首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To examine the function of the central pseudoknot in 16S rRNA, we have studied Escherichia coli 30S subunits with the A18 mutation in this structure element. Previously, this mutation, which changes the central base pair of helix 2, C18--G917, to an A18xG917 mismatch, was shown to inhibit translation in vivo and a defect in initiation was suggested. Here, we find that the mutant 30S particles are impaired in forming 70S tight couples and predominantly accumulate as free 30S subunits. Formation of a 30S initiation complex, as measured by toeprinting, was almost as efficient for mutant 30S subunits, derived from the tight couple fraction, as for the wild-type control. However, the A18 mutation has a profound effect on the overall stability of the subunit. The mutant ribosomes were inactivated by affinity chromatography and high salt treatment, due to easy loss of ribosomal proteins. Accordingly, the particles could be reactivated by partial in vitro reconstitution with 30S ribosomal proteins. Mutant 30S subunits from the free subunit fraction were already inactive upon isolation, but could also be reactivated by reconstitution. Apparently, the inactivity in initiation of these mutant 30S subunits is, at least in part, also due to the lack of essential ribosomal proteins. We conclude that disruption of helix 2 of the central pseudoknot by itself does not affect the formation of a 30S initiation complex. We suggest that the in vivo translational defect of the mutant ribosomes is caused by their inability to form 70S initiation complexes.  相似文献   

2.
3.
4.
The role of Rac family proteins in platelet spreading on matrix proteins under static and flow conditions has been investigated by using Rac-deficient platelets. Murine platelets form filopodia and undergo limited spreading on fibrinogen independent of Rac1 and Rac2. In the presence of thrombin, marked lamellipodia formation is observed on fibrinogen, which is abrogated in the absence of Rac1. However, Rac1 is not required for thrombin-induced aggregation or elevation of F-actin levels. Formation of lamellipodia on collagen and laminin is also Rac1-dependent. Analysis of platelet adhesion dynamics on collagen under flow conditions in vitro revealed that Rac1 is required for platelet aggregate stability at arterial rates of shear, as evidenced by a dramatic increase in platelet embolization. Furthermore, studies employing intravital microscopy demonstrated that Rac1 plays a critical role in the development of stable thrombi at sites of vascular injury in vivo. Thus, our data demonstrated that Rac1 is essential for lamellipodia formation in platelets and indicated that Rac1 is required for aggregate integrity leading to thrombus formation under physiologically relevant levels of shear both in vitro and in vivo.  相似文献   

5.
WAVE2 belongs to a family of proteins that mediates actin reorganization by relaying signals from Rac to the Arp2/3 complex, resulting in lamellipodia protrusion. WAVE2 displays Arp2/3-dependent actin nucleation activity in vitro, and does not bind directly to Rac. Instead, it forms macromolecular complexes that have been reported to exert both positive and negative modes of regulation. How these complexes are assembled, localized and activated in vivo remains to be established. Here we use tandem mass spectrometry to identify an Abi1-based complex containing WAVE2, Nap1 (Nck-associated protein) and PIR121. Abi1 interacts directly with the WHD domain of WAVE2, increases WAVE2 actin polymerization activity and mediates the assembly of a WAVE2-Abi1-Nap1-PIR121 complex. The WAVE2-Abi1-Nap1-PIR121 complex is as active as the WAVE2-Abi1 sub-complex in stimulating Arp2/3, and after Rac activation it is re-localized to the leading edge of ruffles in vivo. Consistently, inhibition of Abi1 by RNA interference (RNAi) abrogates Rac-dependent lamellipodia protrusion. Thus, Abi1 orchestrates the proper assembly of the WAVE2 complex and mediates its activation at the leading edge in vivo.  相似文献   

6.
A major goal of comparative genomics is an understanding of the forces which control gene order. This assumes that gene order is important, a supposition backed by the existence of genomic colinearity between many related species. In the bacterial chromosome, a polarity in the order of genes has been suggested, influenced by distance and orientation relative to the origin of DNA replication. We propose a model of the bacterial chromosome in which gene order is maintained by the adaptation of gene expression to local superhelical context. This force acts not directly at the genomic level but rather at the local gene level. A full understanding of gene-order conservation must therefore come from the bottom up. Correspondence to: R.L. Charlebois  相似文献   

7.
8.
The rare inborn cblF defect of cobalamin metabolism is caused by mutations in the limb region 1 (LMBR1) domain containing 1 gene (LMBRD1). This defect is characterized by massive accumulation of free cobalamin in lysosomes and loss of mitochondrial succinyl‐CoA synthesis and cytosolic methionine synthesis. Affected children suffer from heart defects, developmental delay and megaloblastic anemia. LMBRD1 encodes for LMBD1, a predicted lysosomal cobalamin transport protein. In this study, we determine the physiological function of LMBRD1 during embryogenesis by generating Lmbrd1 deficient mice using the Cre/LoxP system. Complete loss of Lmbrd1 function is accompanied by early embryonic death in mice. Whole mount in situ hybridization studies against bone morphogenetic protein 4 and Nodal show that initial formation of the proximal–distal axis is unaffected in early embryonic stages whereas the initiation of gastrulation is disturbed shown by the expression pattern of even skipped homeotic gene 1 and fibroblast growth factor 8 in Lmbrd1 deficient mice. We conclude that intact function of LMBD1 is essential for the initiation of gastrulation.  相似文献   

9.
10.
Cullin-based ubiquitin ligases (E3s) constitute one of the largest E3 families. Fbxw8 (also known as Fbw6 or Fbx29) is an F-box protein that is assembled with Cul7 in an SCF-like E3 complex. Here we show that Cul7 forms a heterodimeric complex with Cul1 in a manner dependent on Fbxw8. We generated mice deficient in Fbxw8 and found that Cul7 did not associate with Cul1 in cells of these mice. Two-thirds of Fbxw8-/- embryos die in utero, whereas the remaining one-third are born alive and grow to adulthood. Fbxw8-/- embryos show intrauterine growth retardation and abnormal development of the placenta, characterized by both a reduced thickness of the spongiotrophoblast layer and abnormal vessel structure in the labyrinth layer. Although the placental phenotype of Fbxw8-/- mice resembles that of Cul7-/- mice, other abnormalities of Cul7-/- mice are not apparent in Fbxw8-/- mice. These results suggest that the Cul7-based SCF-like E3 complex has both Fbxw8-dependent and Fbxw8-independent functions.  相似文献   

11.
W Jiang  D McDonald  T J Hope    T Hunter 《The EMBO journal》1999,18(20):5703-5713
The Cdc7-Dbf4 kinase is essential for regulating initiation of DNA replication in Saccharomyces cerevisiae. Previously, we identified a human Cdc7 homolog, HsCdc7. In this study, we report the identification of a human Dbf4 homolog, HsDbf4. We show that HsDbf4 binds to HsCdc7 and activates HsCdc7 kinase activity when HsDbf4 and HsCdc7 are coexpressed in insect and mammalian cells. HsDbf4 protein levels are regulated during the cell cycle with a pattern that matches that of HsCdc7 protein kinase activity. They are low in G(1), increase during G(1)-S, and remain high during S and G(2)-M. Purified baculovirus-expressed HsCdc7-HsDbf4 selectively phosphorylates the MCM2 subunit of the minichromosome maintenance (MCM) protein complex isolated by immunoprecipitation with MCM7 antibodies in vitro. Two-dimensional tryptic phosphopeptide-mapping analysis of in vivo (32)P-labeled MCM2 from HeLa cells reveals that several major tryptic phosphopeptides of MCM2 comigrate with those of MCM2 phosphorylated by HsCdc7-HsDbf4 in vitro, suggesting that MCM2 is a physiological HsCdc7-HsDbf4 substrate. Immunoneutralization of HsCdc7-HsDbf4 activity by microinjection of anti-HsCdc7 antibodies into HeLa cells blocks initiation of DNA replication. These results indicate that the HsCdc7-HsDbf4 kinase is directly involved in regulating the initiation of DNA replication by targeting MCM2 protein in mammalian cells.  相似文献   

12.
13.
14.
Basement membranes are specialized extracellular matrices consisting of tissue-specific organizations of multiple matrix molecules and serve as structural barriers as well as substrates for cellular interactions. The network of collagen IV is thought to define the scaffold integrating other components such as, laminins, nidogens or perlecan, into highly organized supramolecular architectures. To analyze the functional roles of the major collagen IV isoform alpha1(IV)(2)alpha2(IV) for basement membrane assembly and embryonic development, we generated a null allele of the Col4a1/2 locus in mice, thereby ablating both alpha-chains. Unexpectedly, embryos developed up to E9.5 at the expected Mendelian ratio and showed a variable degree of growth retardation. Basement membrane proteins were deposited and assembled at expected sites in mutant embryos, indicating that this isoform is dispensable for matrix deposition and assembly during early development. However, lethality occurred between E10.5-E11.5, because of structural deficiencies in the basement membranes and finally by failure of the integrity of Reichert's membrane. These data demonstrate for the first time that collagen IV is fundamental for the maintenance of integrity and function of basement membranes under conditions of increasing mechanical demands, but dispensable for deposition and initial assembly of components. Taken together with other basement membrane protein knockouts, these data suggest that laminin is sufficient for basement membrane-like matrices during early development, but at later stages the specific composition of components including collagen IV defines integrity, stability and functionality.  相似文献   

15.
Morphogenesis of a vascular network requires dynamic vessel growth and regression. To investigate the cellular mechanism underlying this process, we deleted focal adhesion kinase (FAK), a key signaling mediator, in endothelial cells (ECs) using Tie2-Cre mice. Targeted FAK depletion occurred efficiently early in development, where mutants exhibited a distinctive and irregular vasculature, resulting in hemorrhage and lethality between embryonic day (e) 10.5 and 11.5. Capillaries and intercapillary spaces in yolk sacs were dilated before any other detectable abnormalities at e9.5, and explants demonstrate that the defects resulted from the loss of FAK and not from organ failure. Time-lapse microscopy monitoring EC behavior during vascular formation in explants revealed no apparent decrease in proliferation or migration but revealed increases in cell retraction and death leading to reduced vessel growth and increased vessel regression. Consistent with this phenotype, ECs derived from mutant embryos exhibited aberrant lamellipodial extensions, altered actin cytoskeleton, and nonpolarized cell movement. This study reveals that FAK is crucial for vascular morphogenesis and the regulation of EC survival and morphology.  相似文献   

16.
17.
A series of promoter-probe plasmid vectors has been constructed which allows for the selection of DNA sequences containing divergent control elements. Each vector contains a pair of promoterless genes [encoding beta-galactosidase (lacZ), alkaline phosphatase (phoA), and bacterial luciferase (luxAB)] arranged in an antiparallel fashion and separated by a large intervening multiple cloning site. The vectors permit direct detection of promoter activity on indicator plates after transformation. Cloned promoters are selected based on production of coloured products in the case of lacZ and phoA, and by the emission of light in the case of luxAB. These vectors have been tested using known divergent promoter elements from pBR322 and Pseudomonas phage D3.  相似文献   

18.
The inner membrane complex and the apical secretory organelles are defining features of apicomplexan parasites. Despite their critical roles, the mechanisms behind the biogenesis of these structures in the malaria parasite Plasmodium falciparum are still poorly defined. We here show that decreasing expression of the P. falciparum homologue of the conserved endolysomal escorter Sortilin‐VPS10 prevents the formation of the inner membrane complex and abrogates the generation of new merozoites. Moreover, protein trafficking to the rhoptries, the micronemes, and the dense granules is disrupted, which leads to the accumulation of apical complex proteins in the endoplasmic reticulum and the parasitophorous vacuole. We further show that protein export to the erythrocyte and transport through the constitutive secretory pathway are functional. Taken together, our results suggest that the malaria parasite P. falciparum Sortilin has potentially broader functions than most of its other eukaryotic counterparts.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号