首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Competitive laboratory experiments between Brachionus calyciflorus and B. patulus were conducted at low (1×106 cells ml–1) and high (3×106 cells ml–1) densities of Chlorella vulgaris and four initial inoculation densities (numerically, 100% B. calyciflorus; 75% B. calyciflorus + 25% B. patulus; 50% each of the two species; 25% B. calyciflorus + 75% B. patulus and 100% B. patulus). Population densities were enumerated and the medium was changed daily for 20 days. B. patulus was a superior competitor in low food density regardless of inoculation density. At high food density, B. calyciflorus showed higher population growth in the first week but thereafter was outcompeted by B. patulus regardless of initial density. When grown alone, B. calyciflorus reached peak abundances (mean ± standard error) of 31±3 and 81±7 individuals ml–1 at low and high food densities, respectively. The corresponding values for B. patulus were 130±2 and 306±13. The adverse effects of B. patulus on the peak abundances of B. calyciflorus were higher at low food concentration. Data on egg ratios (eggs female–1) revealed an inverse relation with population abundance of both tested rotifer species. Our results indicated that the rate of population increase of a species was not a good indicator of its competitive ability. Instead, the ability to reproduce under continuously diminishing food resources (until a threshold level) was responsible for the competitive edge of B. patulus over B. calyciflorus. This was further influenced by the relative inoculation densities of the tested rotifer species and the offered food densities.  相似文献   

2.
Laboratory-cultured Streptocephalus torvicornis were offered 8 concentrations (from 6 to 800 ind. ml–1) of Anuraeopsis fissa for periods of 2 h 30 min. Two size classes, small (male: 14.7 mm± 1.6, female: 15.4 mm± 1.3) and large (male: 20.0 mm±2.0, female: 23.1 mm± 1.5), of S. torvicornis were used. Functional response for large S. torvicornis (both sexes) plateaued at 400 rotifers ml–1, while in small specimens it did so at 200 prey ml–1. Females consumed significantly more (30%) prey than males. Large males consumed maximum 4730 rotifers h–1, females 6560 h–1.  相似文献   

3.
We evaluated the effect of algal food density (1.5 × 106, 3.0 × 106 and 4.5 × 106 cells ml−1 of Chlorella) and temperature (22° and 28 °C) on competition among the rotifers Brachionus calyciflorus, Brachionus havanaensis, Brachionus patulus and Brachionus rubens, based on population growth experiments for 24 days. The growth experiments were conducted seperately for each individual rotifer species (i.e., controls), and in mixtures of all four species in equal initial proportions (i.e., under competition). The population growth of B. calyciflorus, B. havanaensis, B. patulus and B. rubens grown separately at two temperatures and at three algal food densities showed typical patterns of lag, exponential and retardation phases in the controls. This pattern differed considerably under competition. In general, we observed that in all of the test species, the highest growth rates were observed at higher food levels and in the absence of congenerics. At 22 °C, under the lowest food level, the differences in the population abundances of B. havanaensis, B. patulus and B. rubens grown alone and in the presence of competition were large. However, these differences reduced as food density was increased from 0.5 × 106 to 4.5 × 106 cells ml−1. At 28 °C and at the lowest food level, all of the other rotifer species eliminated B. havanaensis in mixed cultures. Each brachionid species had a higher rate when grown alone than when cultured with other species. The highest r (mean ± standard error: 0.54 ± 0.01 day−1) was recorded for B. havanaensis at 28 °C under 4.5 × 106 cells ml−1 of algal food density. At 28 °C at low algal food density, the presence of competitors resulted in negative population growth rates for three of the four rotifer species tested.  相似文献   

4.
Nandini  S.  Sarma  S.S.S. 《Hydrobiologia》2003,491(1-3):211-219
We studied the patterns of population growth of 7 cladoceran species (Alona rectangula, Ceriodaphnia dubia, Daphnia laevis, Diaphanosoma brachyurum, Moina macrocopa, Scapholeberis kingi and Simocephalus vetulus) using 6 algal densities, viz. 0.05×106, 0.1×106, 0.2×106, 0.4×106, 0.8×106 and 1.6×106 cells ml–1, of Chlorella vulgaris for 18 – 30 days. In terms of carbon content these algal concentrations corresponded to 0.29, 0.58, 1.16, 2.33, 4.65 and 9.31 g ml–1, respectively. Cladocerans in the tested range of algal levels responded similarly, in that increasing the food concentrations resulted in higher numerical abundance and population growth rates (r). The peak population densities were (mean±standard error) 71±5; 17.1±0.4, 3.6±0.3, 12.7±1.1, 18.2±2.7, 15.8±1.0 and 10.9±0.02 ind. ml–1, respectively for A. rectangula, C. dubia, D. laevis, D. brachyurum, M. macrocopa, S. kingi and S. vetulus. In general, the lowest r values were obtained for D. laevis (0.01±0.001) at 0.05×106 cells ml–1 food level while the highest was 0.283±0.004 for A. rectangula at 1.6×106 cells ml–1 of Chlorella. When the data of peak population density for each cladoceran species were plotted against the body length, we found an inverse relation, broadly curvilinear in shape. From regression equations between the food level and rate of population increase, we calculated the theoretical food quantity (the threshold level) required to maintain a zero population growth (r = 0) for each cladoceran species, which varied from 0.107 to 0.289 g ml–1 d–1 depending on the body size. When we plotted the cladoceran body size against the corresponding threshold food levels, we obtained a normal distribution curve. From this it became evident that for up to 1300 m body size, the threshold food level increased with increasing body size; however, beyond this, the threshold level decreased supporting earlier observations on rotifers and large cladocerans.  相似文献   

5.
We studied the effect of different concentrations (0, 3, 6, 9 and 12 g l–1) of sodium chloride at one food level of Chlorella (1×106 cells ml–1) on competition between the rotifers B. rotundiformis and H. jenkinae, both of which were isolated from a saline lake. The population growth experiments were conducted for 3 weeks. Both the rotifer species did not survive beyond one week at a salinity of 0 g l–1. Regardless of salt concentration and the presence of a competitor, H. jenkinae reached higher densities than B. rotundiformis. When grown alone, both B. rotundiformis and H. jenkinae showed optimal peak population densities at the salinity of 6 and 9 g l–1. Since biomass wise, B. rotundiformis was larger than H. jenkinae, it showed a lower numerical abundance. Thus, the maximum peak population densities of B. rotundiformis and H. jenkinae recorded in this study were 107±3 and 203±28 ind. ml–1. The maximal rates of population increase for B. rotundiformis and H, jenkinae when grown alone were 0.264±0.003 and 0.274±0.004, respectively. Our results also indicated that B. rotundiformis and H. jenkinae coexisted better at a salinity of 6 and 9 g l–1 of sodium chloride while a salinity of 3 g l–1 favoured Hexarthra over B. rotundiformis. At 12 g l–1, both the rotifer species grown alone or together showed lower growth rates compared to those at lower salinity levels. Except 0 g l–1, in all other salinity treatments, H. jenkinae was a superior competitor to B. rotundiformis.  相似文献   

6.
Brachionus calyciflorus (Pallas) is a common brachionid in sewage oxidation ponds. The uptake and assimilation of E. coli was optimal at concentrations of 2.7–6.9 × 108 cells ml–1 while assimilation coefficient per body weight of B. calyciflorus was found to be 10% · Ind.–1 d–1. More than two eggs per individual were produced during 24 hours when brachionids were fed with a mixutre of E. coli (109 cells · ml–1) and Chlorella spp. (106 cells · ml–1). The nutritional value of the mixture of E. coli and Chlorella spp. was found to be higher than that of bacteria alone.  相似文献   

7.
Nandini  S.  Sarma  S. S. S. 《Hydrobiologia》2000,435(1-3):117-126
Algal food density is known to influence life history variables of cladoceran species. It is not, however, well established whether both littoral and planktonic cladocerans show similar trends when exposed to increasing food concentrations. In the present work, we studied the life table demography of four cladoceran species (Ceriodaphnia cornuta, Moina macrocopa, Pleuroxus aduncus and Simocephalus vetulus) in relation to three algal food concentrations (low: 0.5 × 106, medium: 1.5 × 106 and high: 4.5 × 106 cells ml–1 of Chlorella vulgaris) (in terms of carbon content, these were equivalent to 0.15, 0.45 and 1.35 g ml–1, respectively) at 25 °C. In general, for all the tested cladoceran species, values of average lifespan, gross reproductive rate, net reproductive rate, generation time and the rate of population growth were higher at lower food concentrations. Furthermore, high food concentration resulted in a negative population growth rate (mean ± standard error: –0.091 ± 0.026) for P. aduncus. The highest population growth rate (0.602 ± 0.014) was recorded for M. macrocopa at low food density. S. vetulus had the longest average lifespan (40 ± 1 d) while M. macrocopa had the lowest (5 ± 1 d). C. cornuta showed better performance at medium food concentration. We conclude that among the algal concentrations used here, 0.5 × 106 – 1.5 × 106 was beneficial not only to the planktonic species but also to the littoral P. aduncus and S. vetulus while 4.5 × 106 cells ml–1 was unsuitable for all the cladocerans tested.  相似文献   

8.
We evaluated the combined effects of algal (Chlorella vulgaris) food levels (low, 0.5 × 106 (or 2.9 μg C ml−1); and high, 1 × 106 cells ml−1 (or 5.8 μg C ml−1)) and zinc concentrations (0, 0.125, and 0.250 mg l−1 of ZnCl2) on the competition between two common planktonic rotifers Anuraeopsis fissa and Brachionus rubens using their population growth. Median lethal concentration data (LC50) (mean ± 95% confidence intervals) showed that B. rubens was more resistant to zinc (0.554 ± 0.08 mg l−1) than A. fissa (0.315 ± 0.07 mg l−1). A. fissa when grown alone or with Zn was always numerically more abundant than B. rubens. When grown in the absence of zinc, under low- and high-food levels, the peak abundances of A. fissa varied from 251 ± 24 to 661 ± 77 ind. ml−1, respectively, and the corresponding maxima for B. rubens were 52 ± 3 and 102 ± 18 ind. ml−1. At a given food level, competition for food reduced the peak abundances of both rotifers considerably. Increase in Zn concentration also lowered the rotifer abundances. The impact of zinc on competition between the two-rotifer species was evident at low-food level, mainly for A. fissa. At zinc concentrations of 0 and 0.125 mg l−1, the populations of both rotifers continued to grow for about 10 days, but thereafter B. rubens began to decline. Role of zinc on the competitive outcome of the two species is discussed in relation to the changing algal densities in natural water bodies.  相似文献   

9.
The rotifer Brachionus calyciflorus can utilize the cyanobacterium Anabaena flos-aquae as either a sole or supplementary food source in laboratory culture. Positive population growth rates accompany food densities of 10 or 100 µg dry weight ml–1, but slightly negative rates are found at a lower density (1.0 µg ml–1). These results are consistent for rotifers feeding on two strains of A. flos-aquae, UTEX-1444 and NRC-44-1, with slightly enhanced survivorship and reproduction with the latter food. A 1:1 mixture (by dry weight) of Euglena gracilis and A. flos-aquae (NRC-44-1) produces survivorship comparable to that of control rotifer cohorts fed E. gracilis alone, but elicits significantly greater fecundity and population growth rates than found with the control food suspension at the same biomass density.  相似文献   

10.
Sarma  S.S.S.  Pav&#;n-Meza  E. Luc&#;a  Nandini  S. 《Hydrobiologia》2003,491(1-3):309-320
Population growth and life table demography of the predatory rotifer A. girodi using spineless Brachionus calyciflorus and spined Brachionus havanaensis as prey at densities of 1, 2, 4 and 8 ind. ml–1 at 25°C were studied. Regardless of the prey species, the population of A. girodi increased with increasing availability of Brachionus in the medium. At any given prey density, A. girodi fed B. calyciflorus showed consistently better growth than when fed B. havanaensis. The maximum population densities of A. girodi varied from 0.28 to 1.8 ind. ml–1 depending on the prey species and the density. The rate of population increase observed in population growth studies varied from 0.17 to 0.43 day–1 when fed B. calyciflorus and 0.09 to 0.27 day–1 when fed B. havanaensis. Male population of A. girodi was closely related to female density. The lowest average lifespan was observed for A. girodi when fed B. havanaensis at 1 ind. ml–1, while the converse was the case when fed B. calyciflorus at comparable prey concentration. Net reproductive rates varied from 16 to 26 offspring female–1 lifespan–1 depending on the prey species and concentration. Generation time of A. girodi decreased with increasing food concentrations for both the prey species. The rates of population increase obtained from life table demography were lower for A. girodi when fed B. havanaensis than when fed B. calyciflorus.  相似文献   

11.
Sarma  S.S.S.  Nandini  S. 《Hydrobiologia》2001,(1):75-83
We studied the life history variables and population growth characteristics of Brachionus variabilis, which was recorded for the first time from Mexico. The animals were fed Chlorella, using five concentrations (0.25, 0.5, 1, 2 and 4 × 106 cells ml–1) at 25 °C. Food density was observed to have significant effect on life expectancy, average lifespan, gross reproductive rate, net reproductive rate, generation time and population growth rate. The average lifespan ranged from 3 to 6 days depending on the food density. The net reproductive rate ranged from 2 to 7 neonates female–1 d–1. The rate of population increase per day varied from 0.14 to 0.35. The highest net reproductive rate and average lifespan and life expectancy were recorded at Chlorella concentrations of 1 × 106 and 2 × 106 cells ml–1.  相似文献   

12.
The ability ofPseudomonas fluorescens, Escherichia coli andAcinetobacter radioresistenns to remove phosphate during growth was related to the initial biomass as well as to growth stages and bacterial species. Phosphate was removed by these bacteria under favourable conditions as well as under unfavourable conditions of growth. Experiments showed a relationship between a high initial cell density and phosphate uptake. More phosphate was released than removed when low initial cell densities (102–105 cells ml–1) were used. At a high initial biomass concentration (108 cells ml–1), phosphate was removed during the lag phase and during logarthmic growth byP. fluorescens. Escherichia coli. at high initial biomass concentrations (107 cells ml–1), accumulated most of the phosphate during the first hour of the lag phase and/or during logarithmic growth and in some cases removed a small quantily of phosphate during the stationary growth phase.Acinetobacter radioresistens, at high initial cell densities (106, 107 cells ml–1) removed most of phosphate during the first hour of the lag phase and some phosphate during the stationary growth phase.Pseudomonas fluorescens removed phosphate more thanA. radioresistens andE. coli with specific average ranges from 3.00–28.50 mg L–1 compared to average ranges of 4.92–17.14 mg L–1 forA. radioresistens and to average ranges of 0.50–8.50 mg L–1 forE. coli.  相似文献   

13.
Laboratory studies on population growth and life table demography of Asplanchna girodi were conducted at 25±1 °c using Anuraeopsis fissa as prey at four (250, 500, 1000 and 2000 ind ml–1) densities. A prey density of 100 ind ml–1 per predator per day did not support A. girodi, while at the highest prey concentration, A. girodi reached a peak of 115±7 ind ml–1. The age distribution of A. girodi indicated that non-adults constituted about 2/3rd of the population at all prey concentrations. A decrease in prey availability resulted in increased mortality of non-adults. At the highest prey density, the rate of population increase (r) was 1.51 d–1. The significance of estimating mortality in population growth studies is discussed.Life table demography of A. girodi was also studied using the same prey at the same concentrations. None of the survivorship parameters (e.g. mean lifespan and mean survivorship) showed a significant relation to prey density. Net reproductive rate and generation time (but not rate of population increase) were affected by prey abundance.  相似文献   

14.
Rotifers as predators on small ciliates   总被引:5,自引:5,他引:0  
Clearance rates of Synchaeta pectinata, Brachionus calyciflorus and Asplanchna girodi on Tetrahymena pyriformis (46 µm in length) at a density of 10 cells ml–1, in the presence of algal food, were 2.5 to 6.1 ml rot.–1 day–1. Clearance rates of these rotifers were, respectively, about 2, 3, and 13 times lower on Strobilidium gyrans (58 µm in length) than on T. pyriformis, indicating that the saltations of S. gyrans are an effective escape response. Clearance rates of S. pectinata were considerably lower on Colpidium striatum (81 µm) than on S. gyrans, suggesting that S. pectinata may not be able to ingest ciliates of this size. S. pectinata had a clearance rate of 19 ml rot.–1 day–1 on S. gyrans at a density of 1.2 cells ml–1, in the absence of edible algal food. Rotifers may prey extensively on ciliates in natural plankton communities, ingesting 25 to 50 individuals in the 45–60 µm size range day–1.  相似文献   

15.
The rotifer, Brachionus calyciflorus, was grown with two algae species (Chlorella sp. and Scenedesmus obliquus) at different concentrations (0.1, 1 and 10 × 106 cells ml−1). The body size (lorica biovolume) of individual rotifer and their egg size were measured when the populations were roughly in the exponential phase of population growth. The body size of the rotifers differed significantly (P < 0.05) among the two algae species used, however this effect was not observed for egg size. The body size of rotifers fed on higher densities of Chlorella sp. (10 × 106 cells ml−1) was significantly larger than for those fed on lower and medium densities (0.1 and 1 × 106 cells ml−1). Body size and egg size of rotifers fed with different amounts of Scenedesmus did not differ significantly. The egg size was significantly larger at higher food level of Chlorella. A significantly positive correlation was observed between the adult rotifer body size and their egg size.  相似文献   

16.
Phytoplankton often develop various defense mechanisms in response to zooplankton grazing, such as spines and colonies. While it is now known that increased spine length and cells in a colony of members of the genus Scenedesmus, when zooplankton grazing is intense, helps in reducing zooplankton filtering rates, the effect of these defense mechanisms at the population level has been observed in few studies. Here we present data on the growth rates of four zooplankton species, Brachionus calyciflorus, B. patulus, Ceriodaphnia dubia and Daphnia pulex at two food levels using two species of colony-forming Scenedesmus spp.: S. acutus (cell length = 18.2 ± 0.4 µm; width = 4.2 ± 0.1 µm; average colony length = 90 µm; width: 21 µm) and S. quadricauda (cell length: 21 ± 0.5 width 7.5 ± 0.3 µm; average colony length: 84 µm; width: 30 µm). Whereas S. acutus had no spines, S. quadricauda had spines of 6–10 µm. Population growth experiments of the test rotifers and cladocerans were conducted in 100 ml containers with 50 ml of the medium with test algae. Algae concentrations used were: 13 and 52 mg dw l–1 of each of the two algal species offered in colonial forms. We used an initial inoculation zooplankter density of 1 ind. ml–1 for either of the rotifer species and 0.2 ind. ml–1 for either of the cladoceran species. In all, we had 64 test containers (4 test species of zooplankton × 2 test species of algae × 2 algal densities × 4 replicates). We found a significant effect of algal size on the growth rates of all the four tested species of zooplankton. The population growth rates of zooplankton ranged from –0.58 to 0.66 and were significantly higher on diet of S. acutus than of S. quadricauda. Thus, our study confirms that the larger colony size and the formation of spines in S. quadricauda were effective defenses against grazing by both rotifers and smaller sized cladoceran Ceriodaphnia dubia but that larger-bodied Daphnia pulex could exploit both the algal populations equally.  相似文献   

17.
Nandini  S.  Sarma  S. S. S. 《Hydrobiologia》2004,526(1):157-163
Although oligochaete worms naturally coexist with cladocerans in many shallow freshwater ponds and lakes, their influence on the latter is not well established. In this work we studied the effect of Aeolosoma sp. on the population growth of Alona rectangula, Ceriodaphnia dubia, Daphnia pulex, Macrothrix triserialis and Moina macrocopa. Population growth studies were conducted at one algal food density (1 × 106cells ml–1 of Chlorella vulgaris). The experimental design was similar for all five cladoceran species, where we used 100 ml capacity transparent jars containing 50 ml of EPA medium with the desired algal density and three replicates for each treatment. The test medium was changed daily and fresh algal food was added. The initial density of each of the cladoceran species in the population growth studies was 0.4 ind ml–1 while that of the worms 1.0 ind ml–1. Following inoculation, we estimated daily the number of cladocerans and the worms for duration of 21 days. Regardless of the presence of worms, Moina macrocopa and Macrothrix triserialis showed rapid population growth while A. rectangula took more than 2 weeks to reach peak abundances. With the exception of M. triserialis, all the other our cladoceran species declined in the presence of Aeolosoma sp. The lowest peak population density (about 1 ind ml–1) was observed for M. triserialisin controls. The remaining species had peak densities of about 3–5 ind ml–1. The rates of population increase per day varied from 0.03 to 0.19 depending on the cladoceran taxa and the treatment. In general we found that pelagic taxa were more adversely affected by the presence of the worms than were the littoral cladocerans.  相似文献   

18.
Park  Heum Gi  Lee  Kyun Woo  Cho  Sung Hwoan  Kim  Hyung Sun  Jung  Min-Min  Kim  Hyeung-Sin 《Hydrobiologia》2001,(1):369-374
The freshwater rotifer, Brachionus calyciflorus is one of the live food organisms used for the mass production of larval fish. In this study possibility of obtaining high density cultures of the freshwater rotifer B. calyciflorus were investigated. The two culture systems used differed in their air and dissolved oxygen supplies using three temperatures in each case: 24, 28 and 32 °C. Rotifers were batch-cultured using 5 l-vessels and fed with the freshwater Chlorella. The growth rate of rotifers significantly increased with an increase in temperature. The maximum density of the rotifers with air-supply at 24 °C, 6500 ind. ml–1, was significantly lower than those cultured at 28 and 32 °C, i.e. 8600 and 8100 ind. ml–1, respectively. Dissolved oxygen levels decreased with time and ranged from 0.8 to 1.4 mg l–1 when the density of freshwater rotifer was the highest at each temperature. The highest density (19200 ind. ml–1) of freshwater rotifer was obtained in cultures with a supply of oxygen at 28 °C. Densities of 13500 and 17200 ind. ml–1 were found at 24 and 32 °C, respectively. Levels of NH3-N increased with time and a dramatic increase of NH3-N was observed at high temperatures. Levels of NH3-N at 24, 28 and 32 °C were 13.2, 18.5 and 24.5 mg l–1, respectively. These levels coincided with the highest rotifer density at each of the three temperatures. When rotifers were cultured with an oxygen-supply and pH was adjusted to 7, the maximum density of rotifer reached 33500 ind. ml–1 at 32 °C . These results suggested that high density culture of freshwater rotifer, B. calyciflorus could be achieved under optimal conditions with DO value of exceeding 5 mg l–1 and NH3-N values of lower than 12.0 mg l–1.  相似文献   

19.
The effect of sublethal levels of methylparathion (0, 1, 3, 5, 7 mg l–1) on the freshwater rotifer, Brachionus calyciflorus, during their entire life cycle was studied. Rotifers were fed on two species of unicellular algae: Nannochloris oculata and Chlorella pyrenoidosa; both algal concentrations were 5 × 105 cell ml–1.The parameters used to determine the toxicity of this compound were survival, fecundity, net reproductive rate (R)o, generation time (T), intrinsic rate of natural increase (r), reproductive value (V x/Vo) and life expectancy at hatching (eo). All the demographic parameters studied were affected by methyl-parathion exposure on rotifers fed on both species of algae, but the toxic effect was larger when animals were fed on Chlorella pyrenoidosa; in this case, animals showed a decreased in fertility and also a delayed first reproduction. Sublethal methylparathion levels produced a reduction in most of the parameters selected, especially after exposure to 7 mg l–1, where the animals died before reproducing.  相似文献   

20.
Spore yields were measured for various fungal entomopathogens grown in six nutritionally different liquid media with low and high carbon concentrations (8 and 36 g l–1, respectively) at carbon-to-nitrogen (C:N) ratios of 10:1, 30:1 and 50:1. Six fungi were tested: two Beauveria bassiana strains, three Paecilomyces fumosoroseus strains and one Metarhizium anisopliae strain. Spore yields were examined after 2, 4 or 7 days growth. In general, highest spore yields were obtained in media containing 36 g/l and a C:N ratio of 10:1. After 4 days growth, highest spore yields were measured in the three Paecilomyces isolates (6.9–9.7 × 108 spores ml–1). Spore production by the B. bassiana isolates was variable with one isolate producing high spore yields (12.2 × 108 spores ml–1) after 7 days growth. The M. anisopliae isolate produced low spore concentrations under all conditions tested. Using a commercial production protocol, a comparison of spore yields for the coffee berry borer P. fumosoroseus and a commercial B. bassiana isolate showed that highest spore concentrations (7.2 × 108 spores ml–1) were obtained with the P. fumosoroseus isolate 2-days post-inoculation. The ability of the P. fumosoroseus strain isolated from the coffee berry borer to rapidly produce high concentrations of spores prompted further testing to determine the desiccation tolerance of these spores. Desiccation studies showed that ca. 80% of the liquid culture produced P. fumosoroseus spores survived the air-drying process. The virulence of freshly produced, air-dried and freeze-dried coffee berry borer P. fumosoroseus blastospores preparations were tested against silverleaf whiteflies (Bemisia argentifolii). While all preparations infected and killed B. argentifolii, fresh and air-dried preparations were significantly more effective. These results suggest that screening potential fungal biopesticides for amenability to liquid culture spore production can aid in the identification of commercially viable isolates. In this study, P. fumosoroseus was shown to possess the production and stabilization attributes required for commercial development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号