agents was approximately 50% at physiological values of [Ca2+]. ATP depletion decreased the percentage of Ca binding by the pellet at physiological [Ca2+]. The results suggest that about 50% of the Ca buffering by particulate matter in axoplasm is via organelles requiring intact Ca2+-ATPase reaction at physiological values of [Ca2+].  相似文献   

11.
Resorption of organelles containing microtubules   总被引:9,自引:0,他引:9  
R A Bloodgood 《Cytobios》1974,9(35):142-161
  相似文献   

12.
This paper addresses the question of whether microtubule-directed transport of vesicular organelles depends on the presence of a pool of cytosolic factors, including soluble motor proteins and accessory factors. Earlier studies with squid axon organelles (Schroer et al., 1988) suggested that the presence of cytosol induces a > 20-fold increase in the number of organelles moving per unit time on microtubules in vitro. These earlier studies, however, did not consider that cytosol might nonspecifically increase the numbers of moving organelles, i.e., by blocking adsorption of organelles to the coverglass. Here we report that treatment of the coverglass with casein, in the absence of cytosol, blocks adsorption of organelles to the coverglass and results in vigorous movement of vesicular organelles in the complete absence of soluble proteins. This technical improvement makes it possible, for the first time, to perform quantitative studies of organelle movement in the absence of cytosol. These new studies show that organelle movement activity (numbers of moving organelles/min/micron microtubule) of unextracted organelles is not increased by cytosol. Unextracted organelles move in single directions, approximately two thirds toward the plus-end and one third toward the minus-end of microtubules. Extraction of organelles with 600 mM KI completely inhibits minus-end, but not plus-end directed organelle movement. Upon addition of cytosol, minus-end directed movement of KI organelles is restored, while plus--end directed movement is unaffected. Biochemical studies indicate that KI-extracted organelles attach to microtubules in the presence of AMP-PNP and copurify with tightly bound kinesin. The bound kinesin is not extracted from organelles by 1 M KI, 1 M NaCl or carbonate (pH 11.3). These results suggest that kinesin is irreversibly bound to organelles that move to the plus-end of microtubules and that the presence of soluble kinesin and accessory factors is not required for movement of plus-end organelles in squid axons.  相似文献   

13.
14.
Cultured cell extracts support organelle movement on microtubules in vitro   总被引:8,自引:0,他引:8  
Directed movements of organelles have been observed in a variety of cultured cells. To study the regulation and molecular basis of intracellular organelle motility, we have prepared extracts from cultured chick embryo fibroblasts (CEF cells) which support the movement of membraneous organelles along microtubules. The velocity, frequency and characteristics of organelle movements in vitro were similar to those within intact cells. Organelles and extract-coated anionic beads moved predominantly (80%) toward the minus ends of microtubules that had been regrown from centrosomes, corresponding to retrograde translocation. Similar microtubule-dependent organelle movements were observed in extracts prepared from other cultured cells (African green monkey kidney and 3T3 cells). Organelle motility was ATP and microtubule dependent. The frequency of organelle movement was inhibited by acidic (pH less than 7) or alkaline (pH greater than 8) solutions, high ionic strength ([ KCl] = 0.1 M), and the chelation of free magnesium ions. Treatment of the extracts with adenylyl imidodiphosphate (AMP-PNP, 7 mM), sodium orthovanadate (vanadate; Na3VO4, 20 microM), or N-ethylmaleimide (NEM, 2 mM) blocked all organelle motility. The decoration of microtubules with organelles was observed in the presence of AMP-PNP or vanadate. Motility was not affected by cytochalasin D (2 microM) or cAMP (1 mM). Kinesin (Mr = 116,000), an anterograde microtubule-based motor, was partially purified from the CEF extract by microtubule affinity purification in the presence of AMP-PNP, and was able to drive the movement of microtubule on glass coverslips. A similar preparation made in the presence of vanadate contained a different subset of proteins and did not support motility. These results demonstrate that intracellular organelle motility can be reproduced in vitro and provide the basis for investigating the roles of individual molecular components involved in the organelle motor complex.  相似文献   

15.
Translocation of intracellular organelles requires interaction with the cellular cytoskeleton, but the membrane and cytoskeletal proteins involved in movement are unknown. Here we show that highly purified synaptic vesicles from electric fish added to extruded squid axoplasm can show ATP-dependent movement. The movement is indistinguishable from that of endogenous vesicles and has a slight preference for the orthograde direction. In the presence of a nonhydrolyzable ATP analog, the synaptic vesicles bind to axoplasmic fibers but do not move. Elastase treatment of vesicles inhibits both binding and movement. We conclude that a protein component on the surface of cholinergic synaptic vesicles from electric fish is conserved during evolution and so can be recognized by the organelle-translocating machinery of the squid axon, resulting in ATP-dependent movement. Synaptic vesicles apparently retain the capacity for fast axonal transport, even after they reach their intracellular destination.  相似文献   

16.
In vitro translocation of organelles along microtubules   总被引:6,自引:0,他引:6  
T A Schroer  R B Kelly 《Cell》1985,40(4):729-730
  相似文献   

17.
Ionized magnesium concentration in axoplasm of dialyzed squid axons.   总被引:8,自引:0,他引:8  
  相似文献   

18.
19.
We have previously used the asialoglycoprotein receptor system to elucidate the pathway of hepatocytic processing of ligands such as asialoorosomucoid (ASOR). These studies suggested that endocytic vesicles bind to and travel along microtubules under the control of molecular motors such as cytoplasmic dynein. We now report reconstitution of this process in vitro with the use of a microscope assay to observe the interaction of early endocytic vesicles containing fluorescent ASOR with fluorescent microtubules. We find that ASOR-containing endosomes bind to microtubules and translocate along them in the presence of ATP. This represents the first time that mammalian endosomes containing a well-characterized ligand have been directly observed to translocate on microtubules in vitro. The endosome movement does not require cytosol or exogenous motor protein, is oscillatory, and is directed toward the plus and minus ends at equal frequencies. We also observe endosomes being stretched in opposite directions along microtubules, suggesting that microtubules could provide a mechanical basis for endocytic sorting events. The movement of endosomes in vitro is consistent with the hypothesis that microtubules actively participate in the sorting and distribution of endocytic contents.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号