首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Transforming growth factor beta-activated kinase 1 (TAK1), a member of the MAPKKK family, was initially described to play an essential role in the transforming growth factor beta-signaling pathway, but recent evidence has emerged implicating TAK1 in the interleukin (IL)-1 and tumor necrosis factor (TNF) pathways. Notably, two homologous proteins, TAB2 and TAB3, have been identified as adaptors linking TAK1 to the upstream adaptors TRAFs. However, it remains unclear whether the interaction between TAB2/TAB3 and TAK1 is necessary for its kinase activation and subsequent activation of the IKK and MAPK pathways. Here, we characterized the TAB2/TAB3-binding domain in TAK1 and further examined the requirement of this interaction for IL-1, TNF, and RANKL signaling. Through deletion mapping experiments, we demonstrated that the binding motif for TAB2/TAB3 is a non-contiguous region located within the last C-terminal 100 residues of TAK1. However, residues 479-553 of TAK1 appear to be necessary and sufficient for TAB2/TAB3 interaction. Conversely, residues 574-693 of TAB2 were shown to interact with TAK1. A green fluorescent protein fusion protein containing the last 100 residues of TAK1 (TAK1-C100) abolished the interaction of endogenous TAB2/TAB3 with TAK1, the phosphorylation of TAK1, and prevented the activation of IKK and MAPK induced by IL-1, TNF, and RANKL. Furthermore, TAK1-C100 blocked RANKL-induced nuclear accumulation of NFATc1 and consequently osteoclast differentiation consistent with the ability of a catalytically inactive TAK1 to block RANKL-mediated signaling. Significantly, our study provides evidence that the TAB2/TAB3 interaction with TAK1 is crucial for the activation of signaling cascades mediated by IL-1, TNF, and RANKL.  相似文献   

2.
TAK1 kinase is an indispensable intermediate in several cytokine signaling pathways including tumor necrosis factor, interleukin-1, and transforming growth factor-beta signaling pathways. TAK1 also participates in stress-activated intracellular signaling pathways such as osmotic stress signaling pathway. TAK1-binding protein 1 (TAB1) is constitutively associated with TAK1 through its C-terminal region. Although TAB1 is known to augment TAK1 catalytic activity when it is overexpressed, the role of TAB1 under physiological conditions has not yet been identified. In this study, we determined the role of TAB1 in TAK1 signaling by analyzing TAB1-deficient mouse embryonic fibroblasts (MEFs). Tumor necrosis factor- and interleukin-1-induced activation of TAK1 was entirely normal in Tab1-deficient MEFs and could activate both mitogen-activated protein kinases and NF-kappaB. In contrast, we found that osmotic stress-induced activation of TAK1 was largely impaired in Tab1-deficient MEFs. Furthermore, we showed that the C-terminal 68 amino acids of TAB1 were sufficient to mediate osmotic stress-induced TAK1 activation. Finally, we attempted to determine the mechanism by which TAB1 activates TAK1. We found that TAK1 is spontaneously activated when the concentration is increased and that it is totally dependent on TAB1. Cell shrinkage under the osmotic stress condition increases the concentration of TAB1-TAK1 and may oligomerize and activate TAK1 in a TAB1-dependent manner. These results demonstrate that TAB1 mediates TAK1 activation only in a subset of TAK1 pathways that are mediated through spontaneous oligomerization of TAB1-TAK1.  相似文献   

3.
The TAK1 MAPKKK mediates activation of JNK and NF-KB in the IL-1-activated signaling pathway. Here we report the identification of TAB2, a novel intermediate in the IL-1 pathway that functionally links TAK1 to TRAF6. Expression of TAB2 induces JNK and NF-kappaB activation, whereas a dominant-negative mutant TAB2 impairs their activation by IL-1. IL-1 stimulates translocation of TAB2 from the membrane to the cytosol where it mediates the IL-1-dependent association of TAK1 with TRAF6. These results define TAB2 as an adaptor linking TAK1 and TRAF6 and as a mediator of TAK1 activation in the IL-1 signaling pathway.  相似文献   

4.
The p38 mitogen-activated protein kinase (MAPK) plays an evolutionarily conserved role in the cellular response to microbial infection and environmental stress. Activation of p38 is mediated through phosphorylation by upstream MAPKK, which in turn is activated by MAPKKK. In the Caenorhabditis elegans, the p38 MAPK (also called PMK-1) signaling pathway has been shown to be required in its resistance to bacterial infection. However, how different upstream MAP2Ks and MAP3Ks specifically contribute to the activation of PMK-1 in response to bacterial infection still is not clearly understood. By using double-stranded RNA-mediated interference (RNAi) and genetic mutants of C. elegans, we demonstrate that C. elegans MOM-4, a mammalian TAK1 homolog, is required for the resistance of C. elegans to a P. aeruginosa infection. We have also found that the MKK-4 of C. elegans is required for P. aeruginosa resistance, but not through the regulation of DLK-1. In summary, our results indicate that different upstream MAPKKKs or MAPKKs regulate the activation of PMK-1 in response to P. aeruginosa.  相似文献   

5.
Transforming growth factor-beta-activated kinase 1 (TAK1) mitogen-activated protein kinase kinase kinase has been shown to be activated by cellular stresses including tumor necrosis factor-alpha (TNF-alpha). Here, we characterized the molecular mechanisms of cellular stress-induced TAK1 activation, focusing mainly on the phosphorylation of TAK1 at Thr-187 and Ser-192 in the activation loop. Thr-187 and Ser-192 are conserved among species from Caenorhabditis elegans to human, and their replacement with Ala resulted in inactivation of TAK1. Immunoblotting with a novel phospho-TAK1 antibody revealed that TNF-alpha significantly induced the phosphorylation of endogenous TAK1 at Thr-187, and subsequently the phosphorylated forms of TAK1 rapidly disappeared. Intermolecular autophosphorylation of Thr-187 was essential for TAK1 activation. RNA interference and overexpression experiments demonstrated that TAK1-binding protein TAB1 and TAB2 were involved in the phosphorylation of TAK1, but they regulated TAK1 phosphorylation differentially. Furthermore, SB203580 and p38alpha small interfering RNA enhanced TNF-alpha-induced Thr-187 phosphorylation as well as TAK1 kinase activity, indicating that the phosphorylation is affected by p38alpha/TAB1/TAB2-mediated feedback control of TAK1. These results indicate critical roles of Thr-187 phosphorylation in the stress-induced rapid and transient activation of TAK1 in a signaling complex containing TAB1 and TAB2.  相似文献   

6.
Human T cell leukemia virus type 1 (HTLV-1) Tax is an oncoprotein that plays a crucial role in the proliferation and transformation of HTLV-1-infected T lymphocytes. It has recently been reported that Tax activates a MAPKKK family, TAK1. However, the molecular mechanism of Tax-mediated TAK1 activation is not well understood. In this report, we investigated the role of TAK1-binding protein 2 (TAB2) in Tax-mediated TAK1 activation. We found that TAB2 physically interacts with Tax and augments Tax-induced NF-κB activity. Tax and TAB2 cooperatively activate TAK1 when they are coexpressed. Furthermore, TAK1 activation by Tax requires TAB2 binding as well as ubiquitination of Tax. We also found that the overexpression of TRAF2, 5, or 6 strongly induces Tax ubiquitination. These results suggest that TAB2 may be critically involved in Tax-mediated activation of TAK1 and that NF-κB-activating TRAF family proteins are potential cellular E3 ubiquitin ligases toward Tax.  相似文献   

7.
Sakurai H  Miyoshi H  Mizukami J  Sugita T 《FEBS letters》2000,474(2-3):141-145
TAK1 is a mitogen-activated protein kinase kinase kinase (MAP3K) that is involved in the c-Jun N-terminal kinase/p38 MAPKs and NF-kappaB signaling pathways. Here, we characterized the molecular mechanisms of TAK1 activation by its specific activator TAB1. Autophosphorylation of two threonine residues in the activation loop of TAK1 was necessary for TAK1 activation. Association with TAK1 and induction of TAK1 autophosphorylation required the C-terminal 24 amino acids of TAB1, but full TAK1 activation required additional C-terminal Ser/Thr rich sequences. These results demonstrated that the association between the kinase domain of TAK1 and the C-terminal TAB1 triggered the phosphorylation-dependent TAK1 activation mechanism.  相似文献   

8.
Role of the TAB2-related protein TAB3 in IL-1 and TNF signaling   总被引:3,自引:0,他引:3       下载免费PDF全文
The cytokines IL-1 and TNF induce expression of a series of genes that regulate inflammation through activation of NF-kappaB signal transduction pathways. TAK1, a MAPKKK, is critical for both IL-1- and TNF-induced activation of the NF-kappaB pathway. TAB2, a TAK1-binding protein, is involved in IL-1-induced NF-kappaB activation by physically linking TAK1 to TRAF6. However, IL-1-induced activation of NF-kappaB is not impaired in TAB2-deficient embryonic fibroblasts. Here we report the identification and characterization of a novel protein designated TAB3, a TAB2-like molecule that associates with TAK1 and can activate NF-kappaB similar to TAB2. Endogenous TAB3 interacts with TRAF6 and TRAF2 in an IL-1- and a TNF-dependent manner, respectively. Further more, IL-1 signaling leads to the ubiquitination of TAB2 and TAB3 through TRAF6. Cotransfection of siRNAs directed against both TAB2 and TAB3 inhibit both IL-1- and TNF-induced activation of TAK1 and NF-kappaB. These results suggest that TAB2 and TAB3 function redundantly as mediators of TAK1 activation in IL-1 and TNF signal transduction.  相似文献   

9.
Transforming growth factor-beta (TGF-beta)-activated kinase 1 (TAK1) is a member of the MAPKKK family of protein kinases, and is involved in intracellular signalling pathways stimulated by transforming growth factor beta, interleukin-1 and tumour necrosis factor-alpha. TAK1 is known to rely upon an additional protein, TAK1-binding protein 1 (TAB1), for complete activation. However, the molecular basis for this activation has yet to be elucidated. We have solved the crystal structure of a novel TAK1 chimeric protein and these data give insight into how TAK1 is activated by TAB1. Our results reveal a novel binding pocket on the TAK1 kinase domain whose shape complements that of a unique alpha-helix in the TAK1 binding domain of TAB1, providing the basis for an intimate hydrophobic association between the protein activator and its target.  相似文献   

10.
TAK1, a member of the mitogen-activated kinase kinase kinase family, is activated in vivo by various cytokines, including interleukin-1 (IL-1), or when ectopically expressed together with the TAK1-binding protein TAB1. However, this molecular mechanism of activation is not yet understood. We show here that endogenous TAK1 is constitutively associated with TAB1 and phosphorylated following IL-1 stimulation. Furthermore, TAK1 is constitutively phosphorylated when ectopically overexpressed with TAB1. In both cases, dephosphorylation of TAK1 renders it inactive, but it can be reactivated by preincubation with ATP. A mutant of TAK1 that lacks kinase activity is not phosphorylated either following IL-1 treatment or when coexpressed with TAB1, indicating that TAK1 phosphorylation is due to autophosphorylation. Furthermore, mutation to alanine of a conserved serine residue (Ser-192) in the activation loop between kinase domains VII and VIII abolishes both phosphorylation and activation of TAK1. These results suggest that IL-1 and ectopic expression of TAB1 both activate TAK1 via autophosphorylation of Ser-192.  相似文献   

11.
12.
Genetic studies on endoderm-mesoderm specification in Caenorhabditis elegans have demonstrated a role for several Wnt cascade components as well as for a MAPK-like pathway in this process. The latter pathway includes the MAPK kinase kinase-like MOM-4/Tak1, its adaptor TAP-1/Tab1, and the MAPK-like LIT-1/Nemo-like kinase. A model has been proposed in which the Tak1 kinase cascade counteracts the Wnt cascade at the level of beta-catenin/TCF phosphorylation. In this model, the signal that activates the Tak1 kinase cascade is unknown. As an alternative explanation of these genetic data, we have explored whether Tak1 is directly activated by Wnt. We find that Wnt1 stimulation results in autophosphorylation and activation of MOM-4/Tak1 in a TAP-1/Tab1-dependent fashion. Wnt1-induced Tak1 stimulation activates Nemo-like kinase, resulting in the phosphorylation of TCF. Our results combined with the genetic data from C. elegans imply a mechanism whereby Wnt directly activates the MOM-4/Tak1 kinase signaling pathway. Thus, Wnt signal transduction through the canonical pathway activates beta-catenin/TCF, whereas Wnt signal transduction through the Tak1 pathway phosphorylates and inhibits TCF, which might function as a feedback mechanism.  相似文献   

13.
Transforming growth factor-beta (TGF-beta) is crucially virulent in the progression of fibrotic disorders. TAK1 (TGF-beta activated kinase 1) is one of the mitogen-activated kinase kinase kinase (MAPKKK) that is involved in TGF-beta signal transduction. To elucidate the importance of TAK1 in TGF-beta-induced fibrotic marker expression, we investigated whether dominant negative TAK1 could suppress TGF-beta signaling. Based on the finding that TAB1 (TAK1 binding protein 1) binding to TAK1 is required for TAK1 activation, a minimal portion of TAK1 lacking kinase activity that binds to TAB1 was designed as a TAK1 dominant negative inhibitor (TAK1-DN). The effect of TAK1-DN was assessed in the cells that respond to TGF-beta stimulation and that lead to the increase in production of extracellular matrix (ECM) proteins. TAK1-DN, indeed, decreased the ECM protein production, indicating that TAK1-DN retains the ability to intercept the TGF-beta signaling effectively.  相似文献   

14.
Transforming growth factor beta (TGF-beta)-activated kinase 1 (TAK1) is a member of the MAPKKK superfamily and has been characterized as a component of the TGF-beta/bone morphogenetic protein signaling pathway. TAK1 function has been extensively studied in cultured cells, but its in vivo function is not fully understood. In this study, we isolated a Drosophila homolog of TAK1 (dTAK1) which contains an extensively conserved NH(2)-terminal kinase domain and a partially conserved COOH-terminal domain. To learn about possible endogenous roles of TAK1 during animal development, we generated transgenic flies which express dTAK1 or the mouse TAK1 (mTAK1) gene in the fly visual system. Ectopic activation of TAK1 signaling leads to a small eye phenotype, and genetic analysis reveals that this phenotype is a result of ectopically induced apoptosis. Genetic and biochemical analyses also indicate that the c-Jun amino-terminal kinase (JNK) signaling pathway is specifically activated by TAK1 signaling. Expression of a dominant negative form of dTAK during embryonic development resulted in various embryonic cuticle defects including dorsal open phenotypes. Our results strongly suggest that in Drosophila melanogaster, TAK1 functions as a MAPKKK in the JNK signaling pathway and participates in such diverse roles as control of cell shape and regulation of apoptosis.  相似文献   

15.
Responses to transforming growth factor beta and multiple cytokines involve activation of transforming growth factor beta-activated kinase-1 (TAK1) kinase, which activates kinases IkappaB kinase (IKK) and MKK3/6, leading to the parallel activation of NF-kappaB and p38 MAPK. Activation of TAK1 by autophosphorylation is known to involve three different TAK1-binding proteins (TABs). Here we report a protein phosphatase subunit known as type 2A phosphatase-interacting protein (TIP) that also acts as a TAB because it co-precipitates with and directly binds to TAK1, enhances TAK1 autophosphorylation at unique sites, and promotes TAK1 phosphorylation of IKKbeta and signaling to NF-kappaB. Mass spectrometry demonstrated that co-expression of TAB4 protein significantly increased phosphorylation of four sites in TAK1, in a linker region between the kinase and TAB2/3 binding domains, and two sites in TAB1. Recombinant GST-TAB4 bound in an overlay assay directly to inactive TAK1 and activated TAK1 but not TAK1 phosphorylated in the linker sites, suggesting a bind and release mechanism. In kinase assays using TAK1 immune complexes, added GST-TAB4 selectively stimulated IKK phosphorylation. TAB4 co-precipitated polyubiquitinated proteins dependent on a Phe-Pro motif that was required to enhance phosphorylation of TAK1. TAB4 mutated at Phe-Pro dominantly interfered with IL-1beta activation of NF-kappaB involving IKK-dependent but not p38 MAPK-dependent signaling. The results show that TAB4 binds TAK1 and polyubiquitin chains to promote specific sites of phosphorylation in TAK1-TAB1, which activates IKK signaling to NF-kappaB.  相似文献   

16.
The mitogen-activated protein kinases (MAPKs) play an important role in a variety of biological processes. Activation of MAPKs is mediated by phosphorylation on specific regulatory tyrosine and threonine sites. We have recently found that activation of p38alpha MAPK can be carried out not only by its upstream MAPK kinases (MKKs) but also by p38alpha autophosphorylation. p38alpha autoactivation requires an interaction of p38alpha with TAB1 (transforming growth factor-beta-activated protein kinase 1-binding protein 1). The autoactivation mechanism of p38alpha has been found to be important in cellular responses to a number of physiologically relevant stimuli. Here, we report the characterization of a splicing variant of TAB1, TAB1beta. TAB1 and TAB1beta share the first 10 exons. The 11th and 12th exons of TAB1 were spliced out in TAB1beta, and an extra exon, termed exon beta, downstream of exons 11 and 12 in the genome was used as the last exon in TAB1beta. The mRNA of TAB1beta was expressed in all cell lines examined. The TAB1beta mRNA encodes a protein with an identical sequence to TAB1 except the C-terminal 69 amino acids were replaced with an unrelated 27-amino acid sequence. Similar to TAB1, TAB1beta interacts with p38alpha but not other MAPKs and stimulates p38alpha autoactivation. Different from TAB1, TAB1beta does not bind or activate TAK1. Inhibition of TAB1beta expression with RNA interference in MDA231 breast cancer cells resulted in the reduction of basal activity of p38alpha and invasiveness of MDA231 cells, suggesting that TauAlphaBeta1beta is involved in regulating p38alpha activity in physiological conditions.  相似文献   

17.
18.
Epstein-Barr virus latent membrane protein 1 (LMP1) activates NF-kappaB and c-Jun N-terminal kinase (JNK), which is essential for LMP1 oncogenic activity. Genetic analysis has revealed that tumor necrosis factor receptor-associated factor 6 (TRAF6) is an indispensable intermediate of LMP1 signaling leading to activation of both NF-kappaB and JNK. However, the mechanism by which LMP1 engages TRAF6 for activation of NF-kappaB and JNK is not well understood. Here we demonstrate that TAK1 mitogen-activated protein kinase kinase kinase and TAK1-binding protein 2 (TAB2), together with TRAF6, are recruited to LMP1 through its N-terminal transmembrane region. The C-terminal cytoplasmic region of LMP1 facilitates the assembly of this complex and enhances activation of JNK. In contrast, IkappaB kinase gamma is recruited through the C-terminal cytoplasmic region and this is essential for activation of NF-kappaB. Furthermore, we found that ablation of TAK1 resulted in the loss of LMP1-induced activation of JNK but not of NF-kappaB. These results suggest that an LMP1-associated complex containing TRAF6, TAB2, and TAK1 plays an essential role in the activation of JNK. However, TAK1 is not an exclusive intermediate for NF-kappaB activation in LMP1 signaling.  相似文献   

19.
Transforming growth factor β-activated protein kinase 1 (TAK1)-binding protein 2 (TAB2) and its close homolog TAB3 are initially characterized as adapter proteins essential for TAK1 activation in response to interleukin-1β and tumour necrosis factor-α. However, the physiological roles of TAB2 and TAB3 are still not fully understood. Here we report that TAB2 and TAB3 bind to Beclin1 and colocalize in the cytoplasm. TAB2 also interacts with ATG13 and is phosphorylated by ULK1. Overexpression of TAB2 or TAB3 induces punctate localization of ATG5 under the normal culture condition. Knockdown of TAB2 and TAB3 results in the decrease in endogenous protein level of p62/SQSTM1 under the normal culture condition, while overexpression of TAB2 results in the accumulation of p62/SQSTM1 independently of TAK1. The decrease of p62/SQSTM1 induced by the knockdown of TAB2 and TAB3 is largely dependent on ATG5. These results suggest that TAB2 and TAB3 negatively regulate autophagy independently of TAK1 activity.  相似文献   

20.
Autophagic responses are coupled to the activation of the inhibitor of NF-κB kinase (IKK). Here, we report that the essential autophagy mediator Beclin 1 and TGFβ-activated kinase 1 (TAK1)-binding proteins 2 and 3 (TAB2 and TAB3), two upstream activators of the TAK1-IKK signalling axis, constitutively interact with each other via their coiled-coil domains (CCDs). Upon autophagy induction, TAB2 and TAB3 dissociate from Beclin 1 and bind TAK1. Moreover, overexpression of TAB2 and TAB3 suppresses, while their depletion triggers, autophagy. The expression of the C-terminal domain of TAB2 or TAB3 or that of the CCD of Beclin 1 competitively disrupts the interaction between endogenous Beclin 1, TAB2 and TAB3, hence stimulating autophagy through a pathway that requires endogenous Beclin 1, TAK1 and IKK to be optimally efficient. These results point to the existence of an autophagy-stimulatory 'switch' whereby TAB2 and TAB3 abandon inhibitory interactions with Beclin 1 to engage in a stimulatory liaison with TAK1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号