首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Effects of the embryo retrieval stages and addition of glutathione (GSH) on post-thaw development of mouse morula were evaluated in 2 consecutive experiments. In the first experiment, 1-, 2-, 3- to 4- and 5- to 8-cell stage embryos were collected and cultured to the morula stage in Whitten's medium containing 0.1 mM ethylenediaminetetraacetic acid (EDTA). The development rate of 1-cell embryos to the morula stage was lower than that of the other stages (P<0.01). The post-thaw development rate of the morulae obtained from in vitro culture of 1-, 2-, 3- to 4-, and 5- to 8-cell embryos and from in vivo embryos (control) to the blastocyst stage was 55.5, 84.9, 87.4, 90.1 and 90.8%, respectively. The post-thaw development rate of morula obtained from in vitro produced 1-cell embryos was significantly lower than from the other stages or from the in vivo counterparts (P<0.0001). In Experiment 2, the impact of GSH supplementation of the culture medium in the presence or absence of EDTA was evaluated for embryo development to the morula stage and post-thaw survival, using in the 2 x 2 factorial design. Although EDTA supplementation increased development rates to the morulae (P<0.01) stage, GSH did not have an influence on morula development. However, the presence of either GSH or EDTA in the culture medium supported development to the blastocyst stage (P<0.01) of in vitro produced morulae. These data demonstrate that 1-cell embryos from a blocking-strain mouse cultured in vitro to the morula stage have a lower development rate following freezing and thawing than embryos collected at the 2-cell or later stages. Addition of EDTA or GSH, individually or in combination, to the culture medium may improve the development rate of morula to blastocyst stage following cryopreservation.  相似文献   

3.
Mouse embryos at the 2-, 4-, 8-cell, and morula stage were divided in half by using microsurgical procedures and were either grown in vitro up to the blastocyst stage or transferred at the late morula stage into the uteri of pseudopregnant recipients. A relatively high percentage of the half embryos from 2-cell (70%), 4-cell (75%), 8-cell (93%), or morula stage embryos (75%) developed into blastocysts in vitro. However, the overall development in vivo of half embryos was low, as 3%, 13%, 8%, and 1% of half embryos from the 2-cell, 4-cell, 8-cell, and morula stages, respectively, developed into live fetuses. Embryos which were divided in half at different stages developed at different rates in vitro. This determined the stage of embryonic development at the time of transfer, which might have interacted with the stage of pseudopregnancy of the recipients to influence embryo survival in vivo.  相似文献   

4.
5.
In vitro and in vivo survival of in vitro-derived 2- to 4-cell cat embryos following cryopreservation was examined. Prefreeze 1- vs 2-step cryoprotectant exposure (Experiment 1) and warming method (Experiment 2) on zona pellucida damage and development in vitro were compared. To determine viability in vivo, frozen/thawed embryos were cultured in vitro to the morula/early blastocyst stage and transferred to synchronous recipients (Experiment 3). At 24 to 26 h after IVF, embryos were cryopreserved in 1.4 M propanediol (Pr) + 0.125 M sucrose (Su) by cooling at 0.3 degrees C/min from -6 degrees C to -30 degrees C and storing in liquid nitrogen. Autologous embryos were cultured in vitro for 7 d. After warming for 5 sec in air and 10 sec at 37 degrees C in water (Experiments 1 to 3), or at room temperature air (22 degrees C; Experiment 2), the cryoprotectant was removed and embryos were cultured in vitro for 6 d (Experiments 1 and 2). Development was assessed after staining by counting cell numbers/embryo and determining the percentages at the 2- to 4-cell (nonsurvivor), pre (5 to 15), early (16 to 32), mid (33 to 50), late (>50) morula or blastocyst stages. Post-thaw development to late morula/blastocyst after 1-step exposure (68%, 15 min Pr + Su) was higher (P< 0.05) than that after 2-step exposure (36%, 15 min Pr and 15 min Pr + Su). Both warming methods produced similar percentages of embryos with damaged zonae (13 to 15%) and equivalent development to morula/blastocyst (64 to 69%). Development in vitro to early morula/blastocyst of frozen embryos with intact zonae was similar to that of nonfrozen embryos. Following cryopreservation, most 2- to 4-cell cat embryos retained their capability for in vitro development to morula/blastocyst, and in vivo viability was demonstrated by the birth of 3 live kittens to 2 of 4 recipients following the transfer of 58 embryos.  相似文献   

6.
This study evaluated the effect of two commercial serum replacements (Ultroser G and CPSR-3 on in vitro bovine embryo culture. In Experiment 1, zygotes were cultured in SOF+Ultroser G (2, 4 and 6%), SOF+CPSR-3 (2, 4 and 6%), and SOF+5% FCS (control). Blastocyst rates obtained after culturing with Ultroser G were lower than those with FCS. However, blastocyst rates for CPSR-3 were similar to those for serum. In addition, embryos produced in SOF+CPSR-3 had the same proportion inner cell mass number and total cell number as embryos cultured with FCS. In Experiment 2, a combination of serum replacements during different periods showed that treatment before the five-to eight-cell stages had no effect on further embryo development. However, treatments up to the morula stage affected blastocyst formation. The concentration of supplement and the timing of its inclusion in culture markedly affected embryo development. The serum replacement CPSR-3 can supplement embryo culture with blastocyst rates and quality similar to those for serum.  相似文献   

7.
Two experiments were conducted to examine the effect of supplemental glucose (G; 1.5 mM) and/or acetate (A; 0.5 mM) on the development of early sheep embryos to blastocysts when cultured in vitro in glucose-free synthetic oviductal fluid (SOF) + sheep serum or bovine serum albumin (BSA). In Experiment 1, 2- to 4-cell, 8- to 16-cell and >16-cell embryos were cultured in SOF, SOF+G, SOF+A or SOF+G+A. All media were supplemented with 10% sheep serum. In addition, embryos were cultured in either microdrops under polysiloxane oil or in multiwell dishes. Overall, development to the blastocyst stage was 3%, 30% and 68% for 2- to 4-cell, 8- to 16-cell and >16-cell stages, respectively, suggesting that an 8-cell developmental block existed under our culture conditions. Glucose supplementation had little effect on embryo development, and no overall effect was observed from the addition of acetate. In Experiment 2, 8- to 16-cell embryos were cultured in SOF or SOF+G, both supplemented with BSA. Development to the blastocyst stage was 25% and 18%, respectively. The results show that the presence of glucose or acetate did little to enhance embryonic development in our incubation systems. Further work is required to evaluate fully the energy requirements for development of the early sheep embryo.  相似文献   

8.
Development of 1-cell embryos from different strains of mice in CZB medium   总被引:23,自引:0,他引:23  
One-cell embryos from several different strains of mice have been cultured to the blastocyst stage in CZB medium. CZB medium can be used to culture CF1 x B6SJLF1/J 1-cell embryos to the blastocyst stage provided glucose is introduced into the medium on Day 3 of culture. The amount of glucose required for embryo development was titrated using a concentration range of 5.5 to 49.5 mM. With the exception of the highest concentration, all glucose levels tested supported 65-85% development to the morula and blastocyst stages. Variations of CZB medium were tested for their ability to support the development of 1-cell embryos from 4 strains of mice. For embryos from CF1 and DBA/2J (both x B6SJLF1/J) mice, which exhibit a "2-cell block" to development in vitro, CZB medium containing glutamine with the addition of glucose on Day 3 supported optimum development from the 1-cell stage to morula and blastocysts (79% and 87%). For embryos from B6D2F1/J and CD1 female mice (both x B6SJLF1/J males), which do not exhibit a "2-cell block" to in vitro development, optimum development to morula and blastocyst stages (95% and 50%) was in CZB medium containing both glutamine and glucose from the start of culture.  相似文献   

9.
10.
In vivo bovine embryos were obtained by nonsurgical flushing of uterine horns of cows submitted to superovulatory treatment, while in vitro embryos were generated from oocytes collected from slaughtered donors. Lucifer Yellow injected into single blastomeres did not diffuse into neighboring cells until the morula stage in in vivo embryos and the blastocyst stage in in vitro embryos. In both cases diffusion was limited to a few cells. In contrast, diffusion was extensive in microsurgically isolated inner cell mass (ICM) but absent in the trophectoderm (TE). At the blastocyst stage, diffusion was always more extensive in in vivo than in in vitro embryos. Ultrastructural analyses confirmed these functional observations, and gap junction-like structures were observed at the blastocyst stage. These structures were diffuse in the ICM of in vivo embryos, scarce in the ICM of in vitro embryos and in the TE of in vivo embryos, and not observed in the TE of in vitro embryos. Blastomeres at all stages of development from the 2-cell stage to the blastocyst stage in in vitro embryos and at the morula and blastocyst stage in in vivo embryos were electrically coupled, and the junctional conductance (Gj) decreased in in vitro embryos from 4.18 +/- 1.70 nS (2-cell stage) to 0.37 +/- 0.12 nS (blastocyst stage). At each developmental stage, in vivo embryos showed a significantly (P < 0. 05) higher Gj than in vitro-produced embryos. Moreover, a significantly (P < 0.01) higher Gj was found in isolated ICM than in the respective blastocyst in both in vivo- and in vitro-produced embryos (3.5 +/- 1.4 vs. 0.7 +/- 0.3 and 2.6 +/- 1.6 vs. 0.37 +/- 0. 12 nS, respectively). The electrical coupling in absence of dye coupling in the early bovine embryo agrees with observations for embryos from other phyla. The late and reduced expression of intercellular communicative devices in in vitro-produced embryos may be one of the factors explaining their developmental low efficiency.  相似文献   

11.
Porcine embryos produced in vitro have a small number of cells and low viability. The present study was conducted to examine the morphological characteristics and the relationship between actin filament organization and morphology of porcine embryos produced in vitro and in vivo. In vitro-derived embryos were produced by in vitro maturation, in vitro fertilization (IVF), and in vitro development. In vivo-derived embryos were collected from inseminated gilts on Days 2-6 after estrus. In experiment 1, in vitro-derived embryos (相似文献   

12.
One-cell CF-1 x B6SJLF1/J embryos, which usually exhibit a 2-cell block to development in vitro, have been cultured to the blastocyst stage using CZB medium and a glucose washing procedure. CZB medium is a further modification of modified BMOC-2 containing an increased lactate/pyruvate ratio of 116, 1 mM-glutamine and 0.1 mM-EDTA but lacking glucose. Continuous culture of one-cell embryos in CZB medium allowed 83% of embryos to develop beyond the 2-cell stage of which 63% were morulae at 72 h of culture, but blastocysts did not develop. However, washing embryos into CZB medium containing glucose after 48 h of culture (3-4-cell stage) was sufficient to allow development to proceed, with 48% of embryos reaching the blastocyst stage by 96 h of culture. Exposure of embryos to glucose was only necessary from the 3-4-cell stage through the early morula stage since washing back into medium CZB without glucose at 72 h of culture still promoted the development of 50% of embryos to the blastocyst stage. The presence of glucose in this medium for the first 48 h of culture (1-cell to 4-cell stage) was detrimental to embryo development. Glutamine, however, exerted a beneficial effect on embryo development from the 1-cell to the 4-cell stage although its presence was not required for development to proceed during the final 48 h of culture. Blastocysts which developed under optimum conditions contained an average of 33.7 total cells. The in-vitro development of 1-cell embryos beyond the 2-cell stage in response to the removal of glucose and the addition of glutamine to the culture medium suggests that glucose may block some essential metabolic process, and that glutamine may be a preferred energy substrate during early development for these mouse embryos.  相似文献   

13.
14.
Li R  Wen L  Wang S  Bou S 《Theriogenology》2006,66(2):404-414
In this study, we examined the development, freezability and amino acid consumption of in vitro produced bovine embryos cultured in a chemically defined medium (SOF+polyvinyl alcohol), supplemented with 24 amino acids at concentrations measured in bovine oviductal or uterine fluid. Amino acids at concentrations in oviductal fluid tested by Elhanssan (EOAA) significantly improved development to the hatched blastocyst stage, compared to Sigma amino acid solutions BME and MEM (SAA). Amino acids at concentrations in uterine fluid tested by Li (LUAA) were not compared to SAA, and development in LUAA was not significantly different from development in EOAA. Amino acids at concentrations in uterine fluid tested by Elhanssan (EUAA) significantly reduced cleavage rate and blocked further embryo development. When the IVF embryos were cultured in EOAA for 48, 72, 96, or 120 h and then transferred to LUAA, blastocyst and hatched blastocyst rates were not significantly affected. The freezability of blastocysts cultured in EOAA for the first 72 h and then moved to LUAA was improved compared to that in SAA. During the 1-8-cell stages, embryos secreted all 23 amino acids (total, 6,368 pmol/embryo). During the 8-cell to morula stages, embryos continued to secrete 21 amino acids (total, 2,495 pmol/embryo), meanwhile embryos began to absorb Arg (70 pmol/embryo) and Gln (18 pmol/embryo). After the morula stage, embryos began to absorb 15 amino acids including Glu, Gly, Arg, and Gln (total, 2,742 pmol/embryo) and secreted eight amino acids (total, 1,616 pmol/embryo). Embryos absorbed only Arg (183 pmol/embryo) and secreted the other 22 amino acids (total, 3,697 pmol/embryo) when the culture medium was not changed during the entire culture period (zygote to blastocyst).  相似文献   

15.
The objective of this study was to compare the development of porcine embryos from the 2- and 4-cell stages to the blastocyst stage after in vivo or in vitro fertilization and in vivo or in vitro culture. Early-stage embryos were collected either from superovulated gilts 36 h after the second mating or after in vitro fertilization (IVF) of in vivo-matured oocytes, both followed by in vitro culture to the blastocyst stage. Blastocysts collected from superovulated donors served as controls. In the first experiment, a total of 821 2- and 4-cell embryos derived from in vivo-fertilized oocytes was cultured either in medium NCSU 23, modified Whittens' medium or modified KRB for 5 d. Significantly (P < 0.05 and P < 0.001) more embryos overcame the 4-cell block and developed to the blastocyst stage in medium NCSU 23 than in the 2 other culture media. Hatching was only observed in medium NCSU 23. In the second experiment, embryos derived from in vivo-matured oocytes fertilized in vitro were cultured in medium NCSU 23. Of 1869 mature oocytes 781 (41.8%) cleaved within 48 h after in vitro fertilization. A total of 715 embryos was cultured to the morula and blastocyst stages, and 410 (57.3%) overcame the developmental block stage, with 358 embryos (50.1%) developing to the morula and blastocyst stages. None of the embryos hatched, and the number of nuclei was significantly (P < 0.05) lower compared with that of in vivo-fertilized embryos (18.9 +/- 9.8 vs 31.2 +/- 5.8). In the third experiment, 156 blastocysts derived from in vitro fertilization and 276 blastocysts derived from in vivo fertilization and in vitro culture were transferred into synchronized recipients, while 164 blastocysts were transferred immediately after collection into 6 recipients, resulting in a pregnancy rate of 83.3%, with 35 piglets (on average 7.0) born. From the in vitro-cultured embryos, 58.3% (7/12) of the recipients remained pregnant at Day 35 after transfer, but only 33.3% maintained pregnancy to term, and 14 piglets (on average 3.5) were born. In contrast, the transfer of embryos derived from in vitro-fertilized oocytes did not result in pregnancies. It is concluded that 1) NCSU 23 is superior to modified Whittens' medium and modified KRB and 2) blastocysts derived from in vitro fertilization have reduced viability as indicated by the lower number of nuclei and failure to induce pregnancy upon transfer into recipients.  相似文献   

16.
This study was an investigation of metabolism during bovine preimplantation development from the oocyte up to the hatched blastocyst derived in vitro or in vivo. Metabolism was determined by estimating the consumption of radiolabeled glucose, pyruvate, or lactate during a 4-h incubation period in a closed noninvasive system with NaOH as trap for the continuous collection of CO(2). The postincubation medium was analyzed for the presence of lactate. Embryonic metabolism from the matured oocyte to the 12-cell stage was more or less constant, with pyruvate being the preferred substrate. The first marked increase in oxidation of glucose occurred between the 12- and 16-cell stage. Compaction of morula and blastocyst expansion was accompanied by significant increases in oxidation of all three energy substrates. The incorporation of glucose increased steadily 15-fold from the 1-cell to the blastocyst stage. In general, the pattern of metabolism was similar between the embryos derived in vitro and in vivo but with some distinct differences. The most apparent feature of glucose metabolism by in vitro-produced embryos was a 2-fold higher rate of aerobic glycolysis as compared to that in their in vivo counterparts. In vitro-matured oocytes produced measurable amounts of lactate, whereas in vivo-matured oocytes exhibited a significantly lower metabolic activity and did not produce any lactate. When in vivo-collected embryos were preexposed to culture conditions, lactate production increased significantly and at the hatched blastocyst stage matched that of their in vitro counterparts. In vitro-produced embryos up to the 8-cell stage oxidized significantly higher amounts of lactate and had a lower ratio of pyruvate-to-lactate oxidation than the in vivo-obtained embryos. The results of this study show that under our culture conditions, important differences exist at the biochemical level between bovine embryos produced in vitro and those generated in vivo that may well affect the developmental capacity.  相似文献   

17.
Experiments were conducted to investigate the beneficial effects of adding retinol (RT) and retinoic acid (RA) to bovine oocyte maturation media and insulin-like growth factor-I (IGF-I) to embryo culture under chemically-defined conditions. In Experiment 1.1, in vitro maturation (IVM) was performed in basic maturation media (bMM) and supplemented with 0.3microM RT or 0.5microM RA. For embryo development presumptive zygotes and embryos were placed in droplets of potassium simplex optimized medium (KSOM). Addition of RT and RA to bMM improved (p<0.05) blastocyst formation as compared with control treatments. In Experiment 1.2, using embryos originating from oocytes previously treated with RT and RA, the presumptive zygotes were placed in droplets of KSOM and embryos (2-4 cells) in droplets of fresh KSOM supplemented or not with IGF-I. The number of 2-4-cell stage embryos developing to the blastocyst and expanded blastocyst stages were greater (p<0.05) when embryo culture media was supplemented with IGF-I. In Experiment 2.1, IVM was conducted with bMM+FSH containing 0.3microM RT or 0.5microM RA. For embryo development, presumptive zygotes were placed in droplets of KSOM. Addition of RT or RA to IVM medium also enhanced (p<0.05) blastocyst formation. The supplementation of embryo culture media with IGF-I resulted in a greater number (p<0.05) of 2-4-cell stage embryos developing into blastocysts, expanded blastocysts and hatched blastocysts. In Experiment 2.2, using embryos originating from oocytes previously treated with RT and RA, presumptive zygotes were also placed in droplets of KSOM and embryos (2-4 cells) in droplets of fresh KSOM supplemented or not with IGF-I. The supplementation of embryo culture media with IGF-I resulted in a greater (p<0.05) number of 2-4-cell stage embryos developing to the blastocyst, expanded blastocyst and hatched blastocyst stages.  相似文献   

18.
The current study assessed both the effects of in vitro culture and developmental stage of early stage in vivo produced ovine embryos on their ability to survive cryopreservation. Early stage embryos (n=226) were recovered from the oviduct, at different days of the early luteal phase, at three different developmental stages: 2- to 4-cell, 5- to 8-cell and 9- to 12-cell. For each stage, half of the embryos were cultured to the blastocyst stage and frozen thereafter (CF), while the remainder was frozen just after recovery (EF). A third experimental group (BF; n=43) included blastocysts obtained from the uterus and frozen immediately after recovery. Embryo viability post-thawing was determined by assessing their rate of development to the hatched blastocyst stage following in vitro culture. Culture negatively affected embryo viability, since survival rate was higher in blastocysts obtained from the uterus than in those from culture (83.7% versus 66.1%; P<0.05); also the cryosurvival of cultured embryos was lower when the timing of blastocyst formation was extended (P<0.01). However, survival following freezing-thawing of early developmental stages was significantly lower when compared to viability of their counterparts cultured to the blastocyst stage (23.1% versus 66.1%, P<0.0001). In conclusion, our results indicate that, despite the deleterious effects of culture per se, the culture of early in vivo produced ovine embryos to the blastocyst stage prior to be frozen improves their survival after thawing.  相似文献   

19.
目的应用鼠胚质控中的小鼠胚胎体外培养模型,探讨两种胚胎培养方式(四孔皿与微滴法)在单胚观察时间上的差异以及对2-细胞鼠胚体外发育潜能的影响。方法取6-8周龄的昆明白雌性小鼠。采用HMG10IU促排卵,48 h后注射HCG 10IU促卵泡成熟,取形态正常的2-细胞鼠胚。每5-10个胚胎培养在含500μL培养基的四孔皿中(A组),或单个胚胎接种在含50μL的培养微滴中(B组)。培养后,每隔24 h在倒置显微镜下观察一次,计算单胚观察时间,并检测24 h时的≥4细胞胚形成率、48 h的融合胚形成率7、2 h的囊胚与扩张囊胚形成率、96 h囊胚孵化率。结果两种培养方式于同一试验条件下分别试验5次,A组培养83个胚胎,B组培养69个2-细胞鼠胚。在每一个观察点上,微滴培养的单胚观察时间远超过四孔皿培养(P〈0.001)。但两组各时间点的胚胎发育率相似,无显著差异(P〉0.05)。结论尽管微滴单胚培养方式的胚胎暴露培养箱外时间长,但与四孔皿多胚培养方式比较,两者间2-细胞鼠胚的体外发育潜能相似。  相似文献   

20.
Lin TA  Chen CH  Sung LY  Carter MG  Chen YE  Du F  Ju JC  Xu J 《Theriogenology》2011,75(4):760-768
The objective was to determine cryotolerance of in vitro cultured rabbit embryos to the open-pulled straw (OPS) method. Overall, 844 rabbit embryos at pronuclear, 2- to 4-cell, 8-cell, and morula/blastocyst stages were vitrified, and ≥ 1 mo later, were sequentially warmed, rehydrated, and subjected to continuous culture (n = 691) or embryo transfer (ET, n = 153). Embryos vitrified at the 8-cell stage or beyond had greater survival, expanded blastocyst and hatched blastocyst rates in vitro, and better term development than those vitrified at earlier stages. The 8-cell group had 70.1% expanded blastocysts, 63.7% hatched blastocysts, and 25.7% term development, as compared to 1.5-17.7%, 1.5-4.3% and 2.8-3.7% in the pronuclear, 2-cell and 4-cell embryos, respectively (P < 0.05). The expanded and hatched blastocyst rates in vitrified morula/blastocyst post-warming were higher than that in the 8-cell group; however, their term development after ET was similar (8-cell vs morula/blastocyst: 25.7 vs 19.4%, P > 0.05). Development after ET was comparable between vitrified-warmed embryos and fresh controls at 8-cell and morula/blastocyst stages (19.4-25.7 vs 13.7-26.6%, P > 0.05). For embryos at pronuclear or 2- to 4-cell stages, however, term rates were lower in the vitrified-warmed (2.8-3.7%) than in fresh controls (28.6-35.6%, P < 0.05). Therefore, cultured rabbit embryos at various developmental stages had differential crytolerance. Under the present experimental conditions, the 8-cell stage appeared to be the critical point for acquiring cryotolerance. We inferred that for this OPS cryopreservation protocol, rabbit embryos should be vitrified no earlier than the 8-cell stage, and stage-specific protocols may be needed to maximize embryo survival after vitrification and re-warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号