首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The topology of the human erythrocyte membrane anion-transport protein (band 3) has been investigated by isolation and peptide 'mapping' of the major and minor fragments derived from proteolytic cleavage of the lactoperoxidase 125I-labelled protein in erythrocytes and erythrocyte membranes. The content, in each fragment, of lactoperoxidase 125I-labelled sites (which have a known location in the extracellular or cytoplasmic domain of the protein), together with the location of the sites of proteolytic cleavage yielding the fragments, has allowed us to determine the alignment of the fragments on the linear amino acid sequence and to infer the topology of the polypeptide in the membrane. The results suggest that a region in the C-terminal portion of the polypeptide forms part of the cytoplasmic domain of the protein in addition to a large N-terminal segment. The membrane-bound regions of the protein are located in the C-terminal two-thirds of the molecule. In this region the polypeptide chain traverses the membrane at least four times and an additional loop of polypeptide is either embedded in the membrane or also penetrates through it to the other surface. The location of the lectin receptors on the protein and the site of binding of an anion-transport inhibitor have also been studied.  相似文献   

2.
The effect of ionic strength on the proteolysis by trypsin of the major membrane-penetrating protein (polypeptide 3) in the erythrocyte membrane was studied. Both the intracellular and extracellular regions of the protein are susceptible to trypsin proteolysis under hypo-osmotic conditions, whereas under iso-osmotic conditions the extracellular region of the protein is resistant to trypsin, and the intracellular region yields only two cleavage products with trypsin. Studies of the fragments obtained from polypeptide 3 by trypsin digestion under iso-osmotic conditions of 'ghosts' radioiodinated with lactoperoxidase confirmed our earlier conclusions that the polypeptide chain of polypeptide 3 traverses the membrane twice. Ionic-strength-dependent changes were also observed in the incorporation of iodine by lactoperoxidase into the individual extracellular tyrosine sites of the protein. These results show that polypeptide 3 undergoes ionic-strength-dependent changes in structure.  相似文献   

3.
We have studied the fragmentation by pepsin in 1 M-acetic acid of the erythrocyte anion-transport protein in erythrocyte membranes. The location of the fragments obtained was determined by radioiodinating the protein with the use of lactoperoxidase, and identifying the labelled peptides obtained in peptide "maps" of thermolysin digests of the fragments. Three of the fragments were found to be related overlapping products, and shared a common C-terminus. The major site of pepsin cleavage leading to the C-termini of these fragments was shown to be close to the major site of extracellular cleavage of the protein by proteinases active at a neutral pH. Another two fragments were isolated and shown to be derived from the C-terminal portion of the protein. No well-defined large radioactive fragments of the protein were solubilized from the membrane by pepsin in 1 M-acetic acid, the bulk of the radioactivity attributable to the anion transport protein being recovered in very small fragments that could not be resolved by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. Our results suggest that the polypeptide chain of the anion-transport protein emerges at the extracellular face of the membrane 8000-13000 daltons on the N-terminal side of the major site of extracellular cleavage of the protein by proteinases that are active at a neutral pH.  相似文献   

4.
A naturally occurring staphylococcal alpha-toxin fragment with an apparent membrane-binding capacity but without toxic activities is shown to be derived from the C-terminal half of the intact polypeptide chain by cleavage between position 134 and 135 in the parent molecule. The resulting N-terminus is slightly ragged with a fragment start not only at position 135 but also at the adjacent position 136. Another naturally occurring fragment starts at position 9, derived from an original cleavage between position 8 and 9 in the parent molecule. Analysis of non-purified fragment mixtures confirmed these positions and established that only one further region, at positions 71-72, is partly sensitive to proteolysis under natural conditions. Trypsin treatment has limited effects on the native toxin molecule, giving essentially only two initial cleavages with resultant large fragments. One of these cleavages is at the peptide bond between position 131 and 132, thus only three residues away from the position of the major naturally occurring cleavage. The other bond sensitive to trypsin is between position 8 and 9, thus identically positioned to the cleavage occurring naturally. Together, all the cleavages define a region in a central segment of the polypeptide chain that has all the properties of an inter-domain segment. The C-terminal half appears to constitute a membrane-binding domain, and the N-terminal half a structure needed for full biological activity, functionally subdividing the parent polypeptide chain.  相似文献   

5.
Human erythrocyte membranes contain a major transmembrane protein, known as Band 3, that is involved in anion transport. This protein contains a total of five reactive sulfhydryl groups, which can be assigned to either of two classes on the basis of their susceptibility to release from the membrane by trypsin. Two of the groups are located in the region COOH-terminal to the extracellular chymotrypsin-sensitive site of the protein and remain with a membrane-bound 55,000-dalton fragment generated by trypsin treatment. The three sulfhydryl groups NH2-terminal to the extracellular chymotrypsin site are released from the cytoplasmic surface of the membrane by trypsin. All three groups are present in a 20,000-dalton tryptic fragment of Band 3. Two of these groups are located very close to the sites of trypsin cleavage that generate the 20,000-dalton fragment. The third reactve group is probably located about 15,000-daltons from the most NH2-terminal sulfhydryl group. Two other well defined fragments of the protein do not contain reactive sulfhydryl groups. They are a 23,000-dalton fragment derived from the NH2-terminal end that is also released by trypsin from the cytoplasmic surface of the membrane and a 19,000-dalton membrane-bound region of the protein that is produced by treatment with chymotrypsin in ghosts. The 20,000-dalton tryptic fragment may, therefore, constitute a sulfhydryl-containing domain of the Band 3 protein.  相似文献   

6.
DNA sequence analysis of the complete M6 protein gene revealed 19 hydrophobic amino acids at the C terminus which could act as a membrane anchor and an adjacent proline- and glycine-rich region likely to be located in the cell wall. To define this region within the cell wall and its role in attaching the molecule to the cell, we isolated the cell-associated fragment of the M protein. Assuming that the cell-associated region of the M protein would be embedded within the wall and thus protected from trypsin digestion, cells were digested with this enzyme, and the wall-associated M protein fragment was released by phage lysin digestion of the peptidoglycan. With antibody probes prepared to synthetic peptides of C-terminal sequences, a cell wall-associated M protein fragment (molecular weight, 16,000) was identified and purified. Amino acid sequence analysis placed the N terminus of the 16,000-molecular-weight fragment at residue 298 within the M sequence. Amino acid composition of this peptide was consistent with a C-terminal sequence lacking the membrane anchor. Antibody studies of nitrous acid-extracted whole bacteria suggested that, in addition to the peptidoglycan-associated region, a 65-residue helical segment of the C-terminal domain of the M protein is embedded within the carbohydrate moiety of the cell wall. Since no detectable amino sugars were associated with the wall-associated fragment, the C-terminal region of the M6 molecule is likely to be intercalated within the cross-linked peptidoglycan and not covalently linked to it. Because the C-terminal region of the M molecule is highly homologous to the C-terminal end of protein A from staphylococci and protein G from streptococci, it is likely that the mechanism of attachment of these proteins to the cell wall is conserved.  相似文献   

7.
In addition to the major carbohydrate moieties of the glycosylphosphatidylinositol (GPI) anchor, we report that Plasmodium falciparum merozoite surface protein 1 (MSP-1) bears O-GlcNAc modifications predominantly in beta-anomeric configuration, in both the C- and N-terminal portions of the protein. Subcellular fractionation of parasitized erythrocytes in the late trophozoite/schizont stage reveals that GPI-anchored C-terminal fragments of MSP-1 are recovered in Triton X-100 resistant, low-density membrane fractions. Our results suggest that O-GlcNAc-modified MSP-1 N-terminal fragments tend to localize within the parasitophorous vacuolar membrane while GPI-anchored MSP-1 C-terminal fragments associate with low-density, Triton X-100 resistant membrane domains (rafts), redistribute in the parasitized erythrocyte and are eventually shed as membrane vesicles that also contain the endogenous, GPI-linked CD59.  相似文献   

8.
Gene 22 of bacteriophage T4 encodes a major prohead scaffolding core protein of 269 amino acid residues. From its nucleotide sequence the gene product (gp) 22 has a predicted Mr of 29.9 and a pI of 4.3. The protein is rich in charged residues (glutamic acid and lysine) and contains low amounts of proline and glycine and no cysteine residues. We suggest that gp22 undergoes limited proteolytic processing which eliminates the short C-terminal piece from the molecule during the early steps of prohead assembly. Most amino acid residues of the gp22 polypeptide chain (80%) have an alpha-helical conformation and form seven peculiar alpha-helices. A model suggesting the spatial organization of gp22 is presented. Three long alpha-helices numbered 1 (1A and 1B), 3, and 5 (5A and 5B) are packed in an antiparallel fashion along the major axis of the road-shaped molecule. Two rather short alpha-helices (2 and 4) are located at the distal and proximal ends of the protein molecule, respectively. Helix number 2, which is a proteolytic fragment of gp22 found in mature T4 heads, is packed with helices 1A and 3, similar to a novel element of supersecondary structure, the alpha alpha-corner. Helix number 4 probably interacts with the gp20 connector of the prohead. The implications of the structure of the gp22 molecule for the assembly of the prohead core are discussed.  相似文献   

9.
The role of the hydrophobic region of diphtheria toxin B moiety in fragment A membrane traversal has been studied using crm45. This molecule, a serologically related diphtheria toxin protein, contains a normal enzymic fragment A and the hydrophobic domain of the toxin B chain but lacks a C-terminal polypeptide needed for specific cell binding. Relatively high concentrations of crm45 are required to inhibit protein synthesis in cells however, after the loss of its hydrophobic region crm45, which still contains an active fragment A, becomes almost non-toxic. It seems thus that the non-polar peptide found in crm45 or toxin facilitates the transport of the hydrophilic fragment A across the plasma membrane.  相似文献   

10.
The structure of the major human erythrocyte membrane protein (protein E) was investigated by studying the products of proteolysis of the native protein in the membrane. The distribution and location of the tyrosine residues labelled by radioiodination by lactoperoxidase was determined. Proteolysis of the extracellular region of the protein by thermolysin released four tyrosine-containing peptides, all of which were also found to remain in the major fragment that is retained in the membrane. The presence of these duplicated sites in the extracellular region of the protein was confirmed by limited trypsin digestion of the intracellular region of the protein. Two groups of fragments were obtained. Both groups contained a set of the extracellular labelled sites, but they differed in containing distinct groups of intracellular sites, showing that the two sets of extracellular sites are linked by an intracellular region of the protein. The polypeptide chain thus traverses the membrane twice. An S-shaped model which is consistent with these data is proposed.  相似文献   

11.
The complete sequence of a 94 amino acid human seminal plasma polypeptide exhibiting inhibin-like activity is presented. This molecule, called beta-inhibin, selectively and specifically suppresses the release of pituitary FSH in vivo as well as in vitro. It does not affect the secretion of LH. Such a novel acidic protein contains a very basic C-terminal segment which is easily cleaved by mild tryptic digestion. It is predicted that the FSH inhibiting activity may reside within this region of the molecule. This would imply a post Gln-Arg cleavage to release the basic C-terminal active moiety.  相似文献   

12.
Although the animal cell (Na+ + K+)-ATPase is composed of two polypeptide subunits, alpha and beta, very little is known about the beta subunit. In order to obtain information about the structure of this polypeptide, the beta subunit has been investigated using proteolytic fragmentation, chemical modification of carbohydrate residues, and immunoblot analysis. The sialic acid moieties on the oligosaccharide groups on the beta subunit of (Na+ + K+)-ATPase were labeled with NaB3H4 after oxidation by sodium periodate, or the penultimate galactose residues on the oligosaccharides were similarly labeled after removal of sialic acid with neuraminidase and oxidation by galactose oxidase. All of the carbohydrate residues of the protein are located on regions of the beta subunit that are found on the non-cytoplasmic surface of the membrane. Cleavage of the galactose oxidase-treated, NaB3H4-labeled beta subunit by chymotrypsin at an extracellular site produced labeled fragments of 40 and 18 kDa, indicating multiple glycosylation sites along the polypeptide. Neither the 40 kDa fragment nor the 18 kDa fragment was released from the membrane by chymotrypsin digestion alone, but after cleavage the 40 kDa fragment could be removed from the membrane by treatment with 0.1 M NaOH. This indicates that the 40 kDa fragment does not span the lipid bilayer. The 40 kDa fragment and the 18 kDa fragment are also linked by at least one disulfide bond. The 18 kDa fragment also contains all of the binding sites found on the (Na+ + K+)-ATPase for anti-beta subunit antibodies. Both the 40 kDa fragment and the 18 kDa fragment were also generated using papain or trypsin to cleave the beta subunit. These data indicate that the beta subunit of (Na+ + K+)-ATPase contains multiple sites of glycosylation, that it inserts into the cell membrane near only one end of the polypeptide, and that one region of the polypeptide is particularly sensitive to proteolytic cleavage relative to the rest of the polypeptide.  相似文献   

13.
1. The electrophoretically fast (F) and slow (S) fragments obtained by tryptic cleavage of bovine iron-saturated transferrin differed in carbohydrate content and peptide 'maps'. 2. A fragment capable of binding one Fe3+ ion per molecule was isolated after brief tryptic digestion of bovine apotransferrin and shown closely to resemble the S fragment obtained from the iron-saturated protein. 3. Fragments F and S are probably derived from the N- and C-terminal halves of the transferrin molecule respectively. 4. Bovine transferrin could donate iron to rabbit reticulocytes, but the monoferric fragments possessed little iron-donating ability.  相似文献   

14.
The amino acid sequence of component C2, the polypeptide specific for subunit S of prostatic binding protein, the major secretory glycoprotein of the rat ventral prostate, has been determined. Its structure was established using the manual Edman degradation on the most relevant fragments obtained by enzymatic digestion of the S-carboxamidomethylated component C2 and the native subunit S and by chemical cleavage of the remaining undigestible 'cores' with cyanogen bromide. Component C2 contains 92 amino acids corresponding to a molecular weight of 10619. It is a slightly acidic polypeptide in which the acidic and basic residues are unevenly distributed. The N terminus is blocked and three cysteine residues are almost evenly distributed over the peptide chain. A highly polar region is found in position 23-34 and two hydrophobic segments are located in the C-terminal part of the molecule. Component C2 is compared with component C1 of subunit F and their high sequence homology reveals an evolutionary relationship.  相似文献   

15.
The organic fraction of epiphragm mucus from the snail Cernuella virgata (Mollusca: Helicidae) consists predominantly of protein (17-23 dry wt.%) rather than carbohydrate (< or =0.4-2.0 dry wt.%), and the former underpins epiphragm membrane structure. The major protein ('epiphragmin') has an apparent molecular mass of approximately 86 kDa and is encoded by a cDNA (Genbank accession EF602752) which specifies a secreted protein of 81.2 kDa. The central region of the epiphragmin polypeptide is a coiled coil-forming region which is homologous to part of AglZ, a bacterial filament-forming protein. Coiled coil-driven self-assembly of epiphragmin probably underpins the formation of sheets in epiphragm membranes and the ability of epiphragm mucus to serve as an adhesive. The C-terminal region of epiphragmin is a fibrinogen-related domain (FReD) that is homologous to the fibrinogen-related proteins (FREPs) found in the hemolymph of freshwater snails. The material properties of epiphragm membranes resemble those of bovine ligament elastin. Wooden lap-joints bonded by rehydrated epiphragm fragments developed dry shear strength values of 1.4+/- 0.1 MPa.  相似文献   

16.
Protein B23 is a multifunctional nucleolar protein whose cellular location and characteristics strongly suggest that it is a ribosome assembly factor. The protein has nucleic acid binding, ribonuclease, and molecular chaperone activities. To determine the contributions of unique polypeptide segments enriched in certain classes of amino acid residues to the respective activities, several constructs that produced N- and C-terminal deletion mutant proteins were prepared. The C-terminal quarter of the protein was shown to be necessary and sufficient for nucleic acid binding. Basic and aromatic segments at the N- and C-terminal ends, respectively, of the nucleic acid binding region were required for activity. The molecular chaperone activity was contained in the N-terminal half of the molecule, with important contributions from both nonpolar and acidic regions. The chaperone activity also correlated with the ability of the protein to form oligomers. The central portion of the molecule was required for ribonuclease activity and possibly contains the catalytic site; this region overlapped with the chaperone-containing segment of the molecule. The C-terminal, nucleic acid-binding region enhanced the ribonuclease activity but was not essential for it. These data suggest that the three activities reside in mainly separate but partially overlapping segments of the polypeptide chain.  相似文献   

17.
The myelin basic protein from bovine brain tissue was purified and the two peptides obtained by cleavage of the polypeptide chain at the single tryptophan residue were isolated. The interaction of these peptides and the intact basic protein with complex lipids was investigated by following the solubilization of lipid-protein complexes into chloroform in a biphasic solvent system. The C-terminal peptide fragment (residues 117-170) and the intact basic protein both formed chloroform-soluble complexes with acidic lipids, but not with neutral complex lipids. The N-terminal fragment (residues 1-115) did not form chloroform-soluble complexes with either acidic or neutral complex lipids. The molar ratio of lipid to protein that caused a 50% loss of protein from the upper phase to the lower chloroform phase was the same for the intact basic protein as for the smaller C-terminal peptide fragment. Phosphatidylserine and phosphatidylinositol were approximately twice as efficient as sulphatide at causing protein redistribution to the chloroform phase. The results are interpreted as indicating that the sites for ionic interactions between lipid and charged groups on the basic protein of myelin are located in the C-terminal region of the protein molecule.  相似文献   

18.
The genome of the obligate intracellular bacteria Chlamydia pneumoniae contains 21 genes encoding polymorphic membrane proteins (Pmp). While no function has yet been attributed to the Pmps, they may be involved in an antigenic variation of the Chlamydia surface. It has previously been demonstrated that Pmp10 is differentially expressed in the C. pneumoniae CWL029 isolate. To evaluate whether the absence of Pmp10 in the outer membrane causes further changes to the C. pneumoniae protein profile, we subcloned the CWL029 isolate and selected a clone with minimal Pmp10 expression. Subsequently, we compared the proteome of the CWL029 isolate with the proteome of the subcloned strain and identified a specific cleavage of the C-terminal part of the major outer membrane protein (MOMP), which occurred only in the absence of Pmp10. In contrast, when Pmp10 was expressed we predominantly observed full-length MOMP. No other proteins appeared to be regulated according to the presence or absence of Pmp10. These results suggest a close association between MOMP and Pmp10, where Pmp10 may protect the C-terminal part of MOMP from proteolytic cleavage.  相似文献   

19.
The major intrinsic protein of the human erythrocyte membrane commonly referred to as "Band 3", was isolated by a multi-step procedure. Extraction of ghost membranes in dilute solutions of lithium diiodosalicylate removed most of the proteins considered to be extrinsic to the membrane. The resulting membrane fragments were solubilized in sodium dodecyl sulfate, and the major sialoglycoprotein (glycophorin A) was removed by wheat germ agglutinin-Sepharose affinity chromatography. Gel filtration in sodium dodecyl sulfate was used as the final step to yield the band 3 polypeptide in electrophoretically homogeneous form.  相似文献   

20.
Cha MK  Yun CH  Kim IH 《Biochemistry》2000,39(23):6944-6950
During the purification from human erythrocytes, human thiol-specific antioxidant protein 1 (hTSA1), one human member of the TSA/alkyl hydroperoxide reductase subunit C (AhpC) family, was fragmented to a molecular mass of 20 323.9300. The fragmented form, in contrast to the intact form, did not bind to the C-terminal peptide (Gln-185-Gln-197) antibody. On the basis of the molecular mass of the fragmented form, the cleavage site was calculated to be between Val-186 and Asp-187. The C-terminal region of hTSA1 appeared to be unnecessary for the antioxidant reaction. In addition to hTSA1, two isoenzymes (hORF06 and hTSA2) were detected in the soluble fraction, whereas only hTSA1 was detected in the membrane fraction. A membrane binding study shows that the intact form binds to erythrocyte plasma membrane but the fragment does not, which suggests that the deleted C-terminal legion (Asp-187-Gln-197) is required for the membrane binding. A model membrane study using phospholipid vesicle showed a strong association of hTSA1 with the phospholipid. Human TSA1 exhibited high catalytic activity for the reduction of the fatty acid hydroperoxide as indicated by K(m) and V(max) (89.9 microM for linoleic acid hydroperoxide, 28.64 micromol(-1) min(-1) mg(-1), respectively). In this paper, we are making the first report of the involvement of the C-terminal region of hTSA1 in membrane binding as evidence supporting the existence of the membrane-associated forms in the erythrocyte. On the basis of our observations, we suggest that hTSA1 can act as a very effective antioxidant to remove oxidative stresses not only in matrix as a free form but also in the membrane surface of red blood cells (RBC) as a membrane-associated form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号