首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li WF  Ma GX  Zhou XX 《Peptides》2006,27(9):2350-2359
Apidaecins (apidaecin-type peptides) refer to a series of small, proline-rich (Pro-rich), 18- to 20-residue peptides produced by insects. They are the largest group of Pro-rich antimicrobial peptides (AMPs) known to date. Structurally, apidaecins consist of two regions, the conserved (constant) region, responsible for the general antibacterial capacity, and the variable region, responsible for the antibacterial spectrum. The small, gene-encoded and unmodified apidaecins are predominantly active against many gram-negative bacteria by special antibacterial mechanisms. The mechanism of action by which apidaecins kill bacteria involves an initial non-specific binding of the peptides to an outer membrane (OM) component. This binding is followed by invasion of the periplasmic space, and by a specific and essentially irreversible combination with a receptor/docking molecule that may be a component of a permease-type transporter system on inner membrane (IM). In the final step, the peptide is translocated into the interior of the cell where it meets its ultimate target. Evidence that apidaecins are non-toxic for human and animal cells is a prerequisite for using them as novel antibiotic drugs. This review presents the biodiversity, structure-function relationships, and mechanism of action of apidaecins.  相似文献   

2.
Alpha-melanocyte stimulating hormone (α-MSH) is an endogenous anti-inflammatory peptide reported to possess antimicrobial properties, however their role as antibacterial peptides is yet to be established. In the present study, we examined in vitro antibacterial activity of α-MSH against S. aureus strain ISP479C and several methicillin-sensitive (MSSA) and methicillin-resistant (MRSA) S. aureus strains. Antibacterial activity was examined by varying several parameters, viz., bacterial cell densities, growth phase, pH, salt concentration, and temperature. Antibacterial activity was also examined in complex biomatrices of rat whole blood, plasma and serum as well as in biofilm form of bacteria. Our results showed that α-MSH possessed significant and rapid antibacterial activity against all the studied strains including MRSA (84% strains were killed on exposure to 12 μM of α-MSH for 2 h). pH change from 7.4 to 4 increased α-MSH staphylocidal activity against ISP479C by 21%. Antibacterial activity of α-MSH was dependent on bacterial cell density and independent of growth phase. Moreover, antimicrobial activity was retained when α-MSH was placed into whole blood, plasma, and serum. Most importantly, α-MSH exhibited antibacterial activity against staphylococcal biofilms. Multiple membrane permeabilization assays suggested that membrane damage was, at least in part, a major mechanism of staphylocidal activity of α-MSH. Collectively the above findings suggest that α-MSH could be a promising candidate of a novel class of antimicrobial agents.  相似文献   

3.
A rich source of bioactive peptides, including a large number of antimicrobial peptides, has been found in amphibian skin. In this study, a novel short antimicrobial peptide was purified from Xenopus laevis skin and characterised through reversed‐phase high‐performance liquid chromatography, Edman degradation and matrix‐assisted laser desorption/ionisation time‐of‐flight mass spectrometry. The peptide was composed of six amino acids with a sequence of DEDLDE and thus named X. laevis antibacterial peptide‐P2 (XLAsp‐P2). Transmission electron microscopy revealed that this peptide showed potential antimicrobial abilities against bacteria by damaging the bacterial cell membrane. XLAsp‐P2 maybe inhibit bacterial growth by binding to the microbial genomic DNA. The peptide also exhibited a weak haemolytic activity against rabbit red blood cells. Therefore, XLAsp‐P2 is a novel short anionic antibacterial peptide with broad activities. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
The global spread of multi- and pan-resistant bacteria has triggered research to identify novel strategies to fight these pathogens, such as antimicrobial peptides and, more recently, bacteriophages. In a proof-of-concept study, we have genetically modified lytic T7Select phages targeting Escherichia coli Rosetta by integrating DNA sequences derived from the proline-rich antimicrobial peptide, apidaecin. This allowed testing of our hypothesis that apidaecins and bacteriophages can synergistically act on phage-sensitive and phage-resistant E. coli cells and overcome the excessive cost of peptide drugs by using infected cells to express apidaecins before cell lysis. Indeed, the addition of the highly active synthetic apidaecin analogs, Api802 and Api806, to T7Select phage-infected E. coli Rosetta cultures prevented or delayed the growth of potentially phage-resistant E. coli Rosetta strains. However, high concentrations of Api802 also reduced the T7Select phage fitness. Additionally, plasmids encoding Api802, Api806, and Api810 sequences transformed into E. coli Rosetta allowed the production of satisfactory peptide quantities. When these sequences were integrated into the T7Select phage genome carrying an N-terminal green fluorescent protein (GFP-) tag to monitor the expression in infected E. coli Rosetta cells, the GFP–apidaecin analogs were produced in reasonable quantities. However, when Api802, Api806 and Api810 sequences were integrated into the T7Select phage genome, expression was below detection limits and an effect on the growth of potentially phage-resistant E. coli Rosetta strains was not observed for Api802 and Api806. In conclusion, we were able to show that apidaecins can be integrated into the T7Select phage genome to induce their expression in host cells, but further research is required to optimize the engineered T7Select phages for higher expression levels of apidaecins to achieve the expected synergistic effects that were visible when the T7Select phages and synthetic Api802 and Api806 were added to E. coli Rosetta cultures.  相似文献   

5.
Zhou Y  Chen WN 《PloS one》2011,6(6):e20442
Apidaecins are a series of proline-rich, 18- to 20-residue antimicrobial peptides produced by insects. They are predominantly active against the gram-negative bacteria. Previous studies mainly focused on the identification of their internal macromolecular targets, few addressed on the action of apidaecins on the molecules, especially proteins, of bacterial cell membrane. In this study, iTRAQ-coupled 2-D LC-MS/MS technique was utilized to identify altered membrane proteins of Escherichia coli cells incubated with one isoform of apidaecins--apidaecin IB. Cell division protease ftsH, an essential regulator in maintenance of membrane lipid homeostasis, was found to be overproduced in cells incubated with apidaecin IB. Its over-expression intensified the degradation of cytoplasmic protein UDP-3-O-acyl-N- acetylglucosamine deacetylase, which catalyzes the first committed step in the biosynthesis of the lipid A moiety of LPS, and thus leaded to the further unbalanced biosynthesis of LPS and phospholipids. Our findings suggested a new antibacterial mechanism of apidaecins and perhaps, by extension, for other proline-rich antimicrobial peptides.  相似文献   

6.
Bacterial biofilm formation remains a serious problem for clinical materials and often leads to implant failure. To counteract bacterial adhesion, which initiates biofilm formation, the development of antibiotic surface coating strategies is of high demand and warrants further investigations. In this study, we have created bifunctional chimeric peptides by fusing the recently developed antimicrobial peptide MGD2 (GLRKRLRKFFNKIKF) with different titanium-binding sequences. The novel peptides were investigated regarding their antibacterial potential against a set of different bacterial strains including drug-resistant Staphylococcus aureus. All peptides showed high antimicrobial activities both when in solution and when immobilized on titanium surfaces. Owing to the ease of synthesis and handling, the herein described peptides might be a true alternative to prevent bacterial biofilm formation.  相似文献   

7.
With bacterial resistance becoming a serious threat to global public health, antimicrobial peptides (AMPs) have become a promising area of focus in antibiotic research. AMPs are derived from a diverse range of species, from prokaryotes to humans, with a mechanism of action that often involves disruption of the bacterial cell membrane. Proline-rich antimicrobial peptides (PrAMPs) are instead actively transported inside the bacterial cell where they bind and inactivate specific targets. Recently, it was reported that some PrAMPs, such as Bac71–35, oncocins and apidaecins, bind and inactivate the bacterial ribosome. Here we report the crystal structures of Bac71–35, Pyrrhocoricin, Metalnikowin and two oncocin derivatives, bound to the Thermus thermophilus 70S ribosome. Each of the PrAMPs blocks the peptide exit tunnel of the ribosome by simultaneously occupying three well characterized antibiotic-binding sites and interferes with the initiation step of translation, thereby revealing a common mechanism of action used by these PrAMPs to inactivate protein synthesis. Our study expands the repertoire of PrAMPs and provides a framework for designing new-generation therapeutics.  相似文献   

8.
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, manifests discreet strategies to subvert host immune responses, which enable the pathogen to survive and multiply inside the macrophages. This problem is further worsened by the emergence of multidrug resistant mycobacterial strains, which make most of the anti-tuberculous drugs ineffective. It is thus imperative to search for and design better therapeutic strategies, including employment of new antibiotics. Recently, naturally produced antimicrobial molecules such as enzymes, peptides and their synthetic analogs have emerged as compounds with potentially significant therapeutical applications. Although, many antimicrobial peptides have been identified only very few of them have been tested against mycobacteria. A major limitation in using peptides as therapeutics is their sensitivity to enzymatic degradation or inactivity under certain physiological conditions such as relatively high salt concentration. Here, we show that NK-2, a peptide representing the cationic core region of the lymphocytic effector protein NK-lysin, and Ci-MAM-A24, a synthetic salt-tolerant peptide derived from immune cells of Ciona intestinalis, efficiently kill Mycobacterium smegmatis and Mycobacterium bovis-BCG. In addition, NK-2 and Ci-MAM-A24 showed a synergistic killing effect against M. smegmatis, no cytotoxic effect on mouse macrophages at bactericidal concentrations, and were even found to kill mycobacteria residing inside the macrophages. We also show that human placental lysosomal contents exert potent killing effect against mycobacteria under acidic and reducing growth conditions. Electron microscopic studies demonstrate that the lysosomal extract disintegrate bacterial cell membrane resulting in killing of mycobacteria.  相似文献   

9.
A database was established from human hemofiltrate (HF) that consisted of a mass database and a sequence database, with the aim of analyzing the composition of the peptide fraction in human blood. To establish a mass database, all 480 fractions of a peptide bank generated from HF were analyzed by MALDI-TOF mass spectrometry. Using this method, over 20 000 molecular masses representing native, circulating peptides were detected. Estimation of repeatedly detected masses suggests that approximately 5000 different peptides were recorded. More than 95% of the detected masses are smaller than 15 000, indicating that HF predominantly contains peptides. The sequence database contains over 340 entries from 75 different protein and peptide precursors. 55% of the entries are fragments from plasma proteins (fibrinogen A 13%, albumin 10%, β2-microglobulin 8.5%, cystatin C 7%, and fibrinogen B 6%). Seven percent of the entries represent peptide hormones, growth factors and cytokines. Thirty-three percent belong to protein families such as complement factors, enzymes, enzyme inhibitors and transport proteins. Five percent represent novel peptides of which some show homology to known peptide and protein families. The coexistence of processed peptide fragments, biologically active peptides and peptide precursors suggests that HF reflects the peptide composition of plasma. Interestingly, protein modules such as EGF domains (meprin Aα-fragments), somatomedin-B domains (vitronectin fragments), thyroglobulin domains (insulin like growth factor-binding proteins), and Kazal-type inhibitor domains were identified. Alignment of sequenced fragments to their precursor proteins and the analysis of their cleavage sites revealed that there are different processing pathways of plasma proteins in vivo.  相似文献   

10.
The Manduca sexta Malpighian tubule assay system, developed to monitor adenylate cyclase activity, was used in combination with HPLC to isolate a novel cAMP generating peptide from 350,000 whole flesh flies, Neobellieria bullata. Mass spectrometry revealed a molecular mass of 5,047 daltons, and Edman degradation the following sequence: AGAEAEKLSGLSKYFNGTTMAGRANVAKATYAVIGLIIAYNVMKPKKK. This 48-mer peptide, called Neb-cGP, does not belong to the corticotropin releasing factor family of insect diuretic peptides. Electrophoresis and subsequent immunoblotting of peptides immunoprecipitated from a homogenate of entire flies showed that one fly contained approximately 0.003 to 0.03 μg Neb-cGP and that 10 μg represents the lowest immunostainable amount on a Western blot. © 1996 Wiley-Liss, Inc.  相似文献   

11.
Plasma membrane of each micro-organism has a unique set of lipid composition as a consequence of the environmental adaptation or a response to exposure to antimicrobial peptides (AMPs) as antibiotic agents. Understanding the relationship between lipid composition and action of antimicrobial peptides or considering how different lipid bilayers respond to AMPs may help us design more effective peptide drugs in the future. In this contribution, we intend to elucidate how two currently used membrane models, namely palmitoyl-oleoyl-phosphtidylglycerol (POPG) and 1-palmitoyl-oleoyl-glycero-phosphocholine (POPC), respond to antimicrobial peptide Piscidin-1 (Pis-1).The computed density profile of the peptide as it moves from the bulk solvent toward the membrane core suggests that Pis-1 penetrates into the POPG bilayer less than the POPC membrane. Furthermore, we showed that the two model membranes used in this study have different behavior in the presence of Pis-1. Hence, we suggest that membrane composition could be an important factor in determining lytic ability of peptide drugs to kill a unique bacterial species.

An animated interactive 3D complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:37  相似文献   

12.
Apidaecins: antibacterial peptides from honeybees.   总被引:28,自引:3,他引:28       下载免费PDF全文
P Casteels  C Ampe  F Jacobs  M Vaeck    P Tempst 《The EMBO journal》1989,8(8):2387-2391
Although insects lack the basic entities of the vertebrate immune system, such as lymphocytes and immunoglobulins, they have developed alternative defence mechanisms against infections. Different types of peptide factors, exhibiting bactericidal activity, have been detected in some insect species. These humoral factors are induced upon infection. The present report describes the discovery of the apidaecins, isolated from lymph fluid of the honeybee (Apis mellifera). The apidaecins represent a new family of inducible peptide antibiotics with the following basic structure: GNNRP(V/I)YIPQPRPPHPR(L/I). These heat-stable, non-helical peptides are active against a wide range of plant-associated bacteria and some human pathogens, through a bacteriostatic rather than a lytic process. Chemically synthesized apidaecins display the same bactericidal activity as their natural counterparts. While only active antibacterial peptides are detectable in adult honeybee lymph, bee larvae contain considerable amounts of inactive precursor molecules.  相似文献   

13.
Cell-penetrating peptides (CPPs) share the property of cellular internalization. The question of how these peptides reach the cytoplasm of cells is still widely debated. Herein, we have used a mass spectrometry-based method that enables quantification of internalized and membrane-bound peptides. Internalization of the most used CPP was studied at 37 °C (endocytosis and translocation) and 4 °C (translocation) in wild type and proteoglycan-deficient Chinese hamster ovary cells. Both translocation and endocytosis are internalization pathways used by CPP. The choice of one pathway versus the other depends on the peptide sequence (not the number of positive changes), the extracellular peptide concentration, and the membrane components. There is no relationship between the high affinity of these peptides for the cell membrane and their internalization efficacy. Translocation occurs at low extracellular peptide concentration, whereas endocytosis, a saturable and cooperative phenomenon, is activated at higher concentrations. Translocation operates in a narrow time window, which implies a specific lipid/peptide co-import in cells.  相似文献   

14.
The development of novel antibiotic drugs is one of the most pressing biomedical problems due to the increasing number of antibiotic-resistant pathogens. Antimicrobial peptides and lipopeptides are a promising category of candidates, but the molecular origins of their antimembrane activity is unclear. Here we explore a series of recently developed antimicrobial lipopeptides, using coarse-grained molecular-dynamics simulations and free energy methods to uncover the thermodynamics governing their binding to membranes. Specifically, we quantify C16-KGGK’s binding affinity to the two types of membrane by umbrella sampling. We also examined the origin of C16-KGGK’s selectivity for bacterial versus mammalian membranes by systematically varying the peptide sequence and salt concentration. Our data showed that the C16 hydrophobic tail is the main contributor to its affinity to lipid membrane, whereas the peptide portion is mainly responsible for its selectivity. Furthermore, the electrostatic interaction between the cationic peptide and anionic bacterial membrane plays a significant role in the selectivity.  相似文献   

15.
Although deoxycorticosterone acetate (DOCA)–salt hypertension is a volume dependent model of hypertension, it shows polyuria and natriuresis. It is expected that dysregulation of aquaporin water channels (AQPs) and sodium transporters associated with natriuretic peptide (NP) system may play an escape role in sodium retaining state. One week after left unilateral nephrectomy, rats were subcutaneously implanted with silastic DOCA (200 mg/kg) strips. Physiologic saline was supplied as a drinking water to all animals. 4 weeks after operation, the protein expression of AQPs, sodium transporters, and endopeptidase (NEP) was determined in the kidneys by semiquantitative immunoblotting and immunohistochemistry. The mRNA expression of NP system was determined by real-time polymerase chain reaction. The amount of urinary ANP excretion was measured by radioimmunoassay. In DOCA–salt rats, urine osmolality was decreased while urinary excretion of sodium was increased. The expression of AQP1-3 as well as that of α-1 subunit of Na,K–ATPase, NHE3, NKCC2 and NCC was decreased in the kidney. The mRNA expression of ANP, brain natriuretic peptide (BNP), C-type natriuretic peptide (CNP) was increased in the kidney. The expression of NEP was decreased, and urinary ANP excretion was increased. Downregulation of AQPs and sodium transporters may contribute to mineralocorticoid escape in DOCA–salt hypertension. Increased expression of natriuretic peptides associated with downregulation of NEP may play a role in natriuresis.  相似文献   

16.
Apidaecins are 18–20-residue long proline-rich peptides expressed in insects as part of the innate immune system. They are very active against Gram-negative bacteria, especially Enterobacteriaceae. The C-terminal sequence PRPPHPRL is highly conserved, whereas the N-terminal region is variable. By replacing all 18 residues of apidaecin 1a and apidaecin 1b individually by alanine (Ala-scan), we have shown that single mutations in the C-terminal half of the peptides drastically reduced and mostly abolished the antibacterial activity against Escherichia coli. Conversely, substitutions in the N-terminal eight residues produced no, or only minor effects. The activity loss was correlated to the ability of apidaecin 1b and its mutants to enter Gram-negative bacteria, most likely because they no longer bind to a protein transporter. This assumed binding, however, was not inhibited by truncated apidaecin peptides added at tenfold higher concentrations. Interestingly, the antibacterial activity of full length apidaecin 1b was enhanced about four times by addition of a N-terminally truncated apidaecin peptide [11–18]-apidaecin 1b, as indicated by lower MIC-values against E. coli, although the short 5(6)-carboxyfluorescein-labeled peptide did not enter the bacteria. In contrast, the activity against the Gram-positive bacterium Micrococcus luteus was not located in the C-terminal sequence of apidaecins 1a and b, but depended mostly on the presence of all four basic residues.  相似文献   

17.
Cationic antimicrobial peptides (CAMPs) are novel candidates for drug development. Here we describe design of six short and potent CAMPs (SA-1 to SA-6) based on a minimalist template of 12 residues H+HHG+HH+HH+NH2 (where H: hydrophobic amino acid and +: charged hydrophilic amino acid). Designed peptides exhibit good antibacterial activity in micro molar concentration range (1-32 μg/ml) and rapid clearance of Gram-positive and Gram-negative bacterial strains at concentrations higher than MIC. For elucidating mode of action of designed peptides various biophysical studies including CD and Trp fluorescence were performed using model membranes. Further based on activity, selectivity and membrane bound structure; modes of action of Trp rich peptide SA-3 and template based peptide SA-4 were compared. Calcein dye leakage and transmission electron microscopic studies with model membranes exhibited selective membrane active mode of action for peptide SA-3 and SA-4. Extending our work from model membranes to intact E. coli ATCC 11775 in scanning electron micrographs we could visualize different patterns of surface perturbation caused by peptide SA-3 and SA-4. Further at low concentration rapid translocation of FITC-tagged peptide SA-3 into the cytoplasm of E. coli cells without concomitant membrane perturbation indicates involvement of intracellular targeting mechanism as an alternate mode of action as was also evidenced in DNA retardation assay. For peptide SA-4 concentration dependent translocation into the bacterial cytoplasm along with membrane perturbation was observed. Establishment of a non specific membrane lytic mode of action of these peptides makes them suitable candidates for drug development.  相似文献   

18.
Several naturally occurring peptides in bovine milk were characterized by tandem mass spectrometry and Edman degradation. Chromatograms of peptide fractions (passed through an ultra‐filtration membrane, nominal molecular weight limit 3000) prepared from colostrum (collected immediately after parturition) and transitional milk (collected 5 days postpartum) showed that they were almost identical. In total, six peptides, αs1‐CN (f16‐23) (RPKHPIKH), αs1‐CN (f16‐24) (RPKHPIKHQ), αs1‐CN (f17‐25) (PKHPIKHQG), αs1‐CN (f46‐52) (VFGKEKV), αs1‐CN (f94‐105) (HIQKEDVPSER), and β‐CN (f121‐128) (HKEMPFPK), were identified. One of the major peptides, the N‐terminal fragment of αs1‐casein, varied structurally during early lactation: αs1‐CN (f17‐25) (PKHPIKHQG) and αs1‐CN (f16‐23) (RPKHPIKH)/αs1‐CN (f16‐24) (RPKHPIKHQ) were found in colostrum and transitional milk, respectively. A chemically synthesized peptide, αs1‐CN (f16‐23) (RPKHPIKH), inhibited apoptosis of bovine granulosa cells induced by serum‐free conditions in a dose‐dependent manner, in consequence of caspase‐3 and caspase‐9 suppressions. The physiological function of the peptide remains unclear, but it may have potential use as pharmaceutical agent and as an anti‐apoptotic agent in cell culture medium. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
通过体壁损伤和大肠杆菌同时诱导家蝇幼虫产生免疫血淋巴,经沸水浴热变性,透析浓缩处理,然后经Tricine-SDS-PAGE得到诱导前后家蝇幼虫血淋巴中蛋白差异表达条带,将该条带电泳回收、复性、抗菌活性检测等步骤,分离纯化得到抗菌肽MDL-1, 其分子中富含Gly和碱性氨基酸,分子量为6 200 D,对革兰氏阴性菌Escherichia coli有较强抗性。通过MDL-1对大肠杆菌通透性分析和透射电镜超微结构观察表明,MDL-1首先可能与细菌的外膜结合,然后与细胞内膜作用,扰乱膜脂分子的排列,改变细胞膜的通透性,从而影响细胞膜的结构和功能,使细胞膜形成的许多孔道,造成细胞内的原生质扩散,并从孔道向胞外渗漏,影响了细菌的代谢系统,最终引起细胞膜破碎,细胞完全解体,从而起到抑菌杀菌作用。  相似文献   

20.
Effective antimicrobial peptides (AMPs) distinguish between the host and microbial cells, show selective antimicrobial activity and exhibit a fast killing mechanism. Although understanding the structure-function characteristics of AMPs is important, the impact of the peptides on the architecture of membranes with different lipid compositions is also critical in understanding the molecular mechanism and specificity of membrane destabilisation. In this study, the destabilisation of supported lipid bilayers (SLBs) by the AMP aurein 1.2 was quantitatively analysed by dual polarisation interferometry. The lipid bilayers were formed on a planar silicon oxynitride chip, and composed of mixed synthetic lipids, or Escherichiacoli lipid extract. The molecular events leading sequentially from peptide adsorption to membrane lysis were examined in real time by changes in bilayer birefringence (lipid molecular ordering) as a function of membrane-bound peptide mass. Aurein 1.2 bound weakly without any change in membrane ordering at low peptide concentration (5 μM), indicating a surface-associated state without significant perturbation in membrane structure. At 10 μM peptide, marked reversible changes in molecular ordering were observed for all membranes except DMPE/DMPG. However, at 20 μM aurein 1.2, removal of lipid molecules, as determined by mass loss with a concomitant decrease in birefringence during the association phase, was observed for DMPC and DMPC/DMPG SLBs, which indicates membrane lysis by aurein. The membrane destabilisation induced by aurein 1.2 showed cooperativity at a particular peptide/lipid ratio with a critical mass/molecular ordering value. Furthermore, the extent of membrane lysis for DMPC/DMPG was nearly double that for DMPC. However, no lysis was observed for DMPC/DMPG/cholesterol, DMPE/DMPG and E. coli SLBs. The extent of birefringence changes with peptide mass suggested that aurein 1.2 binds to the membrane without inserting through the bilayer and membrane lysis occurs through detergent-like micellisation above a critical P/L ratio. Real-time quantitative analysis of the structural properties of membrane organisation has allowed the membrane destabilisation process to be resolved into multiple steps and provides comprehensive information to determine the molecular mechanism of aurein 1.2 action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号