首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Advances in proteomics technologies have enabled novel protein interactions to be detected at high speed, but they come at the expense of relatively low quality. Therefore, a crucial step in utilizing the high throughput protein interaction data is evaluating their confidence and then separating the subsets of reliable interactions from the background noise for further analyses. Using Bayesian network approaches, we combine multiple heterogeneous biological evidences, including model organism protein-protein interaction, interaction domain, functional annotation, gene expression, genome context, and network topology structure, to assign reliability to the human protein-protein interactions identified by high throughput experiments. This method shows high sensitivity and specificity to predict true interactions from the human high throughput protein-protein interaction data sets. This method has been developed into an on-line confidence scoring system specifically for the human high throughput protein-protein interactions. Users may submit their protein-protein interaction data on line, and the detailed information about the supporting evidence for query interactions together with the confidence scores will be returned. The Web interface of PRINCESS (protein interaction confidence evaluation system with multiple data sources) is available at the website of China Human Proteome Organisation.  相似文献   

2.
3.
Magnifying Genomes (MaGe) is a microbial genome annotation system based on a relational database containing information on bacterial genomes, as well as a web interface to achieve genome annotation projects. Our system allows one to initiate the annotation of a genome at the early stage of the finishing phase. MaGe's main features are (i) integration of annotation data from bacterial genomes enhanced by a gene coding re-annotation process using accurate gene models, (ii) integration of results obtained with a wide range of bioinformatics methods, among which exploration of gene context by searching for conserved synteny and reconstruction of metabolic pathways, (iii) an advanced web interface allowing multiple users to refine the automatic assignment of gene product functions. MaGe is also linked to numerous well-known biological databases and systems. Our system has been thoroughly tested during the annotation of complete bacterial genomes (Acinetobacter baylyi ADP1, Pseudoalteromonas haloplanktis, Frankia alni) and is currently used in the context of several new microbial genome annotation projects. In addition, MaGe allows for annotation curation and exploration of already published genomes from various genera (e.g. Yersinia, Bacillus and Neisseria). MaGe can be accessed at http://www.genoscope.cns.fr/agc/mage.  相似文献   

4.
We present an integrated analysis of the molecular repertoire of Chlamydomonas reinhardtii under reference conditions. Bioinformatics annotation methods combined with GCxGC/MS-based metabolomics and LC/MS-based shotgun proteomics profiling technologies have been applied to characterize abundant proteins and metabolites, resulting in the detection of 1069 proteins and 159 metabolites. Of the measured proteins, 204 currently do not have EST sequence support; thus a significant portion of the proteomics-detected proteins provide evidence for the validity of in silico gene models. Furthermore, the generated peptide data lend support to the validity of a number of proteins currently in the proposed model stage. By integrating genomic annotation information with experimentally identified metabolites and proteins, we constructed a draft metabolic network for Chlamydomonas. Computational metabolic modeling allowed an identification of missing enzymatic links. Some experimentally detected metabolites are not producible by the currently known and annotated enzyme set, thus suggesting entry points for further targeted gene discovery or biochemical pathway research. All data sets are made available as supplementary material as well as web-accessible databases and within the functional context via the Chlamydomonas-adapted MapMan annotation platform. Information of identified peptides is also available directly via the JGI-Chlamydomonas genomic resource database (http://genome.jgi-psf.org/Chlre3/Chlre3.home.html).  相似文献   

5.
The derivation and comparison of biological interaction networks are vital for understanding the functional capacity and hierarchical organization of integrated microbial communities. In the current work we present metagenomic annotation networks as a novel taxonomy-free approach for understanding the functional architecture of metagenomes. Specifically, metagenomic operon predictions are exploited to derive functional interactions that are translated and categorized according to their associated functional annotations. The result is a collection of discrete networks of weighted annotation linkages. These networks are subsequently examined for the occurrence of annotation modules that portray the functional and organizational characteristics of various microbial communities. A variety of network perspectives and annotation categories are applied to recover a diverse range of modules with different degrees of annotative cohesiveness. Applications to biocatalyst discovery and human health issues are discussed, as well as the limitations of the current implementation.  相似文献   

6.
7.
The accurate prediction of higher eukaryotic gene structures and regulatory elements directly from genomic sequences is an important early step in the understanding of newly assembled contigs and finished genomes. As more new genomes are sequenced, comparative approaches are becoming increasingly practical and valuable for predicting genes and regulatory elements. We demonstrate the effectiveness of a comparative method called pattern filtering; it utilizes synteny between two or more genomic segments for the annotation of genomic sequences. Pattern filtering optimally detects the signatures of conserved functional elements despite the stochastic noise inherent in evolutionary processes, allowing more accurate annotation of gene models. We anticipate that pattern filtering will facilitate sequence annotation and the discovery of new functional elements by the genetics and genomics communities.  相似文献   

8.
One of the most important objects in bioinformatics is a gene product (protein or RNA). For many gene products, functional information is summarized in a set of Gene Ontology (GO) annotations. For these genes, it is reasonable to include similarity measures based on the terms found in the GO or other taxonomy. In this paper, we introduce several novel measures for computing the similarity of two gene products annotated with GO terms. The fuzzy measure similarity (FMS) has the advantage that it takes into consideration the context of both complete sets of annotation terms when computing the similarity between two gene products. When the two gene products are not annotated by common taxonomy terms, we propose a method that avoids a zero similarity result. To account for the variations in the annotation reliability, we propose a similarity measure based on the Choquet integral. These similarity measures provide extra tools for the biologist in search of functional information for gene products. The initial testing on a group of 194 sequences representing three proteins families shows a higher correlation of the FMS and Choquet similarities to the BLAST sequence similarities than the traditional similarity measures such as pairwise average or pairwise maximum.  相似文献   

9.
10.
新疆天山雪莲(Sasussured involucrata)具有较高的极端低温耐受特性,为低温耐受机制研究提供了一种非常好的模式植物。新疆天山雪莲转录组注解知识库(http://www.shengtingbiology.com/Saussurea KBase/index.jsp)是基于网络数据资源的综合性数据库,由html、Perl、Perl CGI/DBD/DBI、Java和Java Script编程所设计的前端界面和用于数据存取、注释及管理的后端数据库管理系统Postgrel SQL构成。知识库包含基因组数据、转录组原始数据、质量控制数据、GC含量、功能基因序列及注释、功能基因代谢通路、功能基因的注释统计、雪莲与其它物种的转录组或基因组比较分析数据和生物分析软件包等资源。该数据库不仅有利于低温功能基因组学及低温耐受机制研究,而且为冷耐受性状物种的分子育种提供基因资源平台和理论依据。  相似文献   

11.
MOTIVATION: Numerous annotations are available that functionally characterize genes and proteins with regard to molecular process, cellular localization, tissue expression, protein domain composition, protein interaction, disease association and other properties. Searching this steadily growing amount of information can lead to the discovery of new biological relationships between genes and proteins. To facilitate the searches, methods are required that measure the annotation similarity of genes and proteins. However, most current similarity methods are focused only on annotations from the Gene Ontology (GO) and do not take other annotation sources into account. RESULTS: We introduce the new method BioSim that incorporates multiple sources of annotations to quantify the functional similarity of genes and proteins. We compared the performance of our method with four other well-known methods adapted to use multiple annotation sources. We evaluated the methods by searching for known functional relationships using annotations based only on GO or on our large data warehouse BioMyn. This warehouse integrates many diverse annotation sources of human genes and proteins. We observed that the search performance improved substantially for almost all methods when multiple annotation sources were included. In particular, our method outperformed the other methods in terms of recall and average precision.  相似文献   

12.
Complete genome data of infectious microorganisms permit systematic computational sequence-based predictions and experimental testing of candidate vaccine epitopes. Both, predictions and the interpretation of experiments rely on existing information in the literature which is mostly manually extracted and curated. The growing amount of data and literature information has created a major bottleneck for the interpretation of results and maintenance of curated databases. The lack of suitable free-text information extraction, processing, and reporting tools prompted us to develop a knowledge discovery support system that enhances the understanding of immune response and vaccine development. The current prototype system, Gene expression/epitpopes/protein interaction (GEpi), focuses on molecular functions of HIV-infected T-cells and HIV epitope information, using textmining, and interrelation of biomolecular data from domain-specific databases with MEDLINE abstract-inferred information. Results showed that extraction and processing of molecular interaction, disease associations, and gene ontology-derived functional information generate intuitive knowledge reports that aid the interpretation of host-pathogen interaction. In contrast, epitope (word and sequence) information in MEDLINE abstracts is surprisingly sparse and often lacks necessary context information, such as HLA-restriction. Since the majority of epitope information is found in tables, figures, and legends of full-text articles, its extraction may not require sophisticated natural language processing techniques. Support of vaccine development through textmining requires therefore the timely development of domain-specific extraction rules for full-text articles, and a knowledge model for epitope-related information.  相似文献   

13.
14.
Next-generation sequencing projects continue to drive a vast accumulation of metagenomic sequence data. Given the growth rate of this data, automated approaches to functional annotation are indispensable and a cornerstone heuristic of many computational protocols is the concept of guilt by association. The guilt by association paradigm has been heavily exploited by genomic context methods that offer functional predictions that are complementary to homology-based annotations, thereby offering a means to extend functional annotation. In particular, operon methods that exploit co-directional intergenic distances can provide homology-free functional annotation through the transfer of functions among co-operonic genes, under the assumption that guilt by association is indeed applicable. Although guilt by association is a well-accepted annotative device, its applicability to metagenomic functional annotation has not been definitively demonstrated. Here a large-scale assessment of metagenomic guilt by association is undertaken where functional associations are predicted on the basis of co-directional intergenic distances. Specifically, functional annotations are compared within pairs of adjacent co-directional genes, as well as operons of various lengths (i.e. number of member genes), in order to reveal new information about annotative cohesion versus operon length. The results suggests that co-directional gene pairs offer reduced confidence for metagenomic guilt by association due to difficulty in resolving the existence of functional associations when intergenic distance is the sole predictor of pairwise gene interactions. However, metagenomic operons, particularly those with substantial lengths, appear to be capable of providing a superior basis for metagenomic guilt by association due to increased annotative stability. The need for improved recognition of metagenomic operons is discussed, as well as the limitations of the present work.  相似文献   

15.
GeConT: gene context analysis   总被引:5,自引:1,他引:4  
SUMMARY: The fact that adjacent genes in bacteria are often functionally related is widely known. GeConT (Gene Context Tool) is a web interface designed to visualize genome context of a gene or a group of genes and their orthologs in all the completely sequenced genomes. The graphical information of GeConT can be used to analyze genome annotation, functional ortholog identification or to verify the genomic context congruence of any set of genes that share a common property. AVAILABILITY: http://www.ibt.unam.mx/biocomputo/gecont.html  相似文献   

16.
17.
Protein-protein interaction networks are useful in contextual annotation of protein function and in general to achieve a system-level understanding of cellular behavior. This work reports on the social behavior of the yeast protein-protein interaction network and concludes that it is non-random. This work, while providing an analysis of organization of genes into functional societies, can potentially be useful in assessing the accuracy of contextual gene annotation based on such interaction networks.  相似文献   

18.
基因组注释是识别出基因组序列中功能组件的过程,其可以直接对序列赋予生物学意义,由此方便研究者探究和分析基因组功能.基因组注释可以帮助研究从三个层次上理解基因组,一种是在核苷酸水平的注释,主要确定DNA序列中基因、RNA、重复序列等组件的物理位置,包括转录起始,翻译起始,外显子边界等具体位置信息.同时可以注释得到变异在不...  相似文献   

19.
As more and more complete bacterial genome sequences become available, the genome annotation of previously sequenced genomes may become quickly outdated. This is primarily due to the discovery and functional characterization of new genes. We have reannotated the recently published genome of Shewanella oneidensis with the following results: 51 new genes have been identified, and functional annotation has been added to the 97 genes, including 15 new and 82 existing ones with previously unassigned function. The identification of new genes was achieved by predicting the protein coding regions using the HMM-based program GeneMark.hmm. Subsequent comparison of the predicted gene products to the non-redundant protein database using BLAST and the COG (Clusters of Orthologous Groups) database using COGNITOR provided for the functional annotation.  相似文献   

20.
Multi-protein complexes are emerging as important entities of biological activity inside cells that serve to create functional diversity by contextual combination of gene products and, at the same time, organize the large number of different proteins into functional units. Many a time, when studying protein complexes rather than individual proteins, the biological insight gained has been fundamental, particularly in cases in which proteins with no previous functional annotation could be placed into a functional context derived from their 'molecular environment'. In this minireview, we summarize the current state of the art for the retrieval of multiprotein complexes by affinity purification and their analysis by mass spectrometry. The advances in technology made over the past few years now enable the study of protein complexes on a proteomic scale and it can be anticipated that the knowledge gathered from such projects will fuel drug target discovery and validation pipelines and that the technology is also going to prove valuable in the emerging field of systems biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号