首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Broad bean (Vicia faba L. “Inovec”) seeds were artificially aged by means of storage at 30 %, resp. 25 % water content at 25 °C for 7-days to study the consequences on germination, root length and frequency of chromosomal aberrations. Under these conditions, significant changes in all parameters were observed. An increase of frequency of chromosomal aberrations in ana-telophase cells was confirmed by evaluation of c-metaphase cells. Synergic effect of artificial seed ageing was studied on different harvests of old seeds. Possible principles of this effect on cell level are discussed.  相似文献   

2.
The dynamics of karyotypical instability of Allium fistulosum L. (Welsh onion) during aging of genetically homogenous seeds from plants grown in three different areas was studied. We analyzed the frequency of anaphase cells with chromosomal aberrations "damage", as a number of chromosomal aberrations per cell with aberrations, and germinating capacity, as an indicator of the 'toxic' influence of age. The seeds' aging was accompanied by an increase in karyotypical instability (increasing frequency of anaphases with aberrations) and with certain changes in the spectrum of chromosome aberrations. The clearest distinctions between old and young seeds were found for the frequency of anaphase cells with chromosome aberrations. The general level of karyotypical instability positively correlates with the age of the seeds. The regression coefficient (b) corresponds to the general tendency of karyotypical instability during seeds' senescence under storage. For 'good' (A), 'normal' (B) and 'bad' (C) conditions, the coefficients (b's) are b(A)=0.22, b(B)=0.46 and b(C)=0.84 (p<0.05 for C, and p<0.001 for A and B). It was found that different ecological conditions of plant vegetation strongly influence age-related dynamics of chromosomal instability in the seeds obtained from these plants. Possible mechanisms of the transgenerational impact of this effect are discussed.  相似文献   

3.
We determined the effects of shade, burial by sand, simulated herbivory, and fertilizers on the survival and growth of artificially planted population of Cirsium pitcheri—an endangered plant species of the sand dunes along Lake Huron. Sand burial experiments showed that greenhouse grown plants should optimally be transplanted into areas receiving 5 cm of sand deposition: burial at this depth maximized emergence, survivorship, and below‐ground biomass. Under field conditions, simulated herbivory of up to 50% of the plant height produced a slight increase in biomass after one year of growth. Field observations showed that when white‐tailed deer removed more than 50% of the transplant's leaf tissue, the plant died. The application of a 20:20:20 (N:P:K) water‐soluble fertilizer produced a significant increase in the dry leaf biomass, total leaf area, and total dry biomass relative to control plants. We also tested for the presence or absence of a persistent seed bank. Few seeds were recovered from soil samples collected from Pinery Provincial Park and Providence Bay. However, C. pitcheri has the ability to form a persistent seed bank under field conditions but only at soil depths of 15 cm. Cirsium pitcheri seeds are able to germinate and seedlings can emerge from a burial depth of up to 6 cm. Thus, seeds planted in open, sunny areas will probably maximize emergence, growth, and survivorship of seedlings. Populations of C. pitcheri can be restored by planting seeds at shallow depths, transplanting greenhouse‐grown plants, applying water soluble fertilizers, and protecting plants from herbivores.  相似文献   

4.
本文以粤油 116花生(Arachis hypogaea L.)为材料,对不同处理种子的除子叶“种胚”(以下简称“种胚”)的蛋白质进行了研究.实验结果表明,当花生种子活力下降到一定程度时,其“种胚”内出现一种新蛋白质( pI6.2、MW 10 KD),随种子老化程度加深,含量逐渐增多.我们认为该蛋白质与花生种子老化存在着一定的相关关系,可作为该种子老化的标志.  相似文献   

5.
Freshly harvested seeds of soybean and barley were artificially aged. The progeny showed a marked decrease in mitotic index and chromosomal aberrations of various types increased at both mitosis and meiosis, resulting in a significant loss of pollen viability as the ageing advanced. Studies on the types and frequencies of chlorophyll deficients and phenodeviants also showed an overall increase, suggesting that ageing mimics irradiation effects and produces alterations in the gene complexes resulting in the segregation of different kinds of phenotypic mutations.  相似文献   

6.
种子老化的生理生化与分子机理研究进展   总被引:2,自引:0,他引:2  
刘娟  归静  高伟  马俊峰  王佺珍 《生态学报》2016,36(16):4997-5006
种子作为植物遗传资源的有效保存体以及重要的种质创新原料,其老化或者劣变将直接导致发芽率、活力、生活力降低,抑制种胚正常发育以及幼苗生长,由此造成植物生产水平及其品质大幅下降。这也将进一步涉及因种质资源匮乏、土壤种子库系统功能紊乱所引发的全球生物多样性减小、草地退化和荒漠化加剧等生态危机问题。对种子老化生理生化特性和分子机理等研究进行了综述。总结了近年来关于种子老化涉及的理化反应包括保护酶活性的改变、核酸以及蛋白质的分解、内源激素的消长、质膜完整性降低等相关研究;并从蛋白代谢、核酸代谢、种子含水量以及基因重组等多角度总结和阐述了与老化机理有关的最新研究观点,以期为种子老化、种子活力修复和种子寿命延长等机理研究提供基础理论参考。目前对种子老化的研究多集中于传统的生理生化过程和内外影响因子相对独立变化的片段性研究,缺乏系统综合的多层面体系研究。种子作为生命体,随着探讨生命衰老机理的生物技术日新月异,通过蛋白组学、酶学、基因工程技术、转录组测序等新技术的应用,必将对未来种子老化机理机制的揭示有突破性推进作用。  相似文献   

7.
Differences as well as similarities in the action of ionizing radiation and deoxyribonucleic acids from various sources on mitosis in root cells ofVicia faba were established. The time course of occurrence of aberrations were examined. Whereas in irradiated broad beant the maximum percentage of aberrations was observed immediately after irradiation, the aps plication of non-isologous DNA was followed by maximum aberrations after 8–16 hours. As all the time-intervals studied, an incraasad number of aberrations was found during metaphase-as compared with anaphases, both after irradiation and after application of DNA. A comparison of isologous, homologous and heterologous DNA as inductors of chromosomal aberrations supported our previous findings and showed that the efficiency of DNA depends on the genetic difference between donor and acceptor. During a study of distribution of aberrations between large and small chromosomes of meristematic cells ofVicia faba, at various time-intervals it was obsarved that after irradiation the distribution of aberrations between individual chromosomes is proportional to their total length, whereas the effect of heterologous DNA is mostly in the damage to small chromosomes. It was also found that aftar irradiation mostly chromatid aberrations are formed at shorter time-intervals and only later chromosomal aberrations will appear. On the other hand, heterologous DNA brings about in all time-intervals a predominance of chromatid aberrations.  相似文献   

8.
9.
This study investigated the natural occurrence of Verticillium dahliae (Kleb.) infection in pumpkin (Cucurbita pepo L.) seed. The mean incidence of infection was found to be 21.0%. Isolates recovered from seeds were pathogenic to pumpkin (cultivar ‘Jamaican squash’). Surface sterilization by immersion in 0.6% sodium hypochlorite for 20 min eradicated V. dahliae from infected pumpkin seeds without affecting germinability. Plating of seed components revealed that the fungus was present in the seed coat but not in the embryo or cotyledons. In a growing‐on test, 25% of 6‐week‐old plants grown from untreated seeds were infected. Germination and production of normal seedlings were unaffected by V. dahliae infection of seeds. Verticillium dahliae in pumpkin seed was found to be external and transmissible to plants. The findings of this study are important in devising disease control strategies.  相似文献   

10.
Vicia faba seeds were treated with methyl methanesulphonate (MMS) and stored at 50 % water content for 0, 14 and 28 d. This water content prolongs the period between the mutagenic treatment and the onset of DNA synthesis. Storage of seeds after mutagen treatment at the selected water content led to a significant decrease in DNA damage, manifested as a reduction in the frequency of chromosomal aberrations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Summary We investigated several ecological correlates of seed mass variation in the hemiparasitic, xylemtapping mistletoe, Phoradendron juniperinum. Mean seed mass varied two-fold among plants between the ages of 4 and 14 years old and was positively correlated with parental plant age. Both the standard deviation and the coefficient of variation in mean seed mass decreased with increasing plant age demonstrating that, on average, younger plants produced seed with more variable mass. Nitrogen concentrations (mg nitrogen per gram of seed) of both the seed and fruit (pericarp) were not correlated with mass or the age of the parent plant from which the seed was taken. However, the nitrogen content per seed (mg nitrogen per seed) was positively correlated with the mean seed dry mass and the age of the seed parent, suggesting that the carbon to nitrogen ratio of individual seeds remained relatively constant as seed mass increased and plants grew older. Seed germination ranged between 20% and 86% and was positively correlated with mass and parental plant age. Heavier seeds (seeds from older plants) also had the highest root radicle growth rates. Furthermore, the final root radicle length after 76 d of growth was positively correlated with seed dry mass. When grown on a medium containing an extract prepared from the host plant foliage, all seeds showed lower germination, grew more slowly and had shorter overall root radicles, but had significantly greater development of the haustorial disks (the holdfast which forms the host-parasite junction in Phoradendron) than seeds grown on a control medium. Our results suggest that, on average, seeds of greater mass produced by older plants have a greater total resource pool per propagule (fruit + seed). This resource pool may be important in conferring a greater potential for dispersal (fruit), survival, colonization, and establishment.  相似文献   

12.
Seeds in a persistent soil seed bank (PSSB) provide an effective way to maintain plant population and community stability. Seeds that persist in soil incur physiological costs of maintaining viability and vigor, thus, the growth capability of resulting plants may be reduced. However, a lot of functional roles of the PSSB have been deduced from seed germination capability, and little consideration has been given to interspecific and intraspecific competitive ability of the resulting plants. Eupatorium adenophorum was used as the study species to compare germination of different artificially aged PSSB seeds and competition at different densities between resulting plants of aged and freshly produced seeds. Seed burial caused decreases in survival rates but not germination speed. During the 175-day growth period, the individual biomass, average height, basal stem diameter and leaf number of plants from aged PSSB seeds were little lower than that of plants germinated from freshly produced seeds. However, the differences were not significant at any densities. Thus, (1) although seeds stored in soil exhibited a very high death rate, they maintained a high vigor for germination, and (2) resulting plants from PSSB seeds exhibited good competiveness to plants from new seeds of the same population. The results further confirm the significance of PSSB in maintaining stability of plant populations and communities.  相似文献   

13.

Background and Aims

Chenopodium album is well-known as a serious weed and is a salt-tolerant species inhabiting semi-arid and light-saline environments in Xinjiang, China. It produces large amounts of heteromorphic (black and brown) seeds. The primary aims of the present study were to compare the germination characteristics of heteromorphic seeds, the diversity of plant growth and seed proliferation pattern of the resulting plants, and the correlation between NaCl stress and variation of seed heteromorphism.

Methods

The phenotypic characters of heteromorphic seeds, e.g. seed morphology, seed mass and total seed protein were determined. The effects of dry storage at room temperature on dormancy behaviour, the germination response of seeds to salinity stress, and the effect of salinity on growth and seed proliferation with plants derived from different seed types were investigated.

Key Results

Black and brown seeds differed in seed morphology, mass, total seed protein, dormancy behaviour and salinity tolerance. Brown seeds were large, non-dormant and more salt tolerant, and could germinate rapidly to a high percentage in a wider range of environments; black seeds were salt-sensitive, and a large proportion of seeds were dormant. These characteristics varied between two populations. There was little difference in growth characteristics and seed output of plants produced from the two seed morphs except when plants were subjected to high salinity stress. Plants that suffered higher salinity stress produced more brown (salt-tolerant) seeds.

Conclusions

The two seed morphs of C. album exhibited distinct diversity in germination characteristics. There was a significant difference in plant development and seed proliferation pattern from the two types of seeds only when the parent plants were treated with high salinity. In addition, seed heteromorphism of C. album varied between the two populations, and such variation may be attributed, at least in part, to the salinity.  相似文献   

14.
The cytogenetic effect of two radiolytic cytosine products, i.e. of isobarbituric acid and of dialuric acid has been studied on a system of resting meristem ofVicia faba L. on chromosomal level. Both compounds produced in a concentration 10-3 and 10-4 M chromosomal aberrations with a relatively low frequency, about 4 aberrations per 100 anaphases after 12 h of treatment. Among the aberration types chromosomal and chromatid breaks and minutes pre-dominated.  相似文献   

15.
Storage of seeds for extended periods causes a number of degradative changes related to the aging process such as decreased seedling vigor and reduced germination. In this study, molecular markers were used to study the aging process in seeds of two different plants species. Seeds of three differentially aged seed groups, including control (un-aged), naturally aged, and accelerated aging, from soybean (Glycine max) and safflower (Carthamus tinctorius) were evaluated for genetic variability using random amplification of polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), and simple sequence repeat (SSR) markers. For both plant species, naturally aged and accelerated aged groups clustered together with RAPD markers, whereas control and naturally aged seeds showed similarity in both AFLP and SSR profiles. Based on these findings, it can be concluded that observed changes in DNA profiles of seeds from different aged groups did not contribute to accumulation of genetic variations of the same magnitude. Therefore, seed of similar viability must be selected for molecular marker analysis for plant variety protection, among other comparative studies.  相似文献   

16.
Electrophoretic patterns of seed storage proteins, the high-molecular-weight glutenins and gliadins, were studied in 468 plants of the common wheat cultivar Chinese Spring regenerated from callus culture of immature embryos, in 115 plants grown from seeds treated with nitrosoethylurea and in 260 control plants. From 5 to 21 single grains were analysed from each plant. In these three groups, the frequency of inherited mutations causing the loss of all proteins controlled by a locus (null-mutations, probably caused by a chromosomal deficiency) was 0.69%, 2.07%, and 0.05% per locus (the differences were statistically significant), respectively, while that of mutations causing the loss of a single protein band was 0.11%, 0.33%, and 0.05%, respectively. The loss of all of the gliadins controlled by Gli-B1 or GH-B2 (mutations were probably caused by a deletion of satellites of the corresponding chromosomes), was significantly higher than the loss of gliadins controlled by genomes A and D. Gene mutations altering the electrophoretic mobility of a single protein band in the pattern were found only in the second group of plants (0.44%). Therefore, chemical mutagenesis which produced not only more mutations than cultivation of immature wheat embryos in vitro, but also a higher ratio of mutations that altered DNA sequences, can be considered as an easier and comparatively more promising way for obtaining new improved variants of loci controlling biochemical characteristics in wheat. Somaclonal variation, on the other hand, was probably mainly caused by chromosomal abnormalities and could therefore hardly be considered as a useful tool in wheat breeding.  相似文献   

17.
Floral phenology, pollen quality and seed set of Plantago crassifolia plants, grown in the presence of increasing NaCl concentrations, were studied to test how this Mediterranean halophyte responded to salt stress during the reproductive phase of its life cycle. Reproductive success was maximal in plants grown in non-saline conditions, or in the presence of 100 mM NaCl, but it was negatively affected by higher salinities, due to a progressive reduction of pollen fertility, seed set, and seed viability.  相似文献   

18.
Crosbie  Julie  Longnecker  Nancy  Davies  Fleur  Robson  Alan 《Plant and Soil》1993,(1):449-452
Seed of narrow-leafed lupin (Lupinus angustifolius L.) produced in Western Australia often has low manganese (Mn) concentration because of low Mn availability in the soil during grain filling. A major problem of lupin production is poor seedling establishment. We tested the hypothesis that low Mn concentration in lupin seeds decreases emergence.The experiment was a factorial design comparing emergence of lupins (cv. Gungurru) grown under glasshouse conditions from seed with 2 different internal Mn concentrations (7 or 35 mg Mn kg–1 DW) and with 2 external Mn fertiliser treatments (0 or 10 mg MnSO4.H2O kg–1 soil). There were no visible differences between the seeds. Emergence was monitored and plants were harvested 17 days after sowing.Emergence was approximately 60% in all pots sown with low Mn compared to 100% in pots sown with high Mn seed. Application of Mn did not increase the final emergence of low Mn seed. Seed viability was assessed by staining with tetrazolium chloride, a common test used in seed testing laboratories. All high Mn seed were viable while 34% of low Mn seed were completely or partly unstained and therefore were non-viable. We have shown that low Mn supply during seed filling may lead to production of non-viable seed that cannot be visually distinguished from viable seed..  相似文献   

19.
Irrigation of industrial effluents may end in the bioaccumulation of various toxic metals and consequent genetic changes in contaminated food crops. To test this hypothesis and extent of genetic modifications, Allium cepa test was performed to food crops viz. tomato (Lycopersicum esculentum) and chili (Capsicum annum) as Allium cepa test is a useful tool to assess genetic variations in plants. Prior to A. cepa test, the plants were exposed to various metal concentrations 125–1000 mg/L in the synthetic wastewater. The extracts of harvested plants were used to grow the root of A. cepa following its standard method. The root tips were fixed, stained and examined under compound microscope (almost 300–400 dividing cells) to check the extent of chromosomal variations during various stages of mitosis. The results revealed various chromosomal abnormalities including laggards, stickiness, vagrant chromosomes, binucleated cells, nuclear lesions, giant cells and c-mitosis at different level of treatment. On the whole, aberrations were increasing with the increasing doses along the positive control. In comparison, chili crop had higher level of aberrations depicting the higher chromosomal changes. Lower mitotic index (MI) with increasing level of doses was also describing the hampered cell division due to increased metal stress. The study is showing that the cell division was ceased with increasing metal stress thus increasing the rate of cell aberrations.  相似文献   

20.

Background and Aims

The smoke-derived chemical karrikinolide (KAR1) shows potential as a tool to synchronize the germination of seeds for weed management and restoration. To assess its feasibility we need to understand why seeds from different populations of a species exhibit distinct responses to KAR1. Environmental conditions during seed development, known as the parental environment, influence seed dormancy so we predicted that parental environment would also drive the KAR1-responses of seeds. Specifically, we hypothesized that (a) a common environment will unify the KAR1-responses of different populations, (b) a single population grown under different environmental conditions will exhibit different KAR1-responses, and (c) drought stress, as a particular feature of the parental environment, will make seeds less dormant and more responsive to KAR1.

Methods

Seeds of the weed Brassica tournefortii were collected from four locations in Western Australia and were sown in common gardens at two field sites, to test whether their KAR1-responses could be unified by a common environment. To test the effects of drought on KAR1-response, plants were grown in a glasshouse and subjected to water stress. For each trial, the germination responses of the next generation of seeds were assessed.

Key Results

The KAR1-responses of seeds differed among populations, but this variation was reduced when seeds developed in a common environment. The KAR1-responses of each population changed when seeds developed in different environments. Different parental environments affected germination responses of the populations differently, showing that parental environment interacts with genetics to determine KAR1-responses. Seeds from droughted plants were 5 % more responsive to KAR1 and 5 % less dormant than seeds from well-watered plants, but KAR1-responses and dormancy state were not intrinsically linked in all experiments.

Conclusions

The parental environment in which seeds develop is one of the key drivers of the KAR1-responses of seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号