共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Vo DT Abdelmohsen K Martindale JL Qiao M Tominaga K Burton TL Gelfond JA Brenner AJ Patel V Trageser D Scheffler B Gorospe M Penalva LO 《Molecular cancer research : MCR》2012,10(1):143-155
Musashi1 (Msi1) is an evolutionarily conserved RNA-binding protein (RBP) that has profound implications in cellular processes such as stem cell maintenance, nervous system development, and tumorigenesis. Msi1 is highly expressed in many cancers, including glioblastoma, whereas in normal tissues, its expression is restricted to stem cells. Unfortunately, the factors that modulate Msi1 expression and trigger high levels in tumors are largely unknown. The Msi1 mRNA has a long 3' untranslated region (UTR) containing several AU- and U-rich sequences. This type of sequence motif is often targeted by HuR, another important RBP known to be highly expressed in tumor tissue such as glioblastoma and to regulate a variety of cancer-related genes. In this report, we show an interaction between HuR and the Msi1 3'-UTR, resulting in a positive regulation of Msi1 expression. We show that HuR increased MSI1 mRNA stability and promoted its translation. We also present evidence that expression of HuR and Msi1 correlate positively in clinical glioblastoma samples. Finally, we show that inhibition of cell proliferation, increased apoptosis, and changes in cell-cycle profile as a result of silencing HuR are partially rescued when Msi1 is ectopically expressed. In summary, our results suggest that HuR is an important regulator of Msi1 in glioblastoma and that this regulation has important biological consequences during gliomagenesis. 相似文献
6.
Sengupta S Jang BC Wu MT Paik JH Furneaux H Hla T 《The Journal of biological chemistry》2003,278(27):25227-25233
7.
8.
9.
The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a 总被引:5,自引:0,他引:5
hnRNP A1 is an RNA-binding protein involved in various aspects of RNA processing. Use of an in vivo cross-linking and immunoprecipitation protocol to find hnRNP A1 RNA targets resulted in the identification of a microRNA (miRNA) precursor, pre-miR-18a. This microRNA is expressed as part of a cluster of intronic RNAs, including miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1 and miR-92, and potentially acts as an oncogene. Here we show that hnRNP A1 binds specifically to the primary RNA sequence pri-miR-18a before Drosha processing. HeLa cells depleted of hnRNP A1 have reduced in vitro processing activity with pri-miR-18a and also show reduced abundances of endogenous pre-miR-18a. Furthermore, we show that hnRNP A1 is required for miR-18a-mediated repression of a target reporter in vivo. These results underscore a previously uncharacterized role for general RNA-binding proteins as auxiliary factors that facilitate the processing of specific miRNAs. 相似文献
10.
Simionato E Barrios N Duloquin L Boissonneau E Lecorre P Agnès F 《Developmental biology》2007,301(1):166-177
Drosophila ELAV is the founding member of an evolutionarily conserved family of RNA-binding proteins considered as key inducers of neuronal differentiation. Although several ELAV-specific targets have been identified, little is known about the role of elav during neural development. Here, we report a detailed characterization of the elav mutant commissural phenotype. The reduced number of commissures in elav mutant embryos is not due to loss or misspecification of neural cells but results from defects in commissural axon projections across the midline. We establish a causal relationship between the elav mutant commissural phenotype and a reduction in the expression of commissureless, a key component of the Robo/Slit growth cone repulsive signalling pathway. In the nerve cord of elav mutant embryos, comm mRNA expression is strongly reduced in neurons, but not in midline glial cells. Furthermore, specific expression of an elav transgene in posterior neurons of each segment of an elav mutant nerve cord restores comm mRNA expression in these cells, as well as the formation of posterior commissures. Finally, forced expression of comm in specific commissural neuron subsets rescues the midline crossing defects of these neurons in elav mutant embryos, further indicating that elav acts cell autonomously on comm expression. 相似文献
11.
12.
DAZAP1, an RNA-binding protein required for development and spermatogenesis, can regulate mRNA translation 总被引:1,自引:0,他引:1
Smith RW Anderson RC Smith JW Brook M Richardson WA Gray NK 《RNA (New York, N.Y.)》2011,17(7):1282-1295
DAZ-associated protein 1 (DAZAP1) is an RNA-binding protein required for normal growth, development, and fertility in mice. However, its molecular functions have not been elucidated. Here we find that Xenopus laevis and human DAZAP1, which are each expressed as short and long forms, act as mRNA-specific activators of translation in a manner that is sensitive to the number of binding sites present within the 3' UTR. Domain mapping suggests that this conserved function is mainly associated with C-terminal regions of DAZAP1. Interestingly, we find that the expression of xDAZAP1 and its polysome association are developmentally controlled, the latter suggesting that the translational activator function of DAZAP1 is regulated. However, ERK phosphorylation of DAZAP1, which can alter protein interactions with its C terminus, does not play a role in regulating its ability to participate in translational complexes. Since relatively few mRNA-specific activators have been identified, we explored the mechanism by which DAZAP1 activates translation. By utilizing reporter mRNAs with internal ribosome entry sites, we establish that DAZAP1 stimulates translation initiation. Importantly, this activity is not dependent on the recognition of the 5' cap by initiation factors, showing that it functions downstream from this frequently regulated event, but is modulated by changes in the adenylation status of mRNAs. This suggests a function in the formation of "end-to-end" complexes, which are important for efficient initiation, which we show to be independent of a direct interaction with the bridging protein eIF4G. 相似文献
13.
RNA-binding protein HuR modulates the stability and translational efficiency of messenger RNAs (mRNAs) encoding essential components of the cellular proliferation, growth and survival pathways. Consistent with these functions, HuR levels are often elevated in cancer cells and reduced in senescent and quiescent cells. However, the molecular mechanisms that control HuR expression are poorly understood. Here we show that HuR protein autoregulates its abundance through a negative feedback loop that involves interaction of the nuclear HuR protein with a GU-rich element (GRE) overlapping with the HuR major polyadenylation signal (PAS2). An increase in the cellular HuR protein levels stimulates the expression of long HuR mRNA species containing an AU-rich element (ARE) that destabilizes the mRNAs and thus reduces the protein production output. The PAS2 read-through occurs due to a reduced recruitment of the CstF-64 subunit of the pre-mRNA cleavage stimulation factor in the presence of the GRE-bound HuR. We propose that this mechanism maintains HuR homeostasis in proliferating cells. Since only the nuclear HuR is expected to contribute to the auto-regulation, our model may explain the longstanding observation that the increase in the total HuR expression in cancer cells often correlates with the accumulation of its substantial fraction in the cytoplasm. 相似文献
14.
15.
16.
17.
Zou T Mazan-Mamczarz K Rao JN Liu L Marasa BS Zhang AH Xiao L Pullmann R Gorospe M Wang JY 《The Journal of biological chemistry》2006,281(28):19387-19394
Polyamines are essential for maintaining normal intestinal epithelial integrity, an effect that relies, at least in part, on their ability to keep low levels of nucleophosmin (NPM) and p53 mRNAs. The RNA-binding protein HuR associates with the p53 mRNA, as reported previously, and with the NPM mRNA, computationally predicted to be a target of HuR. Here, we show that HuR binds the NPM and p53 3'-untranslated regions and stabilizes these mRNAs in polyamine-depleted intestinal epithelial cells. Depletion of cellular polyamines by inhibiting ornithine decarboxylase with alpha-difluoromethylornithine dramatically enhanced the cytoplasmic abundance of HuR, whereas ectopic ornithine decarboxylase overexpression decreased cytoplasmic HuR; neither intervention changed whole-cell HuR levels. HuR was found to specifically bind the 3'-untranslated regions of NPN and p53 mRNAs. HuR silencing rendered the NPM and p53 mRNAs unstable and prevented increases in NPM and p53 mRNA and protein in polyamine-deficient cells. These results indicate that polyamines modulate cytoplasmic HuR levels in intestinal epithelial cells, in turn controlling the stability of the NPM and p53 mRNAs and influencing NPM and p53 protein levels. 相似文献
18.
19.
20.
After mid-blastula transition, populations of cells within the Xenopus embryo become motile. Using antisense morpholino oligonucleotides, we find that Vg1 RBP, an RNA-binding protein implicated in RNA localization in oocytes, is required for the migration of cells forming the roof plate of the neural tube and, subsequently, for neural crest migration. These cells are properly determined but remain at their site of origin. Consistent with a possible role in cell movement, Vg1 RBP asymmetrically localizes to extended processes in migrating neural crest cells. Given that Vg1 RBP is a member of the conserved VICKZ family of proteins, expressed in embryonic and neoplastic cells, these data shed light on the likely role of these RNA-binding proteins in regulating cell movements during both development and metastasis. 相似文献