首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protoplasts of Schizosaccharomyces pombe, grown on a rich nutrient medium, were treated with a peptide factor isolated from cultures of the protozoan Tetrahymena pyriformis. The peptide factor is known to inhibit RNA synthesis in Tetrahymena. It has now been shown that the peptide factor also inhibits RNA synthesis in yeast protoplasts without affecting protein synthesis.  相似文献   

2.
Sublethal doses of gamma radiation are known to inhibit total RNA synthesis in the ciliate protozoan Tetrahymena. To determine if the synthesis of a particular class of RNA is preferentially inhibited, pulse-labeled RNA was isolated from normal exponentially growing cells, irradiated cells, and cells in which total RNA synthesis had recovered to the pre-irradiation level. The RNAs were analyzed by SDS-polyacrylamide gel electrophoresis and oligo(dT)-cellulose column chromatography. Inhibition of RNA synthesis primarily involves ribosomal RNA. However, radiation does not cause a delay in the processing of precursor rRNA or a preferential loss of either of the mature rRNAs. Following irradiation, poly(A)-containing RNA [poly(A+)RNA] is synthesized at a rate up to three times greater than the control rate. The elevated poly(A+)RNA synthesis occurs during the period of depressed rRNA synthesis and even after rRNA synthesis has recovered to its pre-irradiation rate. While the sizes of the total cellular ribonucleoside triphosphate pools are depressed in the irradiated cells, these pools probably do not represent the actual compartments containing the precursors for RNA synthesis, and the observed changes cannot explain the modifications in macromolecular synthesis in irradiated Tetrahymena.  相似文献   

3.
SYNOPSIS. Differentiation of small-mouthed cells (microstomes) into large-mouthed, potentially carnivorous cells (macrostomes) in Tetrahymena vorax is prevented by 2-mercapto-1-(β-4-pyridethyl) benzimidazole (MPB). This differentiation, induced by the transforming principle, stomatin, isolated from the potential prey, Tetrahymena pyriformis, is a synchronous process in which 70–95% of the population of T. vorax microstomes transform into macrostomes within 450 min. MPB also inhibits RNA synthesis in transforming microstomes while having little effect on protein synthesis. Finally, the effect of MPB on both transformation and RNA synthesis is reversible.  相似文献   

4.
A method was developed using sucrose gradients containing acrylamide which greatly simplifies the measurement of the polysomal distribution of messages. After centrifugation, the acrylamide was polymerized, forming a "polysome gel". RNA gel blots of polysome gels were used to determine the polysomal distributions of alpha-tubulin and total polyadenylated mRNA in growing, starved (nongrowing) and starved-deciliated Tetrahymena and the number of messages loaded onto polysomes was calculated. These measurements indicated that the translational efficiencies of alpha-tubulin mRNA and total polyadenylated mRNA are largely unaffected when the rates of tubulin and total protein synthesis vary dramatically. Thus, differential regulation of alpha-tubulin mRNA translation initiation does not contribute to the greater than 100-fold induction of tubulin synthesis observed during cilia regeneration and in growing cells. The major translation-level process regulating tubulin synthesis in Tetrahymena appears to be a change in message loading mediated by a non-specific message recruitment or unmasking factor.  相似文献   

5.
1. When Tetrahymena were deprived of nutrients 50% of the polysomes disaggregated within 20 min and 20% of the total RNA broke down in 2 h. Ribosomal RNA accounted for 75% of the RNA breakdown. 2. RNA labelled by a long incubation with [14C]uridine was stable in growing cells and in the presence of actinomycin D, but broke down at the same rate as bulk RNA in starved cells. 3. The following substances inhibited the loss of RNA during starvation: cycloheximide (which inhibited both polysome disaggregation and protein synthesis), inhibitors of energy metabolism and puromycin (all of which caused polysome disaggregation and inhibited protein synthesis), and chloroquine and 7-amino-1-chloro-3-L-tosylamidoheptan-2-one ('TLCK') (neither of which affected polysomes or protein synthesis). 4. Starvation appears to activate a ribosome degradation mechanism that may involve lysosomal and non-lysosomal enzymes.  相似文献   

6.
7.
S D Guttman  M A Gorovsky 《Cell》1979,17(2):307-317
Deciliated starved Tetrahymena recover motility with kinetics similar to those of growing cells and, like growing cells, require RNA and protein synthesis for regeneration. Comparisons of polysome profiles and electrophoretic analyses of newly synthesized proteins indicate, however, that the basal level of protein synthesis in starved cells is markedly lower than that in growing cells. This difference allows demonstration of changes in protein synthesis following deciliation of starved cells which cannot be detected (if they occur at all) in growing cells. Deciliation of starved cells induces a specific and orderly program of protein synthesis. The synthesis of an 80,000 dalton protein (deciliation-induced protein, DIP) begins shortly after deciliation, comprises 15% of the protein synthesized from 20-60 min, and declines around 60 min after deciliation, shortly after most cells have begun to regenerate cilia. The synthesis of a 55,000 dalton protein is also induced during regeneration and has been identified as tubulin using a well characterized antibody made to ciliary tubulin. Tubulin synthesis is undetectable during the first hour after deciliation even though 60-80% of the cells regain mobility and regenerate short but clearly visible cilia. Tubulin synthesis begins 60 min after deciliation and continues for 2 hr. At its peak, tubulin comprises 7-8% of the protein synthesized. The results of actinomycin D addition at different times after deciliation suggest that RNA required for DIP synthesis is synthesized early (0-30 min), while RNA required for tubulin is synthesized later and over a longer period (30-90 min). Thus deciliation of starved cells, an event occurring at the cell periphery, initiates a well defined and reproducible series of events culminating in cilia formation. This system should be useful in elucidating the molecular mechanisms regulating gene expression and organelle biogenesis in Tetrahymena.  相似文献   

8.
Tetrahymena pyriformis which has been starved for 20 h by incubation in buffer, and then deciliated, can regenerate its cilia in about 90 min while still in suspension in non-nutrient medium. The process of reciliation is accompanied by protein synthesis which begins a few minutes after deciliation and by synthesis of ribosomal and messenger RNAs during a period extending from about 1 h to about 3 h after deciliation. Although net synthesis of RNA remains at a very low level until 1 h after deciliation, a qualitative change in the translatable poly(A)-containing messenger RNA content of deciliated cells, and in particular, formation of beta-tubulin mRNA can be detected almost immediately after deciliation.  相似文献   

9.
10.
SYNOPSIS RNA isolated from free ribosomes, from cell structures and from soluble cell phase after indole lysis of synchronized Tetrahymena cells showed different abilities to hybridize with DNA. The supraoptimal temperature (34 C) caused a decrease in the ability to hybridize in all 3 RNA fractions. The same effect was noted at the time of cell division. Synthesized messenger RNA as a proportion of the total quantity of RNA was roughly constant during the whole cell cycle. However, in contrast to synchronized mammalian cells the messenger RNA synthesis did not proceed at a constant rate thruout the cell cycle.  相似文献   

11.
Numerous nucleoli can be observed in the macronucleus of the logarithmically growing ciliated protozoan Tetrahymena pyriformis; at late log phase the nucleoli aggregate and fuse. In stationary phase this fusion process continues, leaving a very few large vacuolated nuclear fusion bodies in the nucleus. When these stationary phase cells are placed into fresh enriched proteose peptone medium, the large fusion bodies begin to disaggregate during the 2.5-hour lag phase before cell division is initiated. By 3 to 6 hours after inoculation the appearance of the nucleoli in many cells returns to what it was in logarithmic cells. In view of the possible role of nucleoli in ribosome synthesis, attempts were made to correlate the morphological changes to changes in RNA and protein metabolism. The beginning of an increased RNA synthesis was concomitant with the beginning of disaggregation of the large fusion bodies into nucleoli, which was noticed in some cells by 1 hour after the return to fresh enriched proteose peptone medium. Increased protein synthesis then followed the increased RNA synthesis by 1 hour. The supply of RNA precursors (essential pyrimidines) were removed from cultures which were grown on a chemically defined synthetic medium, in order to study the relation between nucleolar fusion and synthesis of RNA and protein. Pyrimidine deprivation drastically curtailed RNA and protein synthesis, but did not cause fusion of nucleoli. When pyrimidines were added back to this culture medium, RNA synthesis was immediately stimulated and again preceded an increased protein synthesis by 1 hour. These studies suggest the involvement of unfused nucleoli in RNA and protein synthesis and demonstrate the extreme plasticity of nucleoli with respect to changes in their environment.  相似文献   

12.
Summary Temperature-sensitive mutants of Tetrahymena pyriformis which had previously been selected for their inability to grow at 38°C but which grew normally (or near normally) at 30°C were characterized with respect to their patterns of RNA and protein accumulation at both the permissive and nonpermissive temperatures. Out of 116 such mutants, the majority (72) acted like wild type for these accumulations during a 3 h labelling period although some of them stopped dividing during this time. The remainder exhibited a variety of altered phenotypes for the rate, extent, and timing of RNA and/or protein accumulation. Those mutants which exhibited selective inhibition of RNA accumulation, and were thus potential ribosomal RNA (rRNA) mutants, were further characterized by examining patterns of protein and RNA synthesis in cells starved at the permissive temperature, but re-fed at the permissive and non-permissive temperatures. At least five different types of mutants as defined by patterns of protein and RNA synthesis in refed cells were identified. Direct analysis of the RNA synthesized in cells from 2 of these types of mutants showed that in 5 out of 6 cases rRNA synthesis and/or processing was inhibited within 30 min after shifting to the non-permissive temperature. The other mutant examined was found to show a delayed inhibition of rRNA synthesis.  相似文献   

13.
Macromolecular syntheses in encysted Tetrahymena patula were studied using Feulgen fluorescence cytophotometry, autoradiography, and inhibitors of RNA and protein synthesis. Cycloheximide significantly depressed protein synthesis and D-actinomycin effectively blocked RNA synthesis. Under these conditions, the cells within the cyst were unable to divide. Both cytophotometric measurements and autoradiographic data with tritiated thymidine show that DNA synthesis does not occur during the encystment divisions. Excysted cells placed in nutrient broth medium showed a prolonged generation time after the first cell growth cycle, and by the third generation the mean DNA content per cell was almost triple that of starved excysted cells. These findings indicate that (a) the encystment divisions require RNA and protein synthesis, which are apparently effected through turnover, (b) the encystment division cycles occur in the absence of DNA synthesis, and (c) excysted cells placed in culture medium may go through more than one DNA replication per cell cycle.  相似文献   

14.
1. Treatment of Tetrahymena pyriformis with various concentrations of puromycin results in a more pronounced inhibition of [3H]uridine accumulation in stable RNA than of protein synthesis. 2. At a concentration of 500 micrograms/ml, which is almost completely inhibitory to [3H]uridine incorporation in vivo, puromycin has no influence on the incorporation of [3H]UTP into RNA in isolated macronuclei. Pretreatment of the cells with the antibiotic, however, reduces the activity of RNA polymerases in isolated nuclei to less than 30%. 3. In puromycin-treated cells a small amount of pre-rRNA is synthesized but not processed into cytoplasmic rRNAs. 4. Puromycin reduces the nucleocytoplasmic translocation of pre-existing RNA to about 25% of the control rate within 5 min, resulting in an accumulation of relatively stable rRNA precursor molecules in the macronucleus.  相似文献   

15.
In the present work the metabolism of poly(A)+ RNA was investigated in cells of Tetrahymena pyriformis derived either from stationary cultures or from starved suspensions that were initiating growth. Under these circumstances the organisms derived from stationary cultures synthesize ribosomal and poly(A)+ RNA and form polysomes. In the presence of actinomycin D (actD) the observed expansion of the polysomal population is arrested. Pre-starved cells, on the other hand, start making polysomes in the virtual absence of ribosomal and poly(A)+ RNA synthesis soon after being transferred to peptone medium. In this case polysome formation is only partially sensitive to actD. These results have been interpreted as indicating that, in the beginning of growth, cells derived from stationary cultures are dependent on RNA synthesis for polysome formation, whereas pre-starved cells use pre-synthesized RNA for the same purpose.  相似文献   

16.
Platelet-derived growth factor (PDGF) is in concentrations of a few nanograms per ml a very active chemoattractant for the free-living ciliated protozoan Tetrahymena; at the same time it induces a rapid increase in incorporation of radioactive nucleic acid precursors into RNA and DNA. We find it remarkable that this lower eukaryote responds to platelet-derived growth factor in very much the same way as fibroblastic cells.  相似文献   

17.
Oligo(A)-stimulated Tetrahymena rDNA synthesis in vito   总被引:1,自引:0,他引:1  
The synthesis of Tetrahymena rDNA has been examined using purified DNA polymerase and partially purified preparations of homologous replication enzymes (fraction IV). DNA synthesis with purified DNA polymerase alone was less than that with fraction IV enzymes. This suggested that there were additional factors in fraction IV other than DNA polymerase which contributed to or enhanced rDNA synthesis in vitro. Neither hybridization of rDNA with Tetrahymena ribosomal RNA nor preincubation of rDNA with homologous or heterologous RNA polymerase served to stimulate in vitro synthesis by fraction IV enzymes. However, when rDNA was hybridized with oligoriboadenylate, DNA synthesis using fraction IV was stimulated approximately 4- to 4.5-fold over 150 min of incubation, relative to a similarly treated but unhybridized rDNA control. Using oligoriboadenylate-hybridized EcoR1 and HindIII restriction fragments of rDNA to localize the synthesis most of the in vitro synthesis occurred with a 2.4 X 10(6) Mr fragment encompassing the centre of the rDNA molecule. The approach of hybridizing a synthetic homooligoribonucleotide primer to double-stranded DNA should prove to be of general applicability in designing similar template-primers in other systems for the purpose of isolating replication proteins.  相似文献   

18.
The influence of EGF (10(-8) M) on RNA and protein synthesis in the ciliate Tetrahymena pyriformis was studied. It was found that EGF stimulated RNA and proteins synthesis in T. pyriformis within 3 h after addition of EGF.  相似文献   

19.
We studied the effect of murine epidermal growth factor on cell proliferation and DNA synthesis in macronuclei of ciliate Tetrahymena pyriformis G1. Mitogenic effect of epidermal growth factor on proliferation-induced tetrahymena cells has been revealed. This effect is due to the induced progression of cells at G1 and, consequently, their earlier entering DNA synthesis phase of the first cell cycle. Epidermal growth factor had no mitogenic effect on the resting cells from stationary culture (G0 phase) whose development is independent of the growth factors in the medium.  相似文献   

20.
Small nuclear RNAs in the ciliate Tetrahymena.   总被引:4,自引:1,他引:3       下载免费PDF全文
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号