首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of 21% O2 and 3% O2 on the CO2 exchange of detached wheat leaves was measured in a closed system with an infrared carbon dioxide analyzer. Temperature was varied between 2° and 43°, CO2 concentration between 0.000% and 0.050% and light intensity between 40 ft-c and 1000 ft-c. In most conditions, the apparent rate of photosynthesis was inhibited in 21% O2 compared to 3% O2. The degree of inhibition increased with increasing temperature and decreasing CO2 concentration. Light intensity did not alter the effect of O2 except at light intensities or CO2 concentrations near the compensation point. At high CO2 concentrations and low temperature, O2 inhibition of apparent photosynthesis was absent. At 3% O2, wheat resembled tropical grasses in possessing a high rate of photosynthesis, a temperature optimum for photosynthesis above 30°, and a CO2 compensation point of less than 0.0005% CO2. The effect of O2 on apparent photosynthesis could be ascribed to a combination of stimulation of CO2 production during photosynthesis, and inhibition of photosynthesis itself.  相似文献   

2.
14CO2 assimilation, 14C incorporation into glycolate and glycolate accumulation in -HPMS treated bean leaves at various O2 and CO2 concentrations were studied. In 1% CO2 oxygen concentration had no significant effect on glycolate accumulation and 14C incorporation into glycolate. In the CO2 concentration range of 0.03% to 0.01%, increased oxygen concentration decreased not only 14CO2 assimilation but also glycolate accumulation and 14C incorporation into glycolate. In 1% and 0.1% CO2, no matter what O2 concentration was supplied, and in 0.03% CO2 with 2% and 21% O2, all of the glycolate accumulated was formed from newly assimilated carbon. In 0.01% CO2 and 2%, 21% and 100% O2, and in 0.03% CO2 with 100% O2, a substantial portion of the glycolic acid that accumulated in leaves originated from endogenous unlabelled substrates. These findings are discussed in terms of possible changes in the ratio of RuBP carboxylation to RuBP oxygenation and of changes of RuBP pool size, induced by changing O2 and CO2 concentrations.This work was supported by the Polish Academy of Sciences, Contract No. 10.2.10.  相似文献   

3.
Two cultivars of wheat (Triticum aestivum L. cvs Sonoita and Yecora Rojo) were grown to maturity in a growth chamber within four sub-chambers under two CO2 levels (350 or 1000 microliters per liter) at either ambient (21%) or low O2 (5%). Growth analysis was used to characterize changes in plant carbon budgets imposed by the gas regimes. Large increases in leaf areas were seen in the low O2 treatments, due primarily to a stimulation of tillering. Roots developed normally at 5% O2. Seed development was inhibited by the subambient O2 treatment, but this effect was overcome by CO2 enrichment at 1000 microliters per liter. Dry matter accumulation and seed number responded differently to the gas treatments. The greatest dry matter production occurred in the low O2, high CO2 treatment, while the greatest seed production occurred in the ambient O2, high CO2 treatment. Growth and assimilation were stimulated more by either CO2 enrichment or low O2 in cv Yecora Rojo than in Sonoita. These experiments are the first to explore the effect of whole plant low O2 treatments on growth and reproduction. The finding that CO2 enrichment overcomes low O2-induced sterility may help elucidate the nature of this effect.  相似文献   

4.
An open system associated with an infrared gas analyzer was employed to study transients in CO2 exchange generated upon darkening preilluminated leaf discs of tobacco (Nicotiana tabacum vars John Williams Broadleaf and Havana Seed). An empirical formula presented previously enabled prediction of the analyzer response under nonsteady state conditions as a function of time and of the leaf CO2 exchange rate. A computer was used to evaluate parameters of the leaf CO2 release rate to provide an estimate of the initial rate of postillumination CO2 evolution and to produce maximal agreement between predicted and observed analyzer responses. In 21% O2, the decline in rate of CO2 evolution upon darkening followed first order kinetics. Initial rates of CO2 evolution following darkening were relatively independent of the prior ambient CO2 concentrations. However, rates of photorespiration expressed as a fraction of net photosynthesis declined rapidly with increasing external CO2 concentration at 21% O2. Under normal atmospheric conditions, photorespiration was 45 to 50% of the net CO2 fixation rate at 32°C and high irradiance. The rapid initial CO2 evolution observed upon darkening at 21% O2 was absent in 3% O2. Rates of photorespiration under normal atmospheric concentrations of CO2 and O2 as measured by the postillumination burst were highly dependent upon temperature (observed activation energy = 30.1 kilocalories per mole). The results are discussed with respect to previously published estimates of photorespiration in C3 leaf tissue.  相似文献   

5.
Cornic G  Woo KC  Osmond CB 《Plant physiology》1982,70(5):1310-1315
Intact spinach (Spinacia oleracea L.) chloroplasts, when pre-illuminated at 4 millimoles quanta per square meter per second for 8 minutes in a CO2-free buffer at 21% O2, showed a decrease (30-70%) in CO2-dependent O2 evolution and 14CO2 uptake. This photoinhibition was observed only when the O2 concentration and the quantum fluence rate were higher than 4% and 1 millimole per square meter per second, respectively. There was only a small decrease in the extent of photoinhibition when the CO2 concentration was increased from 0 to 25 micromolar during the treatment, but photoinhibition was abolished when the CO2 concentration was increased to 30 micromolar. Addition of small quantities of P-glycerate (40-200 micromolar) or glycerate (160 micromolar) was found to prevent photoinhibition. Other intermediates of the Calvin cycle (fructose-6-P, fructose-1,6-P, ribose-5-P, ribulose-5-P) also prevented photoinhibition to various extents. Oxaloacetate was not effective in preventing photoinhibition in these chloroplasts. The amount of O2 evolved during treatments with 3-P-glycerate or glycerate was no more than 65% of that measured in the presence of low CO2 concentrations (9-12 micromolar) which did not prevent photoinhibition. In all cases, the extent to which photoinhibition was prevented by these metabolites was not correlated to the amount of O2 evolved during the photoinhibitory treatment. It is concluded that in these chloroplasts the prevention of the O2-dependent photoinhibition of light saturated CO2 fixation capacity is not linked to the dissipation of excitation energy via the photosynthetic electron transport nor to ATP utilization. The requirement of O2 for photoinhibition of CO2 fixation capacity in isolated chloroplasts may be explained by an effect of O2 in allowing metabolic depletion of Calvin cycle intermediates.  相似文献   

6.
Photosynthetic CO2 and O2 exchange was studied in two moss species, Hypnum cupressiforme Hedw. and Dicranum scoparium Hedw. Most experiments were made during steady state of photosynthesis, using 18O2 to trace O2 uptake. In standard experimental conditions (photoperiod 12 h, 135 micromoles photons per square meter per second, 18°C, 330 microliters per liter CO2, 21% O2) the net photosynthetic rate was around 40 micromoles CO2 per gram dry weight per hour in H. cupressiforme and 50 micromoles CO2 per gram dry weight per hour in D. scoparium. The CO2 compensation point lay between 45 and 55 microliters per liter CO2 and the enhancement of net photosynthesis by 3% O2versus 21% O2 was 40 to 45%. The ratio of O2 uptake to net photosynthesis was 0.8 to 0.9 irrespective of the light intensity. The response of net photosynthesis to CO2 showed a high apparent Km (CO2) even in nonsaturating light. On the other hand, O2 uptake in standard conditions was not far from saturation. It could be enhanced by only 25% by increasing the O2 concentration (saturating level as low as 30% O2), and by 65% by decreasing the CO2 concentration to the compensation point. Although O2 is a competitive inhibitor of CO2 uptake it could not replace CO2 completely as an electron acceptor, and electron flow, expressed as gross O2 production, was inhibited by both high O2 and low CO2 levels. At high CO2, O2 uptake was 70% lower than the maximum at the CO2 compensation point. The remaining activity (30%) can be attributed to dark respiration and the Mehler reaction.  相似文献   

7.
Through use of a recently developed technique that can measure CO2 exchange by individual attached roots, the influences of soil O2 and CO2 concentrations on root respiration were determined for two species of shallow-rooted cacti that typically occur in porous, well-drained soils. Although soil O2 concentrations in the rooting zone in the field were indistinguishable from that in the ambient air (21% by volume), the CO2 concentrations 10 cm below the soil surface averaged 540 μLL−1 for the barrel cactusFerocactus acanthodes under dry conditions and 2400 μLL−1 under wet conditions in a loamy sand. For the widely cultivated platyopuntiaOpuntia ficus-indica in a sandy clay loam, the CO2 concentration at 10 cm averaged 1080 μLL−1 under dry conditions and 4170 μLL−1 under wet conditions. For both species, the respiration rate in the laboratory was zero at 0% O2 and increased to its maximum value at 5% O2 for rain roots (roots induced by watering) and 16% O2 for established roots. Established roots ofO. ficus-indica were slightly more tolerant of elevated CO2 than were those ofF. acanthodes, 5000 μLL−1 inhibiting respiration by 35% and 46%, respectively. For both species, root respiration was reduced to zero at 20,000 μLL−1 (2%) CO2. In contrast to the reversible effects of 0% O2, inhibition by 2% CO2 was irreversible and led to the death of cortical cells in established roots in 6 h. Although the restriction of various cacti and other CAM plants to porous soils has generally been attributed to their requirement for high O2 concentrations, the present results indicate that susceptibility of root respiration to elevated soil CO2 concentrations may be more important.  相似文献   

8.
Dry matter accumulation, nitrogen content and N2 fixation rates of soybean (Glycine max [L.] Merr. cv. Wye) plants grown in chambers in which the aerial portion was exposed to a pO2 of 5, 10, 21, or 30% and a pCO2 of 300 μl CO2/l or a pO2 of 21% and a pCO2 of 1200 μl CO2/l during the complete growth cycle were measured. Total N2[C2H2] fixed was increased by CO2/O2 ratios greater than those in air and was decreased by ratios smaller than those in air; the effects on N2 fixation of decreased pO2 or elevated pCO2 were quantitatively similar during the period of vegetative growth. Decreased pO2 produced a smaller increase then elevated pCO2 during the reproductive period, presumably because of the decreased sink activity of the arrested reproductive growth under subambient pO2. At a pO2 of 5% and a pCO2 of 300 μl CO2/l total N2 fixed was increased 125% and per cent nitrogen content in the vegetative parts was increased relative to air while that in the seed was decreased. Dry matter production was increased and reproductive growth was arrested as previously reported for plants receiving only fertilizer nitrogen. At a pO2 of 30% and a pCO2 of 300 μl CO2/l total N2 fixed was decreased 50% and per cent nitrogen content in the vegetative part was increased relative to air while that in the reproductive structures was unaffected. Dry matter production was similarly decreased in both vegetative and reproductive structures. These effects of altered pO2 in the aerial part on N2 fixation are consistent with the hypothesis that the amount of photosynthate available to the nodule may be the most significant primary factor limiting N2 fixation while sink activity of the reproductive structures may be a secondary factor.  相似文献   

9.
Four species of the genus Flaveria, namely F. anomala, F. linearis, F. pubescens, and F. ramosissima, were identified as intermediate C3-C4 plants based on leaf anatomy, photosynthetic CO2 compensation point, O2 inhibition of photosynthesis, and activities of C4 enzymes. F. anomala and F. ramosissima exhibit a distinct Kranz-like leaf anatomy, similar to that of the C4 species F. trinervia, while the other C3-C4 intermediate Flaveria species possess a less differentiated Kranz-like leaf anatomy. Photosynthetic CO2 compensation points of these intermediates at 30°C were very low relative to those of C3 plants, ranging from 7 to 14 microliters per liter. In contrast to C3 plants, net photosynthesis by the intermediates was not sensitive to O2 concentrations below 5% and decreased relatively slowly with increasing O2 concentration. Under similar conditions, the percentage inhibition of photosynthesis by 21% O2 varied from 20% to 25% in the intermediates compared with 28% in Lycopersicon esculentum, a typical C3 species. The inhibition of carboxylation efficiency by 21% O2 varied from 17% for F. ramosissima to 46% for F. anomala and were intermediate between the C4 (2% for F. trinervia) and C3 (53% for L. esculentum) values. The intermediate Flaveria species, especially F. ramosissima, have substantial activities of the C4 enzymes, phosphoenolpyruvate carboxylase, pyruvate, orthophosphate dikinase, NADP-malic enzyme, and NADP-malate dehydrogenase, indicating potential for C4 photosynthesis. It appears that these Flaveria species may be true biochemical C3-C4 intermediates.  相似文献   

10.
The weedy species Parthenium hysterophorus (Asteraceae) possesses a Kranz-like leaf anatomy. The bundle sheath cells are thick-walled and contain numerous granal chloroplasts, prominent mitochondria, and peroxisomes, all largely arranged in a centripetal position. Both mesophyll and bundle sheath chloroplasts accumulate starch. P. hysterophorus exhibits reduced photorespiration as indicated by a moderately low CO2 compensation concentration (20-25 microliters per liter at 30°C and 21% O2) and by a reduced sensitivity of net photosynthesis to 21% O2. In contrast, the related C3 species P. incanum and P. argentatum (guayule) lack Kranz anatomy, have higher CO2 compensation concentrations (about 55 microliters per liter), and show a greater inhibition of photosynthesis by 21% O2. Furthermore, in P. hysterophorus the CO2 compensation concentration is relatively less sensitive to changes in O2 concentrations and shows a biphasic response to changing O2, with a transition point at about 11% O2. Based on these results, P. hysterophorus is classified as a C3-C4 intermediate. The activities of diagnostic enzymes of C4 photosynthesis in P. hysterophorus were very low, comparable to those observed in the C3 species P. incanum (e.g. phosphoenolpyruvate carboxylase activity of 10-29 micromoles per milligram of chlorophyll per hour). Exposures of leaves of each species to 14CO2 (for 8 seconds) in the light resulted in 3-phosphoglycerate and sugar phosphates being the predominant initial 14C products (77-84%), with ≤4% of the 14C-label in malate plus aspartate. These results indicate that in the C3-C4 intermediate P. hysterophorus, the reduction in leaf photorespiration cannot be attributed to C4 photosynthesis.  相似文献   

11.
The quantum yields of C3 and C4 plants from a number of genera and families as well as from ecologically diverse habitats were measured in normal air of 21% O2 and in 2% O2. At 30 C, the quantum yields of C3 plants averaged 0.0524 ± 0.0014 mol CO2/absorbed einstein and 0.0733 ± 0.0008 mol CO2/absorbed einstein under 21 and 2% O2. At 30 C, the quantum yields of C4 plants averaged 0.0534 ± 0.0009 mol CO2/absorbed einstein and 0.0538 ± 0.0011 mol CO2/absorbed einstein under 21 and 2% O2. At 21% O2, the quantum yield of a C3 plant is shown to be strongly dependent on both the intercellular CO2 concentration and leaf temperature. The quantum yield of a C4 plant, which is independent of the intercellular CO2 concentration, is shown to be independent of leaf temperature over the ranges measured. The changes in the quantum yields of C3 plants are due to changes in the O2 inhibition. The evolutionary significance of the CO2 dependence of the quantum yield in C3 plants and the ecological significance of the temperature effects on the quantum yields of C3 and C4 plants are discussed.  相似文献   

12.
Spatial and temporal variations in the concentrations of dissolved gases (CH4, CO2, and O2) in peat cores were studied using membrane inlet mass spectrometry (MIMS). Variations in vertical gas profiles were observed between random peat cores taken from hollows on the same peat bog. Methane concentrations in profiles (0–30 cm) generally increased with depth and reached maximum values in the range of 200–450 m CH4 below about 13-cm depth. In some profiles, a peak of dissolved methane was observed at 7-cm depth. Oxygen penetrated to approximately 2-cm depth in the hollows. The sampling probe was used to continuously monitor CH4, CO2, and O2 concentrations at fixed depths in peat cores over periods of several days. The concentration of dissolved CO2 and O2 at 1-cm depth oscillated over a 24-h period with the maximum of CO2 concentration corresponding with the minimum of 02. Diurnal variations in CO2 but not CH4 were measured at 15-cm depth; dissolved CO2 levels decreased during daylight hours to a constant minimum concentration of 4.85 mm. This report also describes the application of MIMS for the measurement of gaseous diffusion rates in peat using an inert gas (argon); the value of D, the diffusion coefficient, was 2.07 × 10–8 m2 s–1. Correspondence to: D. Lloyd  相似文献   

13.
Zelitch I 《Plant physiology》1989,90(4):1457-1464
Plants were obtained with novel O2-resistant photosynthetic characteristics. At low CO2 (250-350 μL CO2 L−1) and 30°C when O2 was increased from 1% to 21% to 42%, the ratio of net CO2 uptake in O2-resistant whole plants or leaf discs compared to wild type increased progressively, and this was not related to stomatal opening. Dihaploid plantlets regenerated from anther culture were initially screened and selected for O2-resistant growth in 42% O2/160 μL CO2 L−1 and 0.18% of the plantlets showed O2-resistant photosynthesis. About 30% of the progeny (6 of 19 plants) of the first selfing of a fertile plant derived from a resistant dihaploid plant had O2-resistant photosynthesis, and after a second selfing this increased to 50% (6 of 12 plants). In 21% O2 and low CO2, net photosynthesis of the resistant plants was about 15% greater on a leaf area basis than wild type. Net photosynthesis was compared in leaf discs at 30 and 38°C in 21% O2, and at the higher temperature O2-resistant plants showed still greater photosynthesis than wild type. The results suggest that the O2-resistant photosynthesis described here is associated with a decreased stoichiometry of CO2 release under conditions of rapid photorespiration. This view was supported by the finding that leaves of O2-resistant plants averaged 40% greater catalase activity than wild type.  相似文献   

14.
Photorespiration in Chlorella pyrenoidosa Chick. was assayed by measuring 18O-labeled intermediates of the glycolate pathway. Glycolate, glycine, serine, and excreted glycolate were isolated and analyzed on a gas chromatograph/mass spectrometer to determine isotopic enrichment. Rates of glycolate synthesis were determined from 18O-labeling kinetics of the intermediates, pool sizes, derived rate equations, and nonlinear regression techniques. Glycolate synthesis was higher in high CO2-grown cells than in air-grown cells when both were assayed under the same O2 and CO2 concentrations. Synthesis of glycolate, for both types of cells, was stimulated by high O2 levels and inhibited by high CO2 levels. Glycolate synthesis in 1.5% CO2-grown Chlorella, when exposed to a 0.035% CO2 atmosphere, increased from about 41 to 86 nanomoles per milligram chlorophyll per minute when the O2 concentration was increased from 21% to 40%. Glycolate synthesis in air-grown cells increased from 2 to 6 nanomoles per milligram chlorophyll per minute under the same gas levels. Synthesis was undetectable when either the O2 concentration was lowered to 2% or the CO2 concentration was raised to 1.5%. Glycolate excretion was also sensitive to O2 and CO2 concentrations in 1.5% CO2-grown cells and the glycolate that was excreted was 18O-labeled. Air-grown cells did not excrete glycolate under any experimental condition. Indirect evidence indicated that glycolate may be excreted as a lactone in Chlorella. Photorespiratory 18O-labeling kinetics were determined for Pavlova lutheri, which unlike Chlorella and higher plants did not directly synthesize glycine and serine from glycolate. This alga did excrete a significant proportion of newly synthesized glycolate into the media.  相似文献   

15.
Snyder FW 《Plant physiology》1974,53(3):514-515
Amount and products of photosynthesis during 10 minutes were measured at different 14CO2 concentrations in air. With tobacco (Nicotiana tabacum L. cv. Maryland Mammoth) leaves the percentage of 14C in glycine plus serine was highest (42%) at 0.005% CO2, and decreased with increasing CO2 concentration to 7% of the total at 1% CO2 in air. However, above 0.03% CO2 the total amount of 14C incorporated into the glycine and serine pool was about constant. At 0.005% or 0.03% CO2 the percentage and amount of 14C in sucrose was small but increased greatly at higher CO2 levels as sucrose accumulated as an end product. Relatively similar data were obtained with sugar beet (Beta vulgaris L. cv. US H20) leaves. The results suggest that photorespiration at high CO2 concentration is not inhibited but that CO2 loss from it becomes less significant.  相似文献   

16.
The dependence of alfalfa (Medicago sativa L.) root and nodule nonphotosynthetic CO2 fixation on the supply of currently produced photosynthate and nodule nitrogenase activity was examined at various times after phloem-girdling and exposure of nodules to Ar:O2. Phloemgirdling was effected 20 hours and exposure to Ar:O2 was effected 2 to 3 hours before initiation of experiments. Nodule and root CO2 fixation rates of phloem-girdled plants were reduced to 38 and 50%, respectively, of those of control plants. Exposure to Ar:O2 decreased nodule CO2 fixation rates to 45%, respiration rates to 55%, and nitrogenase activities to 51% of those of the controls. The products of nodule CO2 fixation were exported through the xylem to the shoot mainly as amino acids within 30 to 60 minutes after exposure to 14CO2. In contrast to nodules, roots exported very little radioactivity, and most of the 14C was exported as organic acids. The nonphotosynthetic CO2 fixation rate of roots and nodules averaged 26% of the gross respiration rate, i.e. the sum of net respiration and nonphotosynthetic CO2 assimilation. Nodules fixed CO2 at a rate 5.6 times that of roots, but since nodules comprised a small portion of root system mass, roots accounted for 76% of the nodulated root system CO2 fixation. The results of this study showed that exposure of nodules to Ar:O2 reduced nodule-specific respiration and nitrogenase activity by similar amounts, and that phloem-girdling significantly reduced nodule CO2 fixation, nitrogenase activity, nodule-specific respiration, and transport of 14C photoassimilate to nodules. These results indicate that nodule CO2 fixation in alfalfa is associated with N assimilation.  相似文献   

17.
Regulation of growth in rice seedlings   总被引:3,自引:0,他引:3  
Etiolated rice seedlings (Oryza sativa L.) exhibited marked morphological differences when grown in sealed containers or in containers through which air was passed continuously. Enhancement of coleoptile and mesocotyl growth and inhibition of leaf and root growth in the sealed containers (enclosure syndrome) were accompanied by accumulation of CO2 and C2H4 in and depletion of O2 from the atmosphere. Ethylene (1 l 1–1), high levels of CO2, and reduced levels of O2 contributed equally to the increase in coleoptile and mesocotyl growth. The effect of enclosure could be mimicked by passing a gas mixture of 3% O2, 82% N2, 15% CO2 (all v/v), and 1 l l–1) C2H4 through the vials containing the etiolated seedlings. The effects of high CO2 and low O2 concentrations were not mediated through increased C2H4 production. The enclosure syndrome was also observed in rice seedlings grown under water either in darkness or in light. The length of the rice coleoptile was positively correlated with the depth of planting in water-saturated vermiculite. The length of coleoptiles of wheat, barley, and oats was not affected by the depth of planting. In rice, the length of coleoptile was determined by the levels of O2, CO2, and ethylene, rather than by light. This regulatory mechanism allows rice seedlings to grow out of shallow water in which the concentration of O2 is limiting.  相似文献   

18.
Photosynthetic o(2) exchange kinetics in isolated soybean cells   总被引:8,自引:8,他引:0       下载免费PDF全文
Light-dependent O2 exchange was measured in intact, isolated soybean (Glycine max. var. Williams) cells using isotopically labeled O2 and a mass spectrometer. The dependence of O2 exchange on O2 and CO2 was investigated at high light in coupled and uncoupled cells. With coupled cells at high O2, O2 evolution followed similar kinetics at high and low CO2. Steady-state rates of O2 uptake were insignificant at high CO2, but progressively increased with decreasing CO2. At low CO2, steady-state rates of O2 uptake were 50% to 70% of the maximum CO2-supported rates of O2 evolution. These high rates of O2 uptake exceeded the maximum rate of O2 reduction determined in uncoupled cells, suggesting the occurrence of another light-induced O2-uptake process (i.e. photorespiration).

Rates of O2 exchange in uncoupled cells were half-saturated at 7% to 8% O2. Initial rates (during induction) of O2 exchange in uninhibited cells were also half-saturated at 7% to 8% O2. In contrast, steady-state rates of O2 evolution and O2 uptake (at low CO2) were half-saturated at 18% to 20% O2. O2 uptake was significantly suppressed in the presence of nitrate, suggesting that nitrate and/or nitrite can compete with O2 for photoreductant.

These results suggest that two mechanisms (O2 reduction and photorespiration) are responsible for the light-dependent O2 uptake observed in uninhibited cells under CO2-limiting conditions. The relative contribution of each process to the rate of O2 uptake appears to be dependent on the O2 level. At high O2 concentrations (≥40%), photorespiration is the major O2-consuming process. At lower (ambient) O2 concentrations (≤20%), O2 reduction accounts for a significant portion of the total light-dependent O2 uptake.

  相似文献   

19.
Gerbaud A  André M 《Plant physiology》1980,66(6):1032-1036
Unidirectional O2 fluxes were measured with 18O2 in a whole plant of wheat cultivated in a controlled environment. At 2 or 21% O2, O2 uptake was maximum at 60 microliters per liter CO2. At lower CO2 concentrations, it was strongly inhibited, as was photosynthetic O2 evolution. At 2% O2, there remained a substantial O2 uptake, even at high CO2 level; the O2 evolution was inhibited at CO2 concentrations under 330 microliters per liter. The O2 uptake increased linearly with light intensity, starting from the level of dark respiration. No saturation was observed at high light intensities. No significant change in the gas-exchange patterns occurred during a long period of the plant life. An adaptation to low light intensities was observed after 3 hours illumination. These results are interpreted in relation to the functioning of the photosynthetic apparatus and point to a regulation by the electron acceptors and a specific action of CO2. The behavior of the O2 uptake and the study of the CO2 compensation point seem to indicate the persistence of mitochondrial respiration during photosynthesis.  相似文献   

20.
An apparatus to produce continuous gas mixtures for use in measurements of plant gas exchange is described. A wide range of CO2 and water vapor concentrations can be provided and O2 concentration can be varied from 0 to 21%. Changes in the concentrations of the components are accomplished conveniently, rapidly, and independently. With occasional adjustments, CO2 and O2 concentrations can be maintained to within ± 1 μl/l and ± 0.1%, respectively. Dew point of the gas mixture can be maintained to within ± 0.05 C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号