首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The EGF receptor: a nexus for trafficking and signaling   总被引:15,自引:0,他引:15  
Ligand binding to the EGF receptor initiates both the activation of mitogenic signal transduction pathways plus trafficking events that relocalize the receptor on the cell surface and within intracellular compartments. The trafficking compartments include caveolae, clathrin-coated pits, and various endosome populations prior to receptor degradation in lysosomes. Evidence is presented that distinct signaling pathways are initiated from these different compartments. These include the Ras/MAP kinase cascade and the PLC-dependent hydrolysis of PI-4,5 P(2). Multiple tyrosine kinase substrates that facilitate EGF receptor trafficking between these various compartments, as well as the participation of phosphoinositides and Ras-like G proteins in the trafficking pathway are also described.  相似文献   

2.
We have previously shown that overexpression of LIM kinase1 (LIMK1) resulted in a marked retardation of the internalization of the receptor-mediated endocytic tracer, Texas red-labeled epidermal growth factor (EGF) in low-invasive human breast cancer cell MCF-7. We thereby postulate that LIMK1 signaling plays an important role in the regulation of ligand-induced endocytosis of EGF receptor (EGFR) in tumor cells by reorganizing and influencing actin-filament dynamics. In the present study, we further assessed the effect of wild-type LIMK1, a kinase-deficient dominant negative mutant of LIMK1 (DN-LIMK1) and an active, unphosphorylatable cofilin mutant (S3A cofilin) on internalization of EGF-EGFR in MDA-MB-231, a highly invasive human breast cancer cell line. We demonstrate here that a marked delay in the receptor-mediated internalization of Texas red-labeled EGF was observed in the wild-type LIMK1 transfectants, and that most of the internalized EGF staining were accumulated within transferrin receptor-positive early endosomes even after 30 min internalization. In contrast, the expression of dominant-negative LIMK1 mutant rescued the efficient endocytosis of Texas red-EGF, and large amounts of Texas red-EGF staining already reached LIMPII-positive late endosomes/lysosomal vacuoles after 15 min internalization. We further analyzed the effect of S3A cofilin mutant on EGFR trafficking, and found an efficient delivery of Texas red-EGF into late endosomes/lysosomes at 15–30 min after internalization. Taken together, our novel findings presented in this paper implicate that LIMK1 signaling indeed plays a pivotal role in the regulation of EGFR trafficking through the endocytic pathway in invasive tumor cells.  相似文献   

3.
Activated epidermal growth factor receptors recruit various intracellular proteins leading to signal generation and endocytic trafficking. Although activated receptors are rapidly internalized into the endocytic compartment and subsequently degraded in lysosomes, the linkage between signaling and endocytosis is not well understood. Here we show that EGF stimulation of NR6 cells induces a specific, rapid and transient activation of Rab5a. EGF also enhanced translocation of the Rab5 effector, early endosomal autoantigen 1 (EEA1), from cytosol to membrane. The activation of endocytosis, fluid phase and receptor mediated, by EGF was enhanced by Rab5a expression, but not by Rab5b, Rab5c, or Rab5a truncated at the NH(2) and/or COOH terminus. Dominant negative Rab5a (Rab5:N34) blocked EGF-stimulated receptor-mediated and fluid-phase endocytosis. EGF activation of Rab5a function was dependent on tyrosine residues in the COOH-terminal domain of the EGF receptor (EGFR). Removal of the entire COOH terminus by truncation (c'973 and c'991) abrogated ligand-induced Rab5a activation of endocytosis. A "kinase-dead" EGFR failed to stimulate Rab5a function. However, another EGF receptor mutant (c'1000), with the kinase domain intact and a single autophosphorylation site effectively signaled Rab5 activation. These results indicate that EGFR and Rab5a are linked via a cascade that results in the activation of Rab5a and that appears essential for internalization. The results point to an interdependent relationship between receptor activation, signal generation and endocytosis.  相似文献   

4.
After binding of epidermal growth factor (EGF), the EGF receptor (EGFR) becomes autophosphorylated via tyrosine. The ligand-activated receptor is internalized by endocytosis and subsequently degraded in the lysosomal pathway. To follow EGFR activation after EGF stimulation, we generated antisera to the EGFR phosphotyrosine sites pY992 and pY1173. The SH2 region of Shc binds to both these sites. Both antisera identified EGFR after EGF binding and did not crossreact with the unactivated receptor. The intracellular distribution of phosphorylated EGFR after ligand binding was traced by two-color immunofluorescence confocal microscopy and immunoelectron microscopy. Before EGF stimulation EGFR was primarily located along the cell surface. When internalization of activated EGFR was inhibited by incubation with EGF on ice, Y992- and Y1173-phosphorylated EGFR were located along the plasma membrane. Ten minutes after internalization at 37C, Y992- and Y1173-phosphorylated EGFR were almost exclusively located in early endosomes, as shown by co-localization with EEA1. Immunoelectron microscopy confirmed that phosphorylated EGFR was located in intracellular vesicles resembling early endosomes. After EGF stimulation, the adaptor protein Shc redistributed to EGFR-containing early endosomes. Our results indicate that EGFR activation of Shc via tyrosine-phosphorylated Y992 and Y1173 occurred in early endocytic compartments, and support a role for membrane trafficking in intracellular signaling.  相似文献   

5.
The role of phospholipids in the regulation of membrane trafficking and signaling is largely unknown. Phosphatidylcholine (PC) is a main component of the plasma membrane. Mutants in the Drosophila phosphocholine cytidylyltransferase 1 (CCT1), the rate-limiting enzyme in PC biosynthesis, show an altered phospholipid composition with reduced PC and increased phosphatidylinositol (PI) levels. Phenotypic features of dCCT1 indicate that the enzyme is not required for cell survival, but serves a role in endocytic regulation. CCT1- cells show an increase in endocytosis and enlarged endosomal compartments, whereas lysosomal delivery is unchanged. As a consequence, an increase in endocytic localization of EGF receptor (Egfr) and Notch is observed, and this correlates with a reduction in signaling strength and leads to patterning defects. A further link between PC/PI content, endocytosis, and signaling is supported by genetic interactions of dCCT1 with Egfr, Notch, and genes affecting endosomal traffic.  相似文献   

6.
c-Src is a non-receptor tyrosine kinase that associates with both the plasma membrane and endosomal compartments. In many human cancers, especially breast cancer, c-Src and the EGF receptor (EGFR) are overexpressed. Dual overexpression of c-Src and EGFR correlates with a Src-dependent increase in activation of EGFR, and synergism between these two tyrosine kinases increases the mitogenic activity of EGFR. Despite extensive studies of the functional interaction between c-Src and EGFR, little is known about the interactions in the trafficking pathways for the two proteins and how that influences signaling. Given the synergism between c-Src and EGFR, and the finding that EGFR is internalized and can signal from endosomes, we hypothesized that c-Src and EGFR traffic together through the endocytic pathway. Here we use a regulatable c-SrcGFP fusion protein that is a bona fide marker for c-Src to show that c-Src undergoes constitutive macropinocytosis from the plasma membrane into endocytic compartments. The movement of c-Src was dependent on its tyrosine kinase activity. Stimulation of cells with EGF revealed that c-Src traffics into the cell with activated EGFR and that c-Src expression and kinase activity prolongs EGFR activation. Surprisingly, even in the absence of EGF addition, c-Src expression induced activation of EGFR and of EGFR-mediated downstream signaling targets ERK and Shc. These data suggest that the synergy between c-Src and EGFR also occurs as these two kinases traffic together, and that their co-localization promotes EGFR-mediated signaling.  相似文献   

7.
Pike LJ  Casey L 《Biochemistry》2002,41(32):10315-10322
A variety of signal transduction pathways including PI turnover, MAP kinase activation, and PI 3-kinase activation have been shown to be affected by changes in cellular cholesterol content. However, no information is available regarding the locus (or loci) in the pathways that are susceptible to modulation by cholesterol. We report here that depletion of cholesterol with methyl-beta-cyclodextrin increases cell surface (125)I-EGF binding by approximately 40% via a mechanism that does not involve externalization of receptors from an internal pool. Cholesterol depletion also enhances in vivo EGF receptor autophosphorylation 2-5-fold without altering the rate of receptor dephosphorylation. In vitro kinase assays, which are done under conditions where phosphotyrosine phosphatases are inhibited and receptor trafficking cannot occur, demonstrate that treatment with methyl-beta-cyclodextrin leads to an increase in intrinsic EGF receptor tyrosine kinase activity. EGF receptors are localized in cholesterol-enriched lipid rafts but are released from this compartment upon treatment with methyl-beta-cyclodextrin. These data are consistent with the interpretation that localization to lipid rafts partially suppresses the binding and kinase functions of the EGF receptor and that depletion of cholesterol releases the receptor from lipid rafts, relieving the functional inhibition of the receptor. Cholesterol depletion also inhibits EGF internalization and down-regulation of the EGF receptor, and this likely contributes to the enhanced ability of EGF to stimulate downstream signaling pathways such as the activation of MAP kinase.  相似文献   

8.
Exposure of the skin to UVB light results in the formation of DNA photolesions that can give rise to cell death, mutations, and the onset of carcinogenic events. Specific proteins are activated by UVB and then trigger signal transduction pathways that lead to cellular responses. An alteration of these signaling molecules is thought to be a fundamental event in tumor promotion by UVB irradiation. RhoB, encoding a small GTPase has been identified as a DNA damage-inducible gene. RhoB is involved in epidermal growth factor (EGF) receptor trafficking, cytoskeletal organization, cell transformation, and survival. We have analyzed the regulation of RhoB and elucidated its role in the cellular response of HaCaT keratinocytes to relevant environmental UVB irradiation. We report here that the activated GTP-bound form of RhoB is increased rapidly within 5 min of exposure to UVB, and then RhoB protein levels increased concomitantly with EGF receptor (EGFR) activation. Inhibition of UVB-induced EGFR activation prevents RhoB protein expression and AKT phosphorylation but not the early activation of RhoB. Blocking UVB-induced RhoB expression with specific small interfering RNAs inhibits AKT and glycogen synthase kinase-3beta phosphorylation through inhibition of EGFR expression. Moreover, down-regulation of RhoB potentiates UVB-induced cell apoptosis. In contrast, RhoB overexpression protects keratinocytes against UVB-induced apoptosis. These results indicated that RhoB is regulated upon UVB exposure by a two-step process consisting of an early EGFR-independent RhoB activation followed by an EGFR-dependent induction of RhoB expression. Moreover, we have demonstrated that RhoB is essential in regulating keratinocyte cell survival after UVB exposure, suggesting its potential role in photocarcinogenesis.  相似文献   

9.
The ANKS1A gene product, also known as Odin, was first identified as a tyrosine-phosphorylated component of the epidermal growth factor receptor network. Here we show that Odin functions as an effector of EGFR recycling. In EGF-stimulated HEK293 cells tyrosine phosphorylation of Odin was induced prior to EGFR internalization and independent of EGFR-to-ERK signaling. Over-expression of Odin increased EGF-induced EGFR trafficking to recycling endosomes and recycling back to the cell surface, and decreased trafficking to lysosomes and degradation. Conversely, Odin knockdown in both HEK293 and the non-small cell lung carcinoma line RVH6849, which expresses roughly 10-fold more EGF receptors than HEK293, caused decreased EGFR recycling and accelerated trafficking to the lysosome and degradation. By governing the endocytic fate of internalized receptors, Odin may provide a layer of regulation that enables cells to contend with receptor cell densities and ligand concentration gradients that are physiologically and pathologically highly variable.  相似文献   

10.
11.
The endoplasmic reticulum-localized non-receptor protein-tyrosine phosphatase 1B (PTP1B) is associated with oncogenic, metabolic, and cytokine-related signaling and functionally targets multiple receptor tyrosine kinases (RTKs) for dephosphorylation. Loss of PTP1B activity leads to enhanced ligand-dependent biological activity of the Met RTK among others. Here, we demonstrate that knockdown of PTP1B or expression of a PTP1B trapping aspartic acid-to-alanine substitution (D/A) mutant delayed ligand-induced degradation of the Met and EGF RTKs. Loss of PTP1B function abrogated trafficking of Met and EGF receptor to Rab5- and phosphatidylinositol 3-phosphate (Pl3P)-positive early endosomes and subsequent trafficking through the degradative pathway. Under these conditions, internalization of the Met and EGF receptors was unaltered, suggesting a block at the level of early endosome formation. We show that the N-ethylmaleimide-sensitive factor (NSF), an essential component of the vesicle fusion machinery, was hyperphosphorylated in PTP1B knockdown or PTP1B D/A-expressing cells and was a target for PTP1B. NSF knockdown phenocopied PTP1B knockdown, demonstrating a mechanism through which PTP1B regulates endocytic trafficking. Finally, we show that PTP1B dephosphorylated NSF and that this interaction was required for physiological RTK trafficking and appropriate attenuation of downstream signaling.  相似文献   

12.
The small GTPase RhoB regulates endocytic trafficking of receptor tyrosine kinases (RTKs) and the non-receptor kinases Src and Akt. While receptor-mediated endocytosis is critical for signaling processes driving cell migration, mechanisms that coordinate endocytosis with the propagation of migratory signals remain relatively poorly understood. In this study, we show that RhoB is essential for activation and trafficking of the key migratory effectors Cdc42 and Rac in mediating the ability of platelet-derived growth factor (PDGF) to stimulate cell movement. Stimulation of the PDGF receptor-β on primary vascular smooth muscle cells (VSMCs) results in RhoB-dependent trafficking of endosome-bound Cdc42 from the perinuclear region to the cell periphery, where the RhoGEF Vav2 and Rac are also recruited to drive formation of circular dorsal and peripheral ruffles necessary for cell migration. Our findings identify a novel RhoB-dependent endosomal trafficking pathway that integrates RTK endocytosis with Cdc42/Rac localization and cell movement.  相似文献   

13.
Ligand-mediated endocytosis is an important regulatory mechanism of epidermal growth factor (EGF) receptor (EGFR) signal transduction. Coordinated EGFR internalization and degradation function to regulate the spatial and temporal components of EGFR-effector interactions. In an effort to better understand the molecular mechanisms that control these events, we examined the role of rab5 in the endocytic trafficking of the EGFR. Rab5 is a 25-kDa guanine nucleotide binding protein that has previously been shown to be involved in the early stages of endocytic trafficking. Using adenovirally expressed dominant negative and constitutively active rab5 [rab5(S34N) and rab5(Q79L)] in cells with endogenous EGFRs, we have found that the guanine nucleotide binding state of rab5 has no bearing on the rate of EGFR endocytosis. However, expression of dominant negative rab5 affects downstream endocytic trafficking by slowing the ligand-induced disappearance of total cellular EGFR. Using confocal microscopy to examine EGF/EGFR and rab5 localization indicates that the activity of rab5 governs whether internalized EGF/EGFR and rab5 co-localize. Transferrin, which internalizes via a constitutively internalized cell surface receptor, co-sediments with rab5(WT), but not rab5(S34N) on sucrose gradients. Taken together, these data are consistent with rab5 functioning to regulate intracellular endocytic trafficking distal from the plasma membrane.  相似文献   

14.
Phosphorylation of the Ca2+ and membrane-binding protein annexin 1 by epidermal growth factor (EGF) receptor tyrosine kinase has been thought to be involved in regulation of the EGF receptor trafficking. To elucidate the interaction of annexin 1 during EGF receptor internalization, we followed the distribution of annexin 1-GFP fusion proteins at sites of internalizing EGF receptors. The observed association of annexin 1 with EGF receptors was confirmed by immunoprecipitation. We found that this interaction was independent of a functional phosphorylation site in the annexin 1 N-terminal domain but mediated through the Ca2+ binding core domain.  相似文献   

15.
On binding to itsreceptor, epidermal growth factor (EGF) initiates a cascade of eventsleading to cell proliferation or differentiation. In addition, the EGFreceptor itself is downregulated to attenuate mitogenic signaling.Downregulation occurs through trafficking of receptors to lysosomes,culminating in proteolytic destruction of both the receptor and ligand;however, endocytic sorting mechanisms that underlie lysosomal targetingremain obscure. The goal of this study was to explore one aspect of themolecular basis for ligand-induced lysosomal targeting and degradationof EGF receptors. In this study, we identify a tyrosine-leucine motif(954YLVI) that is essential for transit of ligand-receptorcomplexes to lysosomes. When this motif is mutated, HEK 293 cellsexpressing the mutant receptors demonstrate impaired lysosomaltargeting and downregulation compared with wild-type receptors.954YLVI is highly conserved among EGF receptors fromvarious mammalian and invertebrate species and is critical for receptordownregulation. We propose that 954YLVI works in concertwith at least two additional regions within the EGF receptorcytoplasmic domain that are essential for efficiently targetingligand-receptor complexes to the lysosome.

  相似文献   

16.
The Grb2 adaptor protein is best known for its role in signaling to the small GTPase p21(ras), mediated through its interaction with the SOS guanine nucleotide exchange factor. Here, we demonstrate that Grb2 also signals to Rab5, a small GTPase that plays a key role in early endocytic trafficking. Grb2 functions through association with RN-tre, a GTPase-activating protein for Rab5. Grb2 and RN-tre associate both in vitro and in vivo, with interaction mediated by both SH3 domains of Grb2 and extended proline-rich sequences in RN-tre. Association between Grb2 and RN-tre is constitutive and occurs independently of Eps8, a previously identified binding partner of RN-tre. Epidermal growth factor (EGF) stimulates recruitment of RN-tre to the EGF receptor (EGFR) in a Grb2-dependent manner. Grb2 and the EGFR are internalized and co-localized in endocytic vesicles in response to EGF. Overexpression of RN-tre blocks the internalization of both proteins, consistent with its function as a negative regulator of Rab5 and endocytosis. Strikingly, RN-tre does not block EGF-induced internalization of a Grb2 mutant deficient in RN-tre binding. These results 1) suggest that the ability of RN-tre to inhibit internalization of the EGFR requires Grb2-mediated binding to the receptor and 2) identify Grb2 as a critical regulator of Rab5 and EGFR endocytosis.  相似文献   

17.
Dephosphorylation and endocytic down-regulation are distinct processes that together control the signaling output of a variety of receptor tyrosine kinases (RTKs). PTP1B can directly dephosphorylate several RTKs, but it can also promote activation of downstream pathways through largely unknown mechanisms. These positive signaling functions likely contribute to the tumor-promoting effect of PTP1B in mouse cancer models. Here, we have identified STAM2, an endosomal protein involved in sorting activated RTKs for lysosomal degradation, as a substrate of PTP1B. PTP1B interacts with STAM2 at defined phosphotyrosine sites, and knockdown of PTP1B expression augments STAM2 phosphorylation. Intriguingly, manipulating the expression and phosphorylation state of STAM2 did not have a general effect on epidermal growth factor (EGF)-induced EGF receptor trafficking, degradation, or signaling. Instead, phosphorylated STAM2 specifically suppressed Akt activation, and a phosphorylation-deficient STAM2 mutant displayed prolonged localization on endosomes following EGF stimulation. These results reveal a novel link between the dephosphorylation and endocytic machinery and suggest that PTP1B can affect RTK signaling in a previously unrecognized manner.  相似文献   

18.
The epidermal growth factor receptor (EGFR) is a member of the receptor tyrosine kinase family. Ligand (epidermal growth factor or EGF) binding to the EGFR results in the coordinated activation and integration of biochemical signaling events to mediate cell growth, migration, and differentiation. One mechanism the cell utilizes to orchestrate these events is ligand-mediated endocytosis through the canonical clathrin-mediated endocytic pathway. Identification of proteins that regulate the intracellular movement of the EGF.EGFR complex is an important first step in dissecting how specificity of EGFR signaling is conferred. We examined the role of the small molecular weight guanine nucleotide-binding protein (G-protein) rab7 as a regulator of the distal stages of the endocytic pathway. Through the transient expression of activating and inactivating mutants of rab7 in HeLa cells, we have determined that rab7 activity directly correlates with the rate of radiolabeled EGF and EGFR degradation. Furthermore, when inhibitory mutants of rab7 are expressed, the internalized EGF.EGFR complex accumulates in high-density endosomes that are characteristic of the late endocytic pathway. Thus, we conclude that rab7 regulates the endocytic trafficking of the EGF.EGFR complex by regulating its lysosomal degradation.  相似文献   

19.
Caveolae are abundant plasma membrane invaginations in airway smooth muscle that may function as preorganized signalosomes by sequestering and regulating proteins that control cell proliferation, including receptor tyrosine kinases (RTKs) and their signaling effectors. We previously demonstrated, however, that p42/p44 MAP kinase, a critical effector for cell proliferation, does not colocalize with RTKs in caveolae of quiescent airway myocytes. Therefore, we investigated the subcellular sites of growth factor-induced MAP kinase activation. In quiescent myocytes, though epidermal growth factor receptor (EGFR) was almost exclusively found in caveolae, p42/p44 MAP kinase, Grb2, and Raf-1 were absent from these membrane domains. EGF induced concomitant phosphorylation of caveolin-1 and p42/p44 MAP kinase; however, EGF did not promote the localization of p42/p44 MAP kinase, Grb2, or Raf-1 to caveolae. Interestingly, stimulation of muscarinic M(2) and M(3) receptors that were enriched in caveolae-deficient membranes also induced p42/p44 MAP kinase phosphorylation, but this occurred in the absence of caveolin-1 phosphorylation. This suggests that the localization of receptors to caveolae and interaction with caveolin-1 is not directly required for p42/p44 MAP kinase phosphorylation. Furthermore, we found that EGF exposure induced rapid translocation of EGFR from caveolae to caveolae-free membranes. EGFR trafficking coincided temporally with EGFR and p42/p44 MAP kinase phosphorylation. Collectively, this indicates that although caveolae sequester some receptors associated with p42/p44 MAP kinase activation, the site of its activation is associated with caveolae-free membrane domains. This reveals that directed trafficking of plasma membrane EGFR is an essential element of signal transduction leading to p42/p44 MAP kinase activation.  相似文献   

20.
Differing spatial scales of signaling cascades are critical for cell orientation during chemotactic responses. We used biotin EGF bound to streptavidin-coupled magnetic beads to locally stimulate cells overexpressing the EGF receptor. We have found that EGF-induced actin polymerization remains localized even under conditions of receptor overexpression. Conversely, EGF-induced ERK activation spreads throughout the cell body after EGF bead stimulation. The localized actin polymerization is independent of PI3-kinase and rho protein activity and requires Arp2/3 complex and cofilin function. Thus, we find differing spatial scales of signaling from the EGF receptor, supporting models of chemotaxis that integrate short- and long-range signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号