首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously reported that mice implanted with mammary tumors show a progressive thymic involution that parallels the growth of the tumor. The involution is associated with a severe depletion of CD4+8+ thymocytes. We have investigated three possible mechanisms leading to this thymic atrophy: 1) increased apoptosis, 2) decreased proliferation, and 3) disruption of normal thymic maturation. The levels of thymic apoptosis were determined by propidium iodide and annexin V staining. A statistically significant, but minor, increase in thymic apoptosis in tumor-bearing mice was detected with propidium iodide and annexin V staining. The levels of proliferation were assessed by in vivo labeling with 5'-bromo-2'-deoxyuridine (BrdU). The percentages of total thymocytes labeled 1 day following BrdU injection were similar in control and tumor-bearing mice. Moreover, the percentages of CD4-8- thymocytes that incorporated BrdU during a short term pulse (5 h) of BrdU were similar. Lastly, thymic maturation was evaluated by examining CD44 and CD25 expression among CD4-8- thymocytes. The percentage of CD44+ cells increased, while the percentage of CD25+ cells decreased among CD4-8- thymocytes from tumor-bearing vs control animals. Together, these findings suggest that the thymic hypocellularity seen in mammary tumor bearers is not due to a decreased level of proliferation, but, rather, to an arrest at an early stage of thymic differentiation along with a moderate increase in apoptosis.  相似文献   

2.
This study examined the involvement of c-fos protooncogene in thymocyte development from lymphohemopoietic T cell progenitors, within the thymic microenvironment. We first analyzed the thymocytes developing in vitro in the fetal thymus from the c-fos transgenic mice and found a high proportion of CD4+ single positive (SP) cells. We then seeded either fetal liver or bone marrow (BM) cells from normal donors onto lymphocyte-depleted fetal thymus explants of c-fos transgenic mice. The results showed an increased proportion of mature CD4+ SP and decreased CD4+CD8+ double positive (DP) cells. A similar pattern of CD4/CD8 thymocyte subsets was observed when either thymus or BM cells from c-fos transgenic mice developed within a normal thymic stroma. The kinetics of thymocyte development in organ culture (from Days 3 to 11) suggested that the SP cells obtained under these conditions may have bypassed the CD4+CD8+ DP phase. It appears that the altered pattern of thymocyte development manifested in adult c-fos transgenic mice can be induced by the early embryonic thymic stroma, and may also involve cells in the lymphohemopoietic tissues.  相似文献   

3.
During mammary tumorigenesis, there is a profound thymic involution associated with severe depletion of the most abundant subset of thymocytes, CD4+CD8+ immature cells, and an early arrest in at least two steps of T cell differentiation. Thymic atrophy that is normally related with aging has been observed in other model systems, including graft-vs-host disease (GVHD) and tumor development. However, the mechanisms involved in this phenomenon remain to be elucidated. Vascular endothelial growth factor (VEGF) has been associated with thymic involution, when expressed at high levels systemically. In thymuses of D1-DMBA-3 tumor-bearing mice, this growth factor is diminished relative to the level of normal thymuses. Interestingly, the expression of hepatocyte growth factor (HGF), which has been associated with proliferation, cell survival, angiogenesis and B-cell differentiation, is profoundly down-regulated in thymuses of tumor bearers. In parallel, IL-7 and IL-15 mRNA, crucial cytokines involved in thymocytes development and cellular homeostasis, respectively, are also down-regulated in the thymuses of tumor hosts as compared to those of normal mice. Injection of HGF into mice implanted with mammary tumors resulted in normalization of thymic volume and levels of VEGF, IL-7 and IL-15. While, injections of IL-7 partially restored the thymic involution observed in the thymuses of tumor-bearing mice, injection of IL-15 did not have any significant effects. Our data suggest that the downregulation of HGF and IL-7 may play an important role in the thymic involution observed in tumor-bearing hosts.  相似文献   

4.
Using an intrathymic injection assay on B10 Thy-1 congenic mice, it was demonstrated that thymic prelymphoma cells first developed within the thymuses from 4 to 8 days after split-dose irradiation and were detected in more than 63% of the test donor thymuses when examined at 21 and 31 days after irradiation. Moreover, some mice (25%) at 2 mo after split-dose irradiation had already developed thymic lymphomas in their thymuses. To characterize these thymic prelymphoma cells, the thymocytes from B10 Thy-1.1 mice 1 mo after irradiation were stained with anti-CD4 and anti-CD8 mAb and were sorted into four subpopulations. These fractionated cells were injected into the recipient thymuses to examine which subpopulation contained thymic prelymphoma cells. The results indicated that thymic prelymphoma cells existed mainly in CD4- CD8- and CD4- CD8+ thymocyte subpopulations and also in CD4+ CD8+ subpopulation. T cell lymphomas derived from CD4- CD8- prelymphoma cells had mainly CD4- CD8- or CD4- CD8+ phenotypes. T cell lymphomas developed from CD4- CD8+ prelymphoma cells mainly expressed CD4- CD8+ or CD4+ CD8+ phenotype. T cell lymphomas originating from CD4+ CD8+ prelymphoma cells were mainly CD4+ CD8+ but some CD4- CD8+ or CD4+ CD8- cells were also present. These thymic prelymphoma cells were further characterized phenotypically in relation to their expression of the marker defined by the mAb against J11d marker and TL-2 (thymus-leukemia) Ag, which is not expressed on normal thymocytes of B10.Thy-1.2 or B10.Thy-1.1 strain, but appears on the thymocytes of lymphomagenic irradiated mice. The results indicated that the prelymphoma cells existed in J11d+, TL-2+ cells.  相似文献   

5.
This study shows that the normal thymus produces immunoregulatory CD25+4+8- thymocytes capable of controlling self-reactive T cells. Transfer of thymocyte suspensions depleted of CD25+4+8- thymocytes, which constitute approximately 5% of steroid-resistant mature CD4+8- thymocytes in normal naive mice, produces various autoimmune diseases in syngeneic athymic nude mice. These CD25+4+8- thymocytes are nonproliferative (anergic) to TCR stimulation in vitro, but potently suppress the proliferation of other CD4+8- or CD4-8+ thymocytes; breakage of their anergic state in vitro by high doses of IL-2 or anti-CD28 Ab simultaneously abrogates their suppressive activity; and transfer of such suppression-abrogated thymocyte suspensions produces autoimmune disease in nude mice. These immunoregulatory CD25+4+8- thymocytes/T cells are functionally distinct from activated CD25+4+ T cells derived from CD25-4+ thymocytes/T cells in that the latter scarcely exhibits suppressive activity in vitro, although both CD25+4+ populations express a similar profile of cell surface markers. Furthermore, the CD25+4+8- thymocytes appear to acquire their anergic and suppressive property through the thymic selection process, since TCR transgenic mice develop similar anergic/suppressive CD25+4+8- thymocytes and CD25+4+ T cells that predominantly express TCRs utilizing endogenous alpha-chains, but RAG-2-deficient TCR transgenic mice do not. These results taken together indicate that anergic/suppressive CD25+4+8- thymocytes and peripheral T cells in normal naive mice may constitute a common T cell lineage functionally and developmentally distinct from other T cells, and that production of this unique immunoregulatory T cell population can be another key function of the thymus in maintaining immunologic self-tolerance.  相似文献   

6.
Pertussis toxin (Ptx), an important adjuvant for inducing certain organ-specific autoimmune diseases in mice, exerts multiple effects upon the immune system. In addition to its adjuvant effects, which include enhancement of delayed-type hypersensitivity and increased antibody production. Ptx elicits a marked lymphocytosis with a concomitant decrease in thymic weight. In vitro studies indicate that Ptx acts directly on thymocytes and that both susceptible and resistant populations exist. It is believed that these susceptible cells are released into the circulation and account, in part, for the T cell component of the lymphocytosis. We have used flow cytometry to analyze the CD4, CD8, and Thy-1 phenotypes of thymic and peripheral T cells from Ptx-treated mice. In the thymus, there is a dramatic decrease in the number of CD4+CD8+ (double positive) cells at all doses tested (0.25, 0.50, and 1.0 microgram) by day 4 after Ptx treatment. The double negative and single positive populations remain relatively constant. Analysis of Thy-1 expression reveals a significant reduction in Thy-1hi thymocytes, with little change in the Thy-1lo population. Thus Ptx primarily affects and depletes, in a dose-dependent fashion, thymic T cells with an immature phenotype. These results mimic those of corticosteroids, although neither prior adrenalectomy nor treatment with the antiglucocorticoid RU486 are able to prevent the effects of Ptx. In the periphery of Ptx-treated animals, the relative increase in the number of CD4+ T cells is more than that of CD8+ T cells. Double positive and Thy-1hi cells cannot be detected in appreciable numbers. These results are consistent with the concept that Ptx may drive immature thymocytes through accelerated maturation for release into the periphery as single positive, predominantly CD4+, Thy-1lo cells. Increased numbers of such cells may in part account for the immunopotentiating effects of Ptx, particularly as they relate to the induction of organ-specific autoimmune disease. Treatment with purified Ptx beta-oligomer fails to elicit any of the responses described above, indicating that the holotoxin is required for such activities.  相似文献   

7.
CD83 expression influences CD4+ T cell development in the thymus   总被引:10,自引:0,他引:10  
Fujimoto Y  Tu L  Miller AS  Bock C  Fujimoto M  Doyle C  Steeber DA  Tedder TF 《Cell》2002,108(6):755-767
T lymphocyte selection and lineage commitment in the thymus requires multiple signals. Herein, CD4+ T cell generation required engagement of CD83, a surface molecule expressed by thymic epithelial and dendritic cells. CD83-deficient (CD83-/-) mice had a specific block in CD4+ single-positive thymocyte development without increased CD4+CD8+ double- or CD8+ single-positive thymocytes. This resulted in a selective 75%-90% reduction in peripheral CD4+ T cells, predominantly within the naive subset. Wild-type thymocytes and bone marrow stem cells failed to differentiate into mature CD4+ T cells when transferred into CD83-/- mice, while CD83-/- thymocytes and stem cells developed normally in wild-type mice. Thereby, CD83 expression represents an additional regulatory component for CD4+ T cell development in the thymus.  相似文献   

8.
MRL-lpr/lpr (lpr) mice spontaneously develop massive lymphadenopathy resulting from the expansion of a unique population of Thy-1+ cells which are CD4- and CD8- (double negative) and the nature of which is not clear. The antibody J11d has been shown to define a differentiation Ag found on immature thymocytes but not on mature and functional peripheral CD4+ or CD8+ T cells. To analyze the possible relationship between the lpr double-negative T cells and the thymocytes, we investigated the simultaneous expression of J11d and Thy 1 Ag on the double-negative lpr lymph node cells by using two-color immunofluorescent staining technique. We observed that lpr mice at 3 to 4 weeks of age, before the onset of lymphadenopathy, did not have significant numbers (less than 4%) of J11d+ T cells in the periphery, similar to the number found in the control MRL +/+ mice. However, with increasing age of approximately 8 to 10 weeks and coinciding with the appearance of lymphadenopathy, a significant number (approximately 35%) of J11d+ Thy-1+ cells started appearing in the periphery of lpr mice and was maintained until the mice died at 20 to 24 weeks of age. The J11d+ T cells belonged to the abnormal double-negative T cell pool, inasmuch as J11d+ CD4+ or J11d+ CD8+ cells were absent in the lymph nodes of 20-wk-old lpr mice. Furthermore, 20-wk-old lpr mice demonstrated increased numbers (approximately 41%) of double-negative T cells in the thymus, a significant proportion of which were J11d+. In contrast, the 20-wk-old +/+ mice or 4-wk-old lpr mice had only 4% double-negative T cells in the thymus. The present study suggests that a significant number of peripheral double-negative T cells of lpr mice bear the immature thymic differentiation Ag J11d. The possibility that the accumulation of double-negative T cells results from abnormal peripheralization of double-negative J11d+ thymocytes, before complete differentiation into CD4+ or CD8+ T cells, is discussed.  相似文献   

9.
The thymus is the site where all T-cell precursors develop, mature, and subsequently leave as mature T-cells. Since the mechanisms that mediate and regulate thymic apoptosis are not fully understood, we utilized a syngenic GL261 murine glioma model to further elucidate the fate of T-cells in tumor bearing C57BL/6 mice. First, we found a dramatic reduction in the size of the thymus accompanied by a decrease in thymic cellularity in response to glioma growth in the brains of affected mice. There was a marked reduction of double positive subset and an increase in the frequency of CD4+ and CD8+ single positive T-cell subsets. Analysis of double negative thymocytes showed an increase in the accumulation of CD44+ cells. In contrast, there was a marked loss of CD44 and CD122 expression in CD4+ and CD8+ subsets. The growth of intracranial tumors was also associated with decreased levels of HO-1, a mediator of anti-apoptotic function, and increased levels of Notch-1 and its ligand, Jagged-1. To determine whether thymic atrophy could be due to the effect of Notch and its ligand expression by glioma in vivo, we performed a bone marrow transplant experiment. Our results suggest that Notch-1 and its ligand Jagged-1 can induce apoptosis of thymocytes, thereby influencing thymic development, immune system homeostasis, and function of the immune cells in a model of experimental glioma.  相似文献   

10.
Triggering of the CD3:TCR complex by optimal concentrations of anti-CD3, anti-TCR beta-chain, and allogeneic stimulator cells induced dramatically higher levels (fivefold for anti-CD3, greater than 10-fold for anti-TCR beta-chain, 84-fold for alloantigen) of IL-2 production in spleen CD4+8- T cells than their thymic counterparts, despite comparable levels of CD3 and TCR beta-chain expression. The nature of the reduced IL-2 production was examined by analysis of anti-CD3-induced IL-2 production at the single cell level. The frequency of IL-2-producing cells in spleen CD4+8- T cells (40.0%) was approximately threefold that of thymus CD4+8- T cells (14.5%). Furthermore, the average IL-2 levels among positive IL-2 producers was also approximately threefold higher in spleen CD4+8- T cells than their thymic counterparts. Adoptive transfer of purified Thy-1.2+ CD4+8- T cells into Thy-1.1-congenic hosts provided a physiologic and histocompatible system that enabled identification of transferred donor (Thy-1.2+) among a sea of host (Thy-1.2-) CD4+ T cells, whose immune function with respect to IL-2 inducibility was examined after isolation by electronic cell sorting. Donor CD4+ T cells thus isolated from host spleen shortly (1 day) after i.v. transfer of thymus CD4+8- T cells were similar to freshly isolated thymus CD4+8- T cells in that they both produced little IL-2 in response to anti-CD3. However, by day 3 post-transfer, IL-2 production by donor CD4+8- T cells had more than doubled and by day 8, they produced IL-2 levels comparable to those of host spleen CD4+8- T cells. A similar acquisition of high level IL-2 inducibility in thymus CD4+8- T cells upon i.v. transfer into Thy-1.1-congenic hosts was also observed using allogeneic cells as the stimulus of IL-2 production. When thymus CD4+8- T cells were intra-thymically transferred into Thy-1.1-congenic hosts, those donor cells that emigrated to the periphery became high IL-2 producers in a time-dependent manner, whereas those that remained inside the thymus showed no signs of up-regulation in IL-2 inducibility. Intrathymic transfer of CD4-8- thymocytes revealed that the most recent thymic emigrant CD4+8- T cells contained few IL-2-producing cells and were not functionally mature with respect to high level IL-2 inducibility.  相似文献   

11.
Cellular events during the development of thymic lymphomas in young B10.BR mice given leukemogenic split-dose irradiation were studied by examining the differentiation of functional T lymphocyte precursors in the regenerating thymus. It was found that leukemogenic radiation treatment resulted in a sustained depression of the level of thymic cytotoxic T lymphocyte precursors (CTLp) and of mixed lymphocyte reactivity of thymus cells when assessed between 1 and 4 mo after irradiation, in spite of the fact that the total number of thymocytes was restored to the normal level within 2 mo and continued to increase thereafter. In vitro mixing studies of normal thymocytes with thymus cells from split-dose irradiated mice provided no evidence for active suppression as a mechanism for this depressed activity. The ability of bone marrow cells from split-dose irradiated mice to regenerate the thymus and to differentiate into functional CTLp was examined by use of supralethally irradiated Thy-1 congenic recipients. Reconstitution of supralethally irradiated B10.BR Thy-1.2 mice with normal bone marrow from B10.BR Thy-1.1 mice resulted in the complete repopulation of host-thymus with donor-derived cells when assessed at 4 wk after reconstitution. Lymphocytes from the regenerating thymus of these animals were shown to contain high levels of CTLp which were donor-derived. On the other hand, when the recipient mice were reconstituted with bone marrow cells from donor mice which had been split-dose irradiated 1 mo earlier, regeneration of the recipient thymus was severely depressed when assessed at 4 wk to 3 mo after reconstitution. Although variable but small numbers of donor-derived Thy-1+ cells were detected, CTL activity for alloantigen could not be induced in these donor-derived cells. The results suggest that T cell precursors derived from split-dose irradiated donor mice were unable to undergo active proliferation and differentiation into functional CTLp. The significance of these findings on radiation-induced thymic leukemogenesis is discussed.  相似文献   

12.
Developmental regulation of the intrathymic T cell precursor population   总被引:4,自引:0,他引:4  
The maturation potential of CD4-8- thymocytes purified from mice of different developmental ages was examined in vivo after intrathymic injection. As previously reported, 14-day fetal CD4-8- thymocytes produced fewer CD4+ than CD8+ progeny in peripheral lymphoid tissues, resulting in a CD4+:CD8+ ratio of less than or equal to 1.0. In contrast, adult CD4-8- thymocytes generated CD4+ or CD8+ peripheral progeny in the proportions found in the normal adult animal (CD4+:CD8+ = 2 to 3). Here we have shown that CD4-8- precursor cells from the 17-day fetal thymus also produced peripheral lymphocytes with low CD4+:CD8+ ratios. Precursors from full term fetuses produced slightly higher CD4+:CD8+ ratios (1.1-1.6) and precursors from animals three to 4 days post-birth achieved CD4+:CD8+ ratios intermediate between those produced by fetal and adult CD4-8- thymocytes. Parallel changes in the production of alpha beta TCR+ peripheral progeny were observed. Fetal CD4-8- thymocytes generated fewer alpha beta TCR+ progeny than did adult CD4-8- thymocytes. However, peripheral lymphocytes arising from either fetal or adult thymic precursors showed similar proportions of gamma delta TCR+ cells. The same pattern of progeny was observed when fetal CD4-8- thymocytes matured in an adult or in a fetal thymic stromal environment. In contrast to fetal thymic precursors, fetal liver T cell precursors resembled adult CD4-8- thymocytes by all parameters measured. These results suggest that fetal thymic precursors are intrinsically different from both adult CD4-8- thymocytes and fetal liver T cell precursors. Moreover, they lead to the hypothesis that the composition of the peripheral T cell compartment is developmentally regulated by the types of precursors found in the thymus. A model is proposed in which migration of adult-like precursors from the fetal liver to the thymus approximately at birth triggers a transition from the fetal to the adult stages of intrathymic T cell differentiation.  相似文献   

13.
Extrathymic CD4+CD8+ double-positive (DP) T cells are increased in some pathophysiological conditions, including infectious diseases. In the murine model of Chagas disease, it has been shown that the protozoan parasite Trypanosoma cruzi is able to target the thymus and induce alterations of the thymic microenvironment and the lymphoid compartment. In the acute phase, this results in a severe atrophy of the organ and early release of DP cells into the periphery. To date, the effect of the changes promoted by the parasite infection on thymic central tolerance has remained elusive. Herein we show that the intrathymic key elements that are necessary to promote the negative selection of thymocytes undergoing maturation during the thymopoiesis remains functional during the acute chagasic thymic atrophy. Intrathymic expression of the autoimmune regulator factor (Aire) and tissue-restricted antigen (TRA) genes is normal. In addition, the expression of the proapoptotic Bim protein in thymocytes was not changed, revealing that the parasite infection-induced thymus atrophy has no effect on these marker genes necessary to promote clonal deletion of T cells. In a chicken egg ovalbumin (OVA)-specific T-cell receptor (TCR) transgenic system, the administration of OVA peptide into infected mice with thymic atrophy promoted OVA-specific thymocyte apoptosis, further indicating normal negative selection process during the infection. Yet, although the intrathymic checkpoints necessary for thymic negative selection are present in the acute phase of Chagas disease, we found that the DP cells released into the periphery acquire an activated phenotype similar to what is described for activated effector or memory single-positive T cells. Most interestingly, we also demonstrate that increased percentages of peripheral blood subset of DP cells exhibiting an activated HLA-DR+ phenotype are associated with severe cardiac forms of human chronic Chagas disease. These cells may contribute to the immunopathological events seen in the Chagas disease.  相似文献   

14.
15.
Morphine-induced thymic hypoplasia is glucocorticoid-dependent.   总被引:5,自引:0,他引:5  
Mice administered morphine as a s.c. pellet implant exhibit a marked and sustained thymic hypoplasia as well as suppression of T lymphocyte functions. In the present study, the effects of morphine on thymocyte differentiation were characterized. Morphine produced a significant decrease in both the number and proportion of CD4+/CD8+ double positive (DP) cells. The percentage of the CD4+/CD8-, CD4-/CD8+, and CD4-/CD8- double negative subsets in these mice was proportionally increased. Morphine also increased the proportion of cells expressing either the epsilon-chain of the CD3 complex or the IL-2R. The initial reduction in the proportion of DP thymocytes appeared fully recovered by 10 days post-implantation, although the number of DP thymocytes gradually returned to normal over a 3-wk period. Morphine administration resulted in a marked increase in serum corticosterone levels, and a single injection of dexamethasone mimicked the effects of morphine on thymus differentiation. Furthermore, adrenalectomy abolished the morphine-induced decrease in CD4+/CD8+ thymocytes relative to a sham-operated group. The present findings are consistent with the hypothesis that morphine-induced thymic hypoplasia may be mediated by an increase in the circulating levels of corticosterone.  相似文献   

16.
Using a dimethylbenzanthracene-induced immunogenic nonmetastatic murine mammary adenocarcinoma in BALB/c mice, our previous work has shown that splenocytes from tumor bearers have reduced responses to both mitogens and Ag including tumor-associated Ag. NK and cytotoxic T cell activities are also reduced in splenocytes of tumor bearers. Mac-1+2+ macrophages induced in mammary tumor bearers are capable of down-regulating lymphocyte responses to mitogens and tumor-associated Ag by cell to cell contact interaction and increased PGE2 production. We have found that the tumor constitutively releases a granulocyte-macrophage (GM)-CSF-like factor in vivo and in vitro, which may be responsible for the systemic increase in cells of the macrophage lineage in tumor-bearing mice. A tumor cell line established from the in vivo tumor expresses and releases GM-CSF as shown by Northern and Western blot analyses. Daily i.p. injections for 3 wk of 10,000 U of rGM-CSF into normal mice induces hemopoietic and immunologic alterations similar to those observed in tumor bearers. Mac-1+ and/or Mac-2+ macrophages can also be detected in the spleens and bone marrow of the mice treated with rGM-CSF. Additionally, splenocytes from rGM-CSF-treated mice have reduced responses to mitogens and their peritoneal exudate cells can cause in vitro down-regulation of proliferative responses of lymphocytes from normal mice. The suppression can be partially reversed by the addition of indomethacin to the cultures suggesting that PGE2 may contribute to the effect. rGM-CSF enhances the in vitro release of PGE2 by the spleen, bone marrow, and peritoneal cells of normal mice. These data indicate that the high levels of GM-CSF constitutively produced by the tumor may be responsible for the hemopoietic changes and immunologic alterations observed in tumor-bearing mice.  相似文献   

17.
In pre-Talpha (pTalpha) gene-deleted mice, the positively selectable CD4+ CD8+ double-positive thymocyte pool is only 1% that in wild-type mice. Consequently, their peripheral T cell compartment is severely lymphopenic with a concomitant increase in proportion of CD25+ FoxP3+ regulatory T cells. Using mixed bone marrow chimeras, where thymic output was 1% normal, the pTalpha(-/-) peripheral T cell phenotype could be reproduced with normal cells. In the pTalpha(-/-) thymus and peripheral lymphoid organs, FoxP3+ CD4+ cells were enriched. Parabiosis experiments showed that many pTalpha(-/-) CD4+ single-positive thymocytes represented recirculating peripheral T cells. Therefore, the enrichment of FoxP3+ CD4+ single-positive thymocytes was not solely due to increased thymic production. Thus, the pTalpha(-/-) mouse serves as a model system with which to study the consequences of chronic decreased thymic T cell production on the physiology of the peripheral T cell compartment.  相似文献   

18.
The myelopoietic inducing potential of mouse thymic stromal cells   总被引:1,自引:0,他引:1  
The thymus has generally been considered as being solely involved in T cell maturation. In this study we have demonstrated that mouse thymic stroma can also support myelopoiesis. Bone marrow from mice treated with 5-fluorouracil was depleted of cells expressing Mac-1, CD4, and CD8 and incubated on lymphocyte-free monolayer cultures of adherent thymic stromal cells. After 7 days there was a marked increase in nonadherent cells, the majority of which were Mac-1+, FcR+, and HSA+. These proliferating bone marrow cells also expressed markers (MTS 17 and MTS 37) found on thymic stromal cells. Such cells were not found in thymic cultures alone, in bone marrow cultured alone, or on control adherent cell monolayers. Supernatants from the cultured thymic stroma, however, were able to induce these cell types in the bone marrow precursor population. Incubation of normal thymocytes with a monolayer of these in vitro cultivated Mac-1+, MTS 17+, MTS 37+ myeloid cells leads to selective phagocytosis of CD4+ CD8+ cells. Hence, this study demonstrates that the thymic adherent cells can induce myelopoiesis in bone marrow-derived precursor cells and provide a form of self-renewal for at least one population of thymic stromal cells. Furthermore, these induced cells are capable of selective phagocytosis of CD4+ CD8+ thymocytes and may provide one mechanism for the selective removal of such cells from the thymus.  相似文献   

19.
Three in vivo adult mouse models were established to study which signals are required to restore the postnatal thymus. Single administration of dexamethasone, estradiol, or exposure to sublethal dose of gamma irradiation served as prototype thymus-ablating therapies. In all models, transient thymic atrophy was manifested due to the loss of the predominant portion of CD4- CD8- double negative and CD4+ CD8+ double positive thymocytes and was followed by a complete regeneration of the thymuses. Acute atrophy/regeneration was observed in the dexamethasone and irradiation models; in the estradiol-treated animals, slow kinetics of atrophy and regeneration was observed. Importantly, in both acute and chronic models, high levels of IL-7 mRNA were detected in the thymuses isolated from mice during maximum atrophy. In addition, chemokine gene array analysis of involuted thymuses revealed high levels of mRNA expression of stromal-derived factor-1alpha (SDF-1alpha), thymus-expressed chemokine (TECK), and secondary lymphoid tissue chemokine (SLC) but not of other chemokines. The levels of IL-7, SDF-1alpha, TECK, and SLC mRNA inversely correlated with the kinetics of regeneration. RT-PCR analysis of stromal cells purified from involuted thymuses confirmed increased IL-7, SDF-1alpha, and SLC gene expression in MHC class II+ CD45- epithelial cells and increased IL-7 and TECK gene expression in class II+ CD45+ CD11c+ dendritic cells. Thus, our data showed for the first time that expression of IL-7, SDF-1alpha, TECK, and SLC mRNA is induced in the thymic stroma during T cell depletion and may play an important role in the reconstitution of the adult thymus.  相似文献   

20.
MRL mice homozygous for the lpr/lpr gene develop a massive lymphadenopathy caused by the accumulation of CD4-CD8-, Thy-1-positive T cells that express B220. This phenotypically unusual T cell population coexists with normal, B220- T cells in lpr/lpr animals. To investigate the origin and differentiation pathway of B220+ T cells, the expression of a panel of developmentally regulated cell surface markers including TCR, CD4, CD8, Thy-1, and B220 was examined. Thymocytes and peripheral T lymphocytes from lpr/lpr mice were analyzed by four-color flow cytometry. The results showed that both B220+ and B220- thymocytes contained all of CD4-CD8-, CD4+CD8+, and CD4 or CD8 single positive T cell subpopulation in the lpr thymus. Expression of the V beta 11 TCR, measured by flow cytometry and reverse polymerase chain reaction, was demonstrated in lpr thymus. However, the number of T cells expressing V beta 11 was greatly reduced in both the B220+ and B220- T cell populations in lymph node, spleen, and liver. Taken together, the data provide evidence for maturation and selection of a distinct population of B220+ T cells in the thymus of MRL lpr/lpr mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号