首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fatty acid-acylated proteins in secretory mutants of Saccharomyces cerevisiae.   总被引:12,自引:0,他引:12  
Yeast secretory (sec) mutants that are blocked in the transport of secretory proteins and accumulate membrane organelles were used to study the biosynthesis of fatty acid-acylated proteins. Four proteins were labeled with [3H]palmitate in sec mutants accumulating endoplasmic reticulum membranes. Three of these (molecular weights approximately equal to 20,000, 50,000, and 120,000) were N-linked glycoproteins, based on their ability to be labeled with [3H]mannose and their sensitivity to endoglycosidase H. The fourth protein (molecular weight approximately equal to 30,000) also was labeled with [3H]mannose but was insensitive to endoglycosidase H; it appeared to contain O-linked sugars. In sec mutants accumulating Golgi membranes or post-Golgi vesicles, a 35-kilodalton protein was labeled with [3H]palmitate. Analysis of Staphylococcus aureus protease V8 digests and pulse-chase experiments indicated that the 30-kilodalton protein was a precursor of 35 kilodaltons. None of these proteins was labeled with [3H]palmitate in a sec mutant that blocked the penetration of nascent polypeptides into endoplasmic reticulum; thus, acylation occurred in endoplasmic reticulum. All four proteins could be recovered from fractions enriched for yeast membranes. Fatty acids were not released from proteins by boiling in sodium dodecyl sulfate or extraction with organic solvents but were recovered as methyl esters after proteins were treated with KOH-methanol, a reaction characteristic of an acyl ester linkage.  相似文献   

2.
A number of plasma membrane glycoproteins of mammalian and protozoan origin are released from cells by phosphatidylinositol-specific phospholipase C. Some of these proteins have been shown to be attached to the lipid bilayer via a covalently linked, structurally complex glycophospholipid. Here we establish the existence of similarly linked glycoproteins in the yeast Saccharomyces cerevisiae. The most abundant of these is a tightly membrane-bound glycoprotein of 125 kd. The detergent-binding moiety of this protein can be removed by phosphatidylinositol-specific phospholipase C of bacterial origin or from Trypanosoma brucei. Metabolic labeling indicates that the protein contains covalently attached fatty acid and inositol. It also contains the cross-reacting determinant (CRD), an antigen found previously on the glycophospholipid anchor of protozoan and mammalian origin. Treatment of the protein with endoglycosidases F and H results in a 95-kd species. In the secretion mutant sec18, grown at 37 degrees C, the vesicular transport of glycoproteins is reversibly blocked between the rough endoplasmic reticulum and the Golgi apparatus. We find that sec18 cells, when grown at 37 degrees C, do add phospholipid anchors to newly synthesized glycoproteins. This indicates that these anchors are added in the rough endoplasmic reticulum.  相似文献   

3.
Glycoproteins in the plasma membrane of rat hepatoma cells were labeled at their externally exposed tyrosine residues with 131I and at their galactose and sialic acid residues with 3H. The degradation of both isotopes in the total cell protein fraction, in glycoproteins purified by concanavalin A, and in glycoproteins separated on two-dimensional gels was determined. Similarly, the total cellular membrane glycoproteins were metabolically labeled with [35S]methionine and [3H]fucose. The fate of both incorporated labels was followed by lectin chromatography or by precipitation of the proteins with specific antibodies followed by electrophoretic gel separation. In both labeling experiments, the carbohydrate markers were lost from the ligand- recognized fraction with similar kinetics as from the total cell protein fraction. In some glycoprotein species which were separated by two-dimensional gel electrophoresis, the polypeptide portion exhibited up to a twofold slower rate of degradation relative to that of the carbohydrate moiety. This difference is most pronounced in carbohydrate- rich glycoproteins. To corroborate this finding, double-labeled membrane glycoproteins were incorporated into reconstituted phospholipid vesicles which were then transferred via fusion into the plasma membrane of mouse fibroblasts. Both the polypeptide and carbohydrate moieties of the transferred membrane glycoproteins were degraded with the same relative kinetics as in the original hepatoma cells. The rate of degradation is mostly a function of the structural properties of the membrane components as shown by the preservation of metabolically stable fucogangliosides of Reuber H-35 hepatoma cells transferred onto the fibroblasts. The technique of insertion of membrane components into the plasma membrane of another cell should assist in the elucidation of the exact route and mechanism of membrane protein destruction.  相似文献   

4.
In Saccharomyces cerevisiae, unlike in higher eukaryotic cells, most of the reactions involved in phospholipid biosynthesis occur both in mitochondria and in the endoplasmic reticulum. Some of the key enzymes involved, however, are restricted to one compartment. Thus, the formation of phosphatidylethanolamine by decarboxylation of phosphatidylserine occurs only in mitochondria, while phosphatidylcholine synthesis via methylation of phosphatidylethanolamine is restricted to microsomes. When yeast cells were pulse labelled with [3H]serine,[3H] phosphatidylethanolamine formed in mitochondria was found not only in the organelle but also, with even higher specific radioactivity, in the endoplasmic reticulum. Translocation of phosphatidylethanolamine between organelles was blocked immediately after poisoning cells with cyanide, azide and fluoride. Part of the [3H]phosphatidylcholine formed in the endoplasmic reticulum by methylation of [3H]phosphatidylethanolamine was transferred to mitochondria. This process continued in deenergized cells, although at a lower rate as compared to metabolizing cells. This result indicates rapid movement of both phosphatidylethanolamine and phosphatidylcholine requires metabolic energy, but that phosphatidylinositol-specific phospholipid transfer protein that has been found in saccharomyces cerevisiae (Daum, G. and Paltauf, F. (1984) Biochim. Biophys. Acta 784, 385-391). The mechanism of movement of phospholipids from internal membranes to the cell surface was studied with temperature-sensitive secretory mutants (Schekman, R. (1982) Trends Biochem. Sci. 7, 243-246) of Saccharomyces cerevisiae. A shift from the permissive to the restrictive temperature, which blocks the flow of vesicles involved in the secretion of proteins, had no effect on the transfer of phosphatidylinositol to the plasma membrane.  相似文献   

5.
Con A, NaF, and eserine (lysosomotropic agents) induced marked translocation of acidic [3H] nonhistone proteins (NHP) from the cytoplasm to the nucleus in lymphocytes prelabeled with [3H]-2-mannose. The nuclear [3H] NHP contents were 38-120% higher in cells treated with these agents than in control cells. Tunicamycin, a strong inhibitor of N-glycosylation via the dolichol pathway, caused a concentration-dependent inhibition of [3H]-2-mannose incorporation into the nuclear [3H] NHP. Considerable amounts of nuclear [3H] NHP from lymphocytes labeled with either [3H]-2-mannose or [3H] leucine, bound specifically to Con A-Sepharose and could be eluted by alpha-methyl mannoside. Con A and NaF caused also nuclear translocation of acidic [3H] NHP in cells labeled with [3H] glucosamine, [3H] galactose, or [3H] fucose. Fractionation of the nuclear proteins by isoelectric focusing in a pH gradient of 2.5-6.5 showed that multiple species of acidic NHP were labeled with each of the four 3H-sugars. These results indicate that a fraction of the acidic nuclear NHP are N-glycosylated proteins and that gene activation and mitogenesis are associated with the translocation of these glycoproteins to the nucleus. Considering the known intracellular traffic of nascent glycoproteins our results suggest that at least some of the acidic NHP are synthesized and glycosylated in the endoplasmic reticulum and the Golgi (secretory pathway). It is likely that these proteins, after completion of synthesis and glycosylation, emerge from the trans-stack of the Golgi packaged in vesicles and accumulate in the cytoplasm. Induction of nuclear translocation of such NHP by various agents may be mediated by a vesicular transport mechanism.  相似文献   

6.
Temperature-sensitive secretory mutants (sec) of S. cerevisiae have been used to evaluate the organelles and cellular functions involved in transport of the vacuolar glycoprotein, carboxypeptidase Y (CPY). Others have shown that CPY (61 kd) is synthesized as an inactive proenzyme (69 kd) that is matured by cleavage of an 8 kd amino-terminal propeptide. sec mutants that are blocked in either of two early stages in the secretory process and accumulate endoplasmic reticulum or Golgi bodies also accumulate precursor forms of CPY when cells are incubated at the nonpermissive temperature (37°C). These forms are converted to a proper size when cells are returned to a permissive temperature (25°C). Vacuoles isolated from sec mutant cells do not contain the proCPY produced at 37°C. These results suggest that vacuolar and secretory glycoproteins require the same cellular functions for transport from the endoplasmic reticulum and from the Golgi body. The Golgi body represents a branch point in the pathway: from this organelle, vacuolar proenzymes are transported to the vacuole for proteolytic processing and secretory proteins are packaged into vesicles.  相似文献   

7.
《The Journal of cell biology》1983,97(5):1582-1591
The intra- and transcellular transports of hepatic secretory and membrane proteins were studied in rats in vivo using [3H]fucose and [35S]cysteine as metabolic precursors. Incorporated radioactivity in plasma, bile, and liver subcellular fractions was measured and the labeled proteins of the Golgi complex, bile, and plasma were separated by SDS PAGE and identified by fluorography. 3H-radioactivity in Golgi fractions peaked at 10 min postinjection (p.i.) and then declined concomitantly with the appearance of labeled glycoproteins in plasma. Maximal secretion of secretory fucoproteins from Golgi occurred between 10 and 20 min p.i. In contrast, the clearance of labeled proteins from Golgi membrane subfractions occurred past 30 min p.i., indicating that membrane proteins leave the Golgi complex at least 30 min later than the bulk of content proteins. A major 80,000-dalton form of secretory component (SC) was identified in the bile by co-precipitation with (IgA)2 by an anti-IgA antibody. An antibody (raised in rabbit) against the biliary 80,000-dalton peptide recognized two larger forms (116,000 and 94,000 dalton), presumably precursors, in Golgi membranes. A comparative study of kinetics of transport of 35S-SC and 35S-albumin showed that albumin peaked in bile at approximately 45 min p.i., whereas the SC peak occurred at 80 min p.i., suggesting that the transit time differs for plasma and membrane proteins that are delivered to the bile canaliculus.  相似文献   

8.
Membrane recycling in pancreatic acinar cells involves endocytic vesicle formation at the apical cell surface and rapid membrane traffic to the Golgi complex. During this process a small amount of extracellular content is taken up from the acinar lumen. In order to determine whether secretory proteins already released into the pancreatic acinar lumen are reinternalized during membrane retrieval, 3H-labeled amylase or 125I-labeled secretory proteins were reinfused through the pancreatic duct until the lumina were reached. Tissue samples from various time points were prepared for light and electron microscope autoradiography. The observations showed that [3H]amylase and, to a lesser extent, the 125I-labeled secretory proteins were internalized at the apical cell surface and rapidly (within 2-5 min) transferred to the Golgi cisternae and the condensing vacuoles; only a minor proportion of silver grains was observed over lysosomes. In addition, at later time points, mature secretion granules close to the Golgi complex became labeled. The results indicate that exocytosis in the rat exocrine pancreas does not operate at 100% efficiency; part of the exported amylase and part of the total secretion product are reinternalized concomitantly with the endocytic removal of plasma membrane and are copackaged together with newly synthesized secretory proteins.  相似文献   

9.
10.
New thermosensitive mutants of the yeast Saccharomyces cerevisiae which block the secretion of periplasmic enzymes at restriction temperature have been obtained. These mutants accumulate active low molecular weight and mature invertase species in the cell; the buoyant density of the cells in a Percoll gradient is higher than that in the wild strain cells. The mutant cells transferred to permissive temperature (25 degrees C) in the absence of protein synthesis can secrete some amount of accumulated invertase. It was found that the secretory defects of conditional mutants do not affect the activity of cytoplasmic enzymes (e.g., alcohol dehydrogenase) or the level of total protein synthesis and glycosylation and do not induce non-specific disturbances in energy metabolism and plasma membrane functions at restriction temperature. Some strains of new secretory mutants revealed uncoupled defective secretion of periplasmic enzymes and intrinsic membrane proteins (proline permease). The possibility of branching of the secretory pathway for periplasmic enzymes and cytoplasmic membrane proteins is discussed.  相似文献   

11.
Protein O-mannosylation has been postulated to be critical for production and secretion of glycoproteins in fungi. Therefore, understanding the regulation of this process and the influence of heterologous expression of glycoproteins on the activity of enzymes engaged in O-glycosylation are of considerable interest. In this study we expressed cellobiohydrolase II (CBHII) of T. reesei, which is normally highly O-mannosylated, in Saccharomyces cerevisiae pmt mutants partially blocked in O-mannosylation. We found that the lack of Pmt1 or Pmt2 protein O-mannosyltransferase activity limited the glycosylation of CBHII, but it did not affect its secretion. The S. cerevisiae pmt1Delta and pmt2Delta mutants expressing T. reesei cbh2 gene showed a decrease of GDP-mannose level and a very high activity of cis-prenyltransferase compared to untransformed strains. On the other hand, elevation of cis-prenyltransferase activity by overexpression of the S. cerevisiae RER2 gene in these mutants led to an increase of dolichyl phosphate mannose synthase activity, but it did not influence the activity of O-mannosyltransferases. Overexpression of the MPG1 gene increased the level of GDP-mannose and stimulated the activity of mannosyltransferases elongating O-linked sugar chains, leading to partial restoration of CBHII glycosylation.  相似文献   

12.
The plasma membrane of the yeast Saccharomyces cerevisiae is devoid of lipid-synthesizing enzymes, but contains all classes of bilayer-forming lipids. As the lipid composition of the plasma membrane does not match any of the intracellular membranes, specific trafficking of lipids from internal membranes, especially the endoplasmic reticulum and the Golgi, to the cell periphery is required. Although the secretory pathway is an obvious route to translocate glycerophospholipids, sphingolipids and sterols to the plasma membrane, experimental evidence for the role of this pathway in lipid transport is rare. Addressing this issue in a systematic way, we labeled temperature-sensitive secretory yeast mutants (sec mutants) with appropriate lipid precursors, isolated the plasma membranes at high purity and quantified labeled lipids of this compartment. Shifting sec mutants to the restrictive temperature reduced transport of both proteins and lipids to the plasma membrane, indicating that the latter compounds are also trafficked to the cell periphery through the protein secretory pathway. However, efficient sec blocks did not abrogate protein and lipid transport, suggesting that parallel pathway(s) for the translocation of membrane components to the plasma membrane of yeast must exist.  相似文献   

13.
Detection of glycoproteins in the Acanthamoeba plasma membrane   总被引:1,自引:0,他引:1  
In the present study we have shown that glycoproteins are present in the plasma membrane of Acanthamoeba castellanii by utilizing different radioactive labeling techniques. Plasma membrane proteins in the amoeba were iodinated by 125I-lactoperoxidase labeling and the solubilized radiolabeled glycoproteins were separated by lectin-Sepharose affinity chromatography followed by polyacrylamide gel electrophoresis. The periodate/NaB3H4 and galactose oxidase/NaB3H4 labeling techniques were used for labeling of surface carbohydrates in the amoeba. Several surface-labeled glycoproteins were observed in addition to a diffusely labeled region with Mr of 55,000-75,000 seen on electrophoresis, which could represent glycolipids. The presence of glycoproteins in the plasma membrane of Acanthamoeba castellanii was confirmed by metabolic labeling with [35S]methionine followed by lectin-Sepharose affinity chromatography and polyacrylamide gel electrophoresis.  相似文献   

14.
From the time of their synthesis in the rough endoplasmic reticulum until they are secreted, packaged in lysosomes, or appear as membrane components at the cell surface, the polypeptide chains of N- and O-linked glycoproteins remain associated with intracellular membranes that are components of the secretory pathway. The various co-translational and post-translational modifications of the carbohydrate moieties of glycoproteins have been shown to occur within morphologically and functionally distinct regions of this complex membrane system. However, the sugar nucleotides, which serve as precursors to the oligosaccharide moieties of these glycoproteins, are synthesized almost exclusively in the cytoplasm. These findings raise a number of questions about the mechanisms involved in the transmembrane assembly of membrane and secretory glycoproteins. In this paper these questions are reviewed and recent studies directed towards providing answers to them are summarized. In addition, information related to the possible role of dolichyl phosphate in regulating the glycosylation of proteins is presented.  相似文献   

15.
Biochemical evidence from the preceding paper indicated that [3H]N- acetylmannosamine may be used as a fairly specific precursor for the sialic acid residues of glycoproteins (and perhaps glycolipids) in radioautographs of rat liver and duodenum. In order to study the site of incorporation of this label in cell types of various tissues, we gave 40-g rats and 15-g Swiss albino mice a single intravenous injection of 8 mCi of [3H]N-acetylmannosamine and sacrificed them after 2 and 10 min. To trace the subsequent migration of the labeled glycoproteins, we injected 40-g rats with 4 mCi of [3H]N- acetylmannosamine and sacrificed them after 20 and 30 min, 1, 4, and 24 h, and 3 and 9 d. Light microscope radioautographic analysis revealed that in a great variety of cell types the label was initially localized to the Golgi region. Electron microscope radioautographic analysis of duodenal villous columnar and goblet cells, pancreatic acinar cells and Paneth cells, from rats and mice sacrificed 10 min after injection, showed that the silver grains were localized over Golgi saccules (and adjacent secretion granules). In kidney proximal and distal tubule cells reaction was initially localized to the Golgi apparatus in some areas of the kidney cortex whereas in other areas it was more diffuse. In all cells, the proportion of silver grains over the Golgi apparatus decreased with time after injection while an increasing number of grains appeared over secretion products in secretory cells or over the plasma membrane in other cell types. Lysosomes also became increasingly labeled at later time intervals. The above results suggest that in most cell types sialic acid residues are incorporated into glycoproteins (and perhaps glycolipids), primarily in the Golgi apparatus. With time, these newly synthesized molecules migrate to secretion products, to the plasma membrane, or to the lysosomes.  相似文献   

16.
The recycling of a secretory granule membrane protein   总被引:2,自引:0,他引:2  
We have used N-hydroxysuccinimido-d-biotin as a reagent for labeling proteins exposed at the surface of cultured bovine adrenal chromaffin cells during Ba2+-stimulated secretion. A specific secretory granule membrane constituent, dopamine-beta-hydroxylase (DBH), has been investigated using immunoprecipitation followed by electrophoresis. Within 30 min of stimulation, exposed DBH had been cleared from the cell surface. Nevertheless, quantitation of labeled DBH using [125I] streptavidin suggested that it remained undegraded over a period of 24 h, a time during which secretory granule stores of catecholamines were being replenished. Subcellular fractionation of the cultured cells suggested that, after 3 or 4 h, the biotinylated DBH, which was still membrane-bound, was located in particulate material that also contained cytochrome b561, another major secretory granule membrane component.  相似文献   

17.
Incubation of isolated rat islets of Langerhans with melittin resulted in a dose-dependent stimulation of insulin secretion with half the maximal response occurring at 4 micrograms/ml melittin. The effect of melittin on insulin secretion was dependent on extracellular calcium, was inhibited by the phospholipase A2 inhibitor quinacrine and by the lipoxygenase inhibitor nordihydroguaiaretic acid. Stimulation of insulin secretion by melittin was associated with a calcium-dependent loss of [3H]arachidonic acid from phospholipids in islet cells prelabelled with [3H]arachidonic acid. Analysis of the islet phospholipids involved in this response revealed that the [3H]arachidonic acid was released predominantly from phosphatidylcholine. These results suggest that melittin may stimulate insulin secretion by activating phospholipase A2 in islet cells, causing the release of arachidonic acid from membrane phospholipid. The results are consistent with suggestions that the subsequent metabolism of arachidonic acid via the lipoxygenase pathway may be involved in regulating the insulin secretory response.  相似文献   

18.
A Driouich  G F Zhang    L A Staehelin 《Plant physiology》1993,101(4):1363-1373
Brefeldin A (BFA), a specific inhibitor of Golgi-mediated secretion in animal cells, has been used to study the organization of the secretory pathway and the function of the Golgi apparatus in plant cells. To this end, we have employed a combination of electron microscopical, immunocytochemical, and biochemical techniques to investigate the effects of this drug on the architecture of the Golgi apparatus as well as on the secretion of proteins and complex cell wall polysaccharides in sycamore maple (Acer pseudoplatanus) suspension-cultured cells. We have used 2.5 and 7.5 micrograms/mL of BFA, which is comparable to the 1 to 10 micrograms/mL used in experiments with animal cells. Electron micrographs of high-pressure frozen and freeze-substituted cells show that although BFA causes swelling of the endoplasmic reticulum cisternae, unlike in animal cells, it does not induce the disassembly of sycamore maple Golgi stacks. Instead, BFA induces the formation of large clusters of Golgi stacks, an increase in the number of trans-like Golgi cisternae, and the accumulation in the cytoplasm of very dense vesicles that appear to be derived from trans Golgi cisternae. These vesicles contain large amounts of xyloglucan (XG), the major hemicellulosic cell wall polysaccharide, as shown by immunocytochemical labeling with anti-XG antibodies. All of these structural changes disappear within 120 min after removal of the drug. In vivo labeling experiments using [3H]leucine demonstrate that protein secretion into the culture medium, but not protein synthesis, is inhibited by approximately 80% in the presence of BFA. In contrast, the incorporation of [3H]fucose into N-linked glycoproteins, which occurs in trans-Golgi cisternae, appears to be affected to a greater extent than the incorporation of [3H]xylose, which has been localized to medial Golgi cisternae. BFA also affects secretion of complex polysaccharides as evidenced by the approximate 50% drop in incorporation of [3H]xylose and [3H]fucose into cell wall hemicelluloses. Taken together, these findings suggest that at concentrations of 2.5 to 7.5 mu g/mL BFA causes the following major changes in the secretory pathway of sycamore maple cells: (a) it inhibits the transport of secretory proteins to the cell surface by about 80% and of hemicelluloses by about 50%; (b) it changes the patterns of glycosylation of N-linked glycoproteins and hemicelluloses; (c) it reduces traffic between trans Golgi cisternae and secretory vesicles; (d) it produces a major block in the transport of XG-containing, dense secretory vesicles to the cell surface; and (e) it induces the formation of large aggregates of Golgi apparatus of plant and animal cels share many functional and structural characteristics, the plant Golgi apparatus possesses properties that make its response to BFA unique.  相似文献   

19.
Porcine lymphocyte Phaseolus vulgaris phytohemagglutinin (PHA) receptor glycoproteins purified by affinity chromatography have been reassembled into vesicles made of phosphatidylcholine and phosphatidylserine by detergent (dodecyltrimethylammonium bromide) dialysis. The receptor glycoproteins were incorporated into the lipid vesicles in a nonselective manner with a yield of 65-70%. Vesicles containing the glycoproteins were sealed as evidenced by their impermeability to calcium ions, using quin 2 trapped inside the vesicles. The vesicles were agglutinated by PHA, suggesting that the saccharidic moiety of the reconstituted glycoproteins was, at least in part, oriented towards the extravesicular medium. This observation was further supported by the fact that the vesicles bound 125I-labeled PHA in a specific and saturable manner. At maximum amount of lectin bound, a ratio of 1.01 +/- 0.05 microgram of PHA per microgram glycoprotein incorporated was measured. When the binding data were analyzed by Scatchard plot, a downward concave profile was observed, suggestive of a positive cooperativity at low concentrations of lectin. The orientation of the reconstituted lectin receptor glycoproteins was determined by proteolytic treatments of labeled glycoproteins. The combined action of trypsin and chymotrypsin released, in the 120,000 X g supernatant, approximately 80% of label when 125I-tagged PHA receptor glycoproteins were incorporated into the vesicles. When the oligosaccharidic moieties of the receptor glycoproteins were specifically labeled, the simultaneous action of the two enzymes released approximately 70% of tritium labeling present in the reconstituted system. Taken together, these results suggest that the reconstituted PHA receptors are preferentially oriented into the phospholipid vesicles. The reconstituted PHA receptor glycoproteins competed effectively with cellular receptors in the assay of PHA-induced porcine lymphocyte activation. A 50% inhibition of [3H]thymidine incorporation was observed when 1 microgram of glycoproteins in vesicles was added to the cultured cells, whereas vesicles alone had no effect at this (equivalent) concentration.  相似文献   

20.
The location of membrane-associated proteins of vesicular stomatitis virus was investigated by using two monofunctional and three bifunctional probes that differ in the degree to which they partition into membranes and in their specific group reactivity. Two hydrophobic aryl azide probes, [(125)I]5-iodonaphthyl-1-azide and [(3)H]pyrenesulfonylazide, readily partitioned into virion membrane and, when activated to nitrenes by UV irradiation, formed stable covalent adducts to membrane constituents. Both of these monofunctional probes labeled the glyco-protein G and matrix M proteins, but [(125)I]5-iodonaphthyl-1-azide also labeled the nucleocapsid N protein and an unidentified low-molecular-weight component. Protein labeling of intact virions was unaffected by the presence of cytochrome c or glutathione, but disruption of membrane by sodium dodecyl sulfate greatly enhanced the labeling of all viral proteins except G. Labeling of G protein was essentially restricted to the membrane-embedded, thermolysin-resistant tail fragment. Three bifunctional reagents, tartryl diazide, dimethylsuberimidate, and 4,4'-dithiobisphenylazide, were tested for their capacity to cross-link proteins to membrane phospholipids of virions grown in the presence of [(3)H]palmitate. Only G and M proteins of intact virions were labeled with (3)H-phospholipid by these cross-linkers; the reactions were not affected by cytochrome c but were abolished by disruption of virus with sodium dodecyl sulfate. Dimethylsuberimidate, which reacts with free amino groups, cross-linked (3)H-phospholipid to both G and M protein. In contrast, the hydrophilic tartryl diazide cross-linked phospholipid primarily to the M protein, whereas the hydrophobic 4,4'-dithiobisphenylazide cross-linked phospholipid primarily to the intrinsic G protein. These data support the hypothesis that the G protein traverses the virion membrane and that the M protein is membrane associated but does not penetrate very deeply, if at all.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号