首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S9 mix produces an effect similar to that of D-glucose in the L-arabinose resistance test of Salmonella typhimurium, releasing the growth inhibition exerted by L-arabinose. Two elements are responsible for this effect: the glucose-6-phosphate present in the cofactors of the S9 mix and the S9 fraction itself. UV light was used as a mutagen to compare the efficiency of S9 mix and D-glucose in allowing phenotypic expression of mutants in selective plates with L-arabinose; 0.5 ml of S9 mix per plate showed and efficacy similar to that of 0.5 mg of D-glucose per plate. To verify that the S9 mix is equivalent to D-glucose traces in selective plates with respect to the number of induced mutants in compounds requiring metabolic activation, we utilized 2 direct-acting nitrofurans. Our conclusion is that activation of agents could be erroneously attributed to the S9 mix, when plates with 0.5 mg of D-glucose are compared to plates with 0.5 ml of S9 mix plus 0.5 mg of D-glucose. Our results suggest that D-glucose traces be omitted in experiments requiring the presence of the S9 mixture.  相似文献   

2.
A new assay has been described for mutagenicity testing using an L-arabinose-sensitive strain of Salmonella typhimurium. The test strain SV3 and several L-arabinose-resistant mutants selected therefrom are characterized in the present study by 3 different criteria: inhibition of growth by L-arabinose, accumulation of keto-sugars, and activities of the enzymes involved in L-arabinose catabolism. Strain SV3 (ara-531) shows high levels of inducible L-arabinose isomerase (EC 5.3.1.4) and L-ribulokinase (EC 2.7.1.16) activities, but is deficient in L-ribulose-5-phosphate 4-epimerase (EC 5.1.3.4), the enzyme encoded in Escherichia coli by gene D in the araBAD operon. Addition of L-arabinose to SV3 growing in glycerol or casamino acids stops growth. D-Glucose only partially reverses this inhibition. Reversion of the ara-531 mutation restores different levels of epimerase activity and resistance to L-arabinose. However, the great majority of the L-arabinose-resistant mutants do not utilize L-arabinose. The physiological and enzymatic properties of these L-arabinose non-utilizing mutants suggest that L-arabinose resistance is due to forward mutations in at least 3 other genes, araA, araB and araC, blocking steps prior to L-ribulose 5-phosphate accumulation.  相似文献   

3.
Expression of the L-arabinose regulon in Escherichia coli B/r requires, among other things, cyclic adenosine-3', 5'-monophosphate (cAMP) and the cAMP receptor protein (CRP). Mutants deficient in adenyl cyclase (cya-), the enzyme which synthesizes cAMP, or CRP (crp-) are unable to utilize a variety of carbohydrates, including L-arabinose. Ara+ revertants of a cya-crp- strain were isolated on 0.2% minimal L-arabinose plates, conditions which require the entire ara regulon to be activated in the absence of cAMP and CRP. Evidence from genetic and physiological studies is consistent with placing these mutations in the araC regulatory gene. Deletion mapping with one mutant localized the site within either araO or araC, and complementation tests indicated the mutants acted trans to confer the ability to utilize L-arabinose in a cya-crp- genetic background. Since genetic analysis supports the conclusion, that the mutant sites are in the araC regulatory gene, the mutants were designated araCi, indicating a mutation in the regulatory gene affecting the cAMP-CRP requirement. Physiological analysis of one mutant, araCi1, illustrates the trans-acting nature of the mutation. In a cya-crp- genetic background, araCi1 promoted synthesis of both isomerase, a product of the araBAD operon, and permease, a product of the araE operon. Isomerase and permease levels in araCi1 cya+ crp+ were hyperinducible, and the sensitivity of each to cAMP was altered. Two models are presented that show the possible mutational lesion in the araCi strains.  相似文献   

4.
5.
L-Arabinose isomerase (E.C. 5.3.1.14) catalyzes the reversible isomerization between L-arabinose and L-ribulose and is highly selective towards L-arabinose. By using a directed evolution approach, enzyme variants with altered substrate specificity were created and screened in this research. More specifically, the screening was directed towards the identification of isomerase mutants with L-ribose isomerizing activity. Random mutagenesis was performed on the Escherichia coli L-arabinose isomerase gene (araA) by error-prone polymerase chain reaction to construct a mutant library. To enable screening of this library, a selection host was first constructed in which the mutant genes were transformed. In this selection host, the genes encoding for L-ribulokinase and L-ribulose-5-phosphate-4-epimerase were brought to constitutive expression and the gene encoding for the native L-arabinose isomerase was knocked out. L-Ribulokinase and L-ribulose-5-phosphate-4-epimerase are necessary to ensure the channeling of the formed product, L-ribulose, to the pentose phosphate pathway. Hence, the mutant clones could be screened on a minimal medium with L-ribose as the sole carbon source. Through the screening, two first-generation mutants were isolated, which expressed a small amount of L-ribose isomerase activity.  相似文献   

6.
A forward and a reverse mutation assay designed to detect environmental mutagens have been compared in Salmonella typhimurium. The forward mutation assay scored resistance to L-arabinose and the reverse assay, reversion of histidine auxotrophy. Eighteen chemicals of different structural groups, all known to be mutagenic in the histidine reverse assay, were applied to strains carrying the genetic markers needed to perform both mutation assays. The mutagenicity of each chemical was determined by both plate and liquid tests. The plate test counted absolute numbers of surviving mutants and the liquid test separately measured survival and frequency of mutants among the survivors. All the chemicals used were found to be mutagenic in both mutation assays. The response of the L-arabinose assay was equal to or larger than the response of the histidine assay in the case of 16 chemicals. The two other compounds, 2-nitrofluorene and sodium azide, were detected more efficiently by the histidine assay. Sodium azide, a non-carcinogenic compound, is a potent mutagen in the histidine assay, but very weak in the L-arabinose assay.  相似文献   

7.
The present study shows that the L-arabinose resistance test with Salmonella typhimurium detects that freshly infused tea is highly mutagenic in the absence of mammalian microsomal activation. Both the mutagenesis protocol (preincubation test) and the additional genetic characteristics of the bacterial tester strain (excision repair deficiency, normal lipopolysaccharide barrier and the presence of plasmid pKM101) were critical factors in the optimal induction by tea of forward mutations to L-arabinose resistance. The TA104 strain--a histidine auxotroph specific to oxidative mutagens--was the most sensitive tester strain of the Ames test to the direct-acting mutagenicity of tea. In comparison with strain TA104, the sensitivity of the Ara forward mutation test was 18 times higher, one cup of tea (200 ml) inducing 3 X 10(6) AraR mutants. More than 90% of the mutagenicity of 150 microliter of a fresh tea infusion, or that of the equivalent amount (1.32 mg) of the corresponding lyophilized residue, was suppressed by 10 units of catalase. In contrast to catalase, superoxide dismutase was rather ineffective. These results indicate that hydrogen peroxide is produced in tea solutions, playing an essential role in its mutagenicity. In comparison, the role of superoxide anion seems negligible. Like catalase, the chelating agent DETAPAC showed a protective effect with respect to the mutagenicity of tea, suggesting the additional implication of hydroxyl radicals.  相似文献   

8.
9.
Partial reversion mutants derived from a strain containing a strongly polar initiator-defective mutation (araI1036) in the L-arabinose operon were found to have several characteristics expected of mutants with reduced initiator function. These reversion mutations are cotransduced with the ara region and are probably within the araI region. Furthermore, they permit induction of the L-arabinose operon to a level only one-third of the normal wild-type level. These partially functional initiator regions reduce the expression of structural genes in the cis position only; they function quite independently of wild-type or defective initiator regions in the trans position. These mutants exhibit a two- to threefold increase in the rate of expression of ara operon genes within one-tenth of a generation after a shift of the growth temperature from 28 to 42 degrees C. This suggests that the temperature optimum for initiation of operon expression is higher for the partial revertant strains than it is for strains containing a wild-type initiator region.  相似文献   

10.

Background

In mixed sugar fermentations with recombinant Saccharomyces cerevisiae strains able to ferment D-xylose and L-arabinose the pentose sugars are normally only utilized after depletion of D-glucose. This has been attributed to competitive inhibition of pentose uptake by D-glucose as pentose sugars are taken up into yeast cells by individual members of the yeast hexose transporter family. We wanted to investigate whether D-glucose inhibits pentose utilization only by blocking its uptake or also by interfering with its further metabolism.

Results

To distinguish between inhibitory effects of D-glucose on pentose uptake and pentose catabolism, maltose was used as an alternative carbon source in maltose-pentose co-consumption experiments. Maltose is taken up by a specific maltose transport system and hydrolyzed only intracellularly into two D-glucose molecules. Pentose consumption decreased by about 20 - 30% during the simultaneous utilization of maltose indicating that hexose catabolism can impede pentose utilization. To test whether intracellular D-glucose might impair pentose utilization, hexo-/glucokinase deletion mutants were constructed. Those mutants are known to accumulate intracellular D-glucose when incubated with maltose. However, pentose utilization was not effected in the presence of maltose. Addition of increasing concentrations of D-glucose to the hexo-/glucokinase mutants finally completely blocked D-xylose as well as L-arabinose consumption, indicating a pronounced inhibitory effect of D-glucose on pentose uptake. Nevertheless, constitutive overexpression of pentose-transporting hexose transporters like Hxt7 and Gal2 could improve pentose consumption in the presence of D-glucose.

Conclusion

Our results confirm that D-glucose impairs the simultaneous utilization of pentoses mainly due to inhibition of pentose uptake. Whereas intracellular D-glucose does not seem to have an inhibitory effect on pentose utilization, further catabolism of D-glucose can also impede pentose utilization. Nevertheless, the results suggest that co-fermentation of pentoses in the presence of D-glucose can significantly be improved by the overexpression of pentose transporters, especially if they are not inhibited by D-glucose.  相似文献   

11.
The Escherichia coli araBAD operon consists of three genes encoding three enzymes that convert L-arabinose to D-xylulose-5 phosphate. In this paper we report that the genes of the E. coli araBAD operon have been expressed in Saccharomyces cerevisiae using strong promoters from genes encoding S. cerevisiae glycolytic enzymes (pyruvate kinase, phosphoglucose isomerase, and phosphoglycerol kinase). The expression of these cloned genes in yeast was demonstrated by the presence of the active enzymes encoded by these cloned genes and by the presence of the corresponding mRNAs in the new host. The level of expression of L-ribulokinase (araB) and L-ribulose-5-phosphate 4-epimerase (araD) in S. cerevisiae was relatively high, with greater than 70% of the activity of the enzymes in wild type E. coli. On the other hand, the expression of L-arabinose isomerase (araA) reached only 10% of the activity of the same enzyme in wild type E. coli. Nevertheless, S. cerevisiae, bearing the cloned L-arabinose isomerase gene, converted L-arabinose to detectable levels of L-ribulose during fermentation. However, S. cerevisiae bearing all three genes (araA, araB, and araD) was not able to produce detectable amount of ethanol from L-arabinose. We speculate that factors such as pH, temperature, and competitive inhibition could reduce the activity of these enzymes to a lower level during fermentation compared to their activity measured in vitro. Thus, the ethanol produced from L-arabinose by recombinant yeast containing the expressed BAD genes is most likely totally consumed by the cell to maintain viability.  相似文献   

12.
The gene araF, the product of which is the L-arabinose-binding protein--a component of the high-affinity L-arabinose transport system, was located on the Escherichia coli linkage map at 45 min. We established this location using bacteriophage P2 eductates and bacteriophage P1 cotransduction frequencies with the adjacent genetic loci, his (histidine biosynthesis) and mgl (methylgalactoside transport). In addition, we isolated a number of mutants that phenotypically exhibited altered high-affinity L-arabinose transport capacities. At least two of these mutations were located in the araF gene, as binding protein purified from these strains exhibited altered in vitro arabinose-binding properties.  相似文献   

13.
Imidazole, histidine, histamine, histidinol phosphate, urocanic acid, or imidazolepropionic acid were shown to induce the L-arabinose operon in the absence of cyclic adenosine 3',5'-monophosphate. Induction was quantitated by measuring the increased differential rate of synthesis of L-arabinose isomerase in Escherichia coli strains which carried a deletion of the adenyl cyclase gene. The crp gene product (cyclic adenosine 3',5'-monophosphate receptor protein) and the araC gene product (P2) were essential for induction of the L-arabinose operon by imidazole and its derivatives. These compounds were unable to circumvent the cyclic adenosine 3',5'-monophosphate in the induction of the lactose or the maltose operons. The L-arabinose regulon was catabolite repressed upon the addition of glucose to a strain carrying an adenyl cyclase deletion growing in the presence of L-arabinose with imidazole. These results demonstrated that several imidazole derivatives may be involved in metabolite gene regulation (23).  相似文献   

14.
Strain TA102 of S. typhimurium is a new histidine-requiring mutant, particularly suited to the detection of oxidative mutagens acting at A.T base pairs. 10 oxidizing chemicals, previously tested in strain TA102, were used to evaluate the mutagenic sensitivity of the L-arabinose forward mutation assay of S. typhimurium with respect to those types of mutagens. The mutagenicity of each compound was determined by liquid test, measuring both the frequency of mutants among the survivors and the absolute number of mutants growing in selective plates with traces of D-glucose. Strain BA13 with a wild-type lipopolysaccharide barrier was used as compared to the deep rough derivative strain BA9. The chemicals studied were: bleomycin, t-butyl hydroperoxide, chromium trioxide, cumene hydroperoxide, formaldehyde, glyoxal, glutaraldehyde, hydrogen peroxide, paraquat, and phenylhydrazine. Additionally, ultrasonic oscillation was used as a presumable non-mutagenic lethal control treatment. The L-arabinose forward mutation assay detected the mutagenic activity of all the chemicals under study with a high degree of sensitivity, including paraquat which is unable to revert strain TA102. Positive responses were obtained at doses equivalent to or 10 times lower than the doses detected by strain TA102. The results support the idea that the L-arabinose forward mutation assay could replace the set of specific tester strains used by the histidine reverse mutation assay in general screening for genetic toxins.  相似文献   

15.
Porins of Pseudomonas fluorescens MFO as fibronectin-binding proteins   总被引:1,自引:0,他引:1  
Gene araA encoding an L-arabinose isomerase (AraA) from the hyperthermophile, Thermotoga neapolitana 5068 was cloned, sequenced, and expressed in Escherichia coli. The gene encoded a polypeptide of 496 residues with a calculated molecular mass of 56677 Da. The deduced amino acid sequence has 94.8% identical amino acids compared with the residues in a putative L-arabinose isomerase of Thermotoga maritima. The recombinant enzyme expressed in E. coli was purified to homogeneity by heat treatment, ion exchange chromatography and gel filtration. The thermophilic enzyme had a maximum activity of L-arabinose isomerization and D-galactose isomerization at 85 degrees C, and required divalent cations such as Co(2+) and Mn(2+) for its activity and thermostability. The apparent K(m) values of the enzyme for L-arabinose and D-galactose were 116 mM (v(max), 119 micromol min(-1) mg(-1)) and 250 mM (v(max), 14.3 micromol min(-1) mg(-1)), respectively, that were determined in the presence of both 1 mM Co(2+) and 1 mM Mn(2+). A 68% conversion of D-galactose to D-tagatose was obtained using the recombinant enzyme at the isomerization temperature of 80 degrees C.  相似文献   

16.
L-Arabinitol 4-dehydrogenase (Lad1) of the cellulolytic and hemicellulolytic fungus Hypocrea jecorina (anamorph: Trichoderma reesei) has been implicated in the catabolism of L-arabinose, and genetic evidence also shows that it is involved in the catabolism of D-xylose in xylitol dehydrogenase (xdh1) mutants and of D-galactose in galactokinase (gal1) mutants of H. jecorina. In order to identify the substrate specificity of Lad1, we have recombinantly produced the enzyme in Escherichia coli and purified it to physical homogeneity. The resulting enzyme preparation catalyzed the oxidation of pentitols (L-arabinitol) and hexitols (D-allitol, D-sorbitol, L-iditol, L-mannitol) to the same corresponding ketoses as mammalian sorbitol dehydrogenase (SDH), albeit with different catalytic efficacies, showing highest k(cat)/K(m) for L-arabinitol. However, it oxidized galactitol and D-talitol at C4 exclusively, yielding L-xylo-3-hexulose and D-arabino-3-hexulose, respectively. Phylogenetic analysis of Lad1 showed that it is a member of a terminal clade of putative fungal arabinitol dehydrogenase orthologues which separated during evolution of SDHs. Juxtapositioning of the Lad1 3D structure over that of SDH revealed major amino acid exchanges at topologies flanking the binding pocket for d-sorbitol. A lad1 gene disruptant was almost unable to grow on L-arabinose, grew extremely weakly on L-arabinitol, D-talitol and galactitol, showed reduced growth on D-sorbitol and D-galactose and a slightly reduced growth on D-glucose. The weak growth on L-arabinitol was completely eliminated in a mutant in which the xdh1 gene had also been disrupted. These data show not only that Lad1 is indeed essential for the catabolism of L-arabinose, but also that it constitutes an essential step in the catabolism of several hexoses; this emphasizes the importance of such reductive pathways of catabolism in fungi.  相似文献   

17.
The expression of 26 pectinolytic genes from Aspergillus niger was studied in a wild type strain and a CreA derepressed strain, under 16 different growth conditions, to obtain an expression profile for each gene. These expression profiles were then submitted to cluster analysis to identify subsets of genes with similar expression profiles. With the exception of the feruloyl esterase encoding genes, all genes were expressed in the presence of D-galacturonic acid, polygalacturonate, and/or sugar beet pectin. Despite this general observation five distinct groups of genes were identified. The major group consisted of 12 genes of which the corresponding enzymes act on the pectin backbone and for which the expression, in general, is higher after 8 and 24 h of incubation, than after 2 or 4 h. Two other groups of genes encoding pectin main chain acting enzymes were detected. Two additional groups contained genes encoding L-arabinose and D-galactose releasing enzymes, and ferulic acid releasing enzymes, respectively. The genes encoding beta-galactosidase and the L-arabinose releasing enzymes were not only expressed in the presence of D-galacturonic acid, but also in the presence of L-arabinose, suggesting that they are under the control of two regulatory systems. Similarly, the rhamnogalacturonan acetylesterase encoding gene was not only expressed in the presence of D-galacturonic acid, polygalacturonate and sugar beet pectin, but also in the presence of L-rhamnose. The data presented provides indications for a general pectinolytic regulatory system responding to D-galacturonic acid or a metabolite derived from it. In addition, subsets of pectinolytic genes are expressed in response to the presence of L-arabinose, L-rhamnose or ferulic acid.  相似文献   

18.
Abstract The degradation pathway for L-arabinose, which consists of a sequence of alternating reduction and oxidation reactions prior to ultimate phosphorylation, was studied in Aspergillus nidulans wild-type as well as in an L-arabinose non-utilizing mutant. The inability of the mutant to use L-arabinose was caused by the absence of L-arabitol dehydrogenase activity. The effect of the mutation on polyol accumulation patterns was studied upon growth on various carbon sources. The presence of L-arabinose resulted in intracellular accumulation of arabitol in this mutant. Moreover, the mutant secreted arabitol under these conditions and, in contrast to the wild-type, featured enhanced expression of enzymes involved in L-arabinose catabolism as well as of extracellular glycosyl hydrolases involved in degradation of the plant cell wall polysaccharide L-arabinan.  相似文献   

19.
Summary The inducible L-arabinose transport system was characterized in Salmonella typhimurium LT2. Only one L-arabinose transport system with a Km of 2x10-4 M was identified. The results suggested that araE may be the only gene which codes for L-arabinose transport activity under the conditions tested. An araE-lac fusion strain was used to study the induction of the araE gene. No araE expression was detected when the L-arabinose concentration was lower than 1 mM. The expression of araE reached a maximum in the presence of 50 mM L-arabinose, and was significantly reduced in the presence of D-glucose. Expression of the araBAD and araE genes was coordinately regulated. The concentration of L-arabinose that allowed maximum araBAD gene expression was 50-fold lower in an araE + strain compared to an araE strain.  相似文献   

20.
Azospirillum brasiliense converts L-arabinose to alpha-ketoglutarate via five hypothetical enzymatic steps. We purified and characterized L-arabinose 1-dehydrogenase (EC 1.1.1.46), catalyzing the conversion of L-arabinose to L-arabino-gamma-lactone as an enzyme responsible for the first step of this alternative pathway of L-arabinose metabolism. The purified enzyme preferred NADP+ to NAD+ as a coenzyme. Kinetic analysis revealed that the enzyme had high catalytic efficiency for both L-arabinose and D-galactose. The gene encoding L-arabinose 1-dehydrogenase was cloned using a partial peptide sequence of the purified enzyme and was overexpressed in Escherichia coli as a fully active enzyme. The enzyme consists of 308 amino acids and has a calculated molecular mass of 33,663.92 Da. The deduced amino acid sequence had some similarity to glucose-fructose oxidoreductase, D-xylose 1-dehydrogenase, and D-galactose 1-dehydrogenase. Site-directed mutagenesis revealed that the enzyme possesses unique catalytic amino acid residues. Northern blot analysis showed that this gene was induced by L-arabinose but not by D-galactose. Furthermore, a disruptant of the L-arabinose 1-dehydrogenase gene did not grow on L-arabinose but grew on D-galactose at the same growth rate as the wild-type strain. There was a partial gene for L-arabinose transport in the flanking region of the L-arabinose 1-dehydrogenase gene. These results indicated that the enzyme is involved in the metabolism of L-arabinose but not D-galactose. This is the first identification of a gene involved in an alternative pathway of L-arabinose metabolism in bacterium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号