首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This communication describes the distribution of gibberellins (GAs) in roots and shoots of spinach in relation to photoperiod. From previous work (Metzger, Zeevaart 1980 Plant Physiol 65: 623-626) shoots were known to contain GA53, GA44, GA19, GA17, GA20, and GA29. We now show by combined gas chromatography—mass spectrometry that roots contain GA44, GA19, and GA29. Trace amounts of GA53 were detected by combined gas chromatography—selected ion current monitoring. Neither GA17 nor GA20 were detected in root extracts. Analysis by the d-5 corn bioassay also showed no effect of photoperiodic treatment on the levels of GA-like substances in root extracts. Both phloem and xylem exudates had patterns of GA-like activity similar to those found in shoots and roots, respectively. Moreover, foliar application of [3H]GA20 resulted in the transport of label from the shoot to the roots. Over half of the label in the roots represented unmetabolized [3H]GA20, indicating that part of the GA20 in the phloem is transported to the roots. Consequently, if GA20 is made in, or transported to the roots, it is rapidly metabolized in that organ. This is a clear indication that regulation of GA metabolism is greatly different in roots and shoots.  相似文献   

2.
[17-13C,3H]Gibberellin A4 (GA4) was injected into the shoots of tall (W23/L317), dwarf-1 (d1), and dwarf-5 (d5) Zea mays L. (maize); tall (cv Nipponbare), dwarf-x (dx), and dwarf-y (dy) Oryza sativa L. (rice); and tall (ecotype Landsberg erecta), ga4, and ga5 Arabidopsis thaliana (L.) Heynh. [13C]GA4 and its metabolites were identified from the shoots by full-scan gas chromatography-mass spectrometry and Kovats retention indices. GA4 was metabolized to GA1 in all nine genotypes. GA4 was also metabolized in some of the genotypes to 3-epi-GA1, GA2, 2[beta]-OH-GA2, 3-epi-GA2, endo-GA4, 16[alpha], 17-H2-16, 17-(OH)2-GA4, GA34, endo-GA34, GA58, 15-epi-GA63, GA71, and 16-epi-GA82. No evidence was found for the metabolism of GA4 to GA7 or of GA4 to GA3. The bioactivities of GA4 and GA1 were determined using the six dwarf mutants for assay. GA4 and GA1 had similar activities for the maize and rice mutants. For the Arabidopsis mutants, GA4 was more active than GA1 at low dosages; GA4 was less active than GA1 at higher dosages.  相似文献   

3.
When the metabolism of [13C,3H]gibberellin (GA)20 in Pisum sativum L. was investigated using decapitated plants and stem sections, no evidence was obtained for the recently postulated inhibitor of GA20 3[beta]-hydroxylase (V.A. Smith [1992] Plant Physiol 99: 372-377). Instead, the results are consistent with the hypothesis that the mutation le reduces GA1 production by altering the structure or level of the 3[beta]-hydroxylase.  相似文献   

4.
Reproductive and vegetative tissues of the seeded Pineapple cultivars of sweet orange (Citrus sinensis L.) contained the following C-13 hydroxylated gibberellins (GAs): GA53, GA17, GA19, GA20, GA1, GA29, and GA8, as well as GA97, 3-epi-GA1, and several uncharacterized GAs. The inclusion of 3-epi-GA1 as an endogenous substance was based on measurements of the isomerization rates of previously added [2H2]GA1. Pollination enhanced amounts of GA19, GA20, GA29, and GA8 in developing ovaries. Levels of GA1 increased from 5.0 to 9.5 ng/g dry weight during anthesis and were reduced thereafter. The amount of GA in mature pollen was very low. Emasculation reduced GA levels and caused a rapid 100% ovary abscission. This effect was partially counteracted by either pollination or application of GA3. In pollinated ovaries, repeated paclobutrazol applications decreased the amount of GA and increased ovary abscission, although the pattern of continuous decline was different from the sudden abscission induced by emasculation. The above results indicate that, in citrus, pollination increases GA levels and reduces ovary abscission and that the presence of exogenous GA3 in unpollinated ovaries also suppresses abscission. Evidence is also presented that pollination and GAs do not, as is generally assumed, suppress ovary abscission through the reactivation of cell division.  相似文献   

5.
6.
Multiple gibberellins (GAs) were quantified in the stems of intact, decapitated, and decapitated auxin-treated barley (Hordeum vulgare) plants. Removal of the developing inflorescence reduced the endogenous levels of indole-3-acetic acid (IAA), GA(1), and GA(3) and increased the level of GA(29) in internodal and nodal tissues below the site of excision. Application of IAA to the excised stump restored GA levels to normal in almost all cases. The conversion of [(14)C]GA(20) to bioactive [(14)C]GA(1) and of [(14)C]GA(5) to bioactive [(14)C]GA(3) was reduced by decapitation, and IAA application was able to restore conversion rates back to the levels found in intact plants. The amount of mRNA for the principal vegetative 3-oxidase (converting GA(20) to GA(1), and GA(5) to GA(3)) was decreased in decapitated plants and restored by IAA application. The results indicate that the inflorescence of barley is a source of IAA that is transported basipetally into the internodes and nodes where bioactive GA(1) and GA(3) are biosynthesized. Thus, IAA is required for normal GA biosynthesis in stems, acting at multiple steps in the latter part of the pathway.  相似文献   

7.
Field pennycress (Thlaspi arvense L.) is a winter annual crucifer with a cold requirement for stem elongation and flowering. In the present study, the metabolism of exogenous [2H]-ent-kaurenoic acid (KA) and [14C]-gibberellin A12-aldehyde (GA12-aldehyde) was compared in thermo- and noninduced plants. Thermoinduction greatly altered both quantitative and qualitative aspects of [2H]-KA metabolism in the shoot tips. The rate of disappearance of the parent compound was much greater in thermoinduced shoot tips. Moreover, there was 47 times more endogenous KA in noninduced than in thermoinduced shoot tips as determined by combined gas chromatography-mass spectrometry (GC-MS). The major metabolite of [2H]-KA in thermoinduced shoot tips was a monohydroxylated derivative of KA, while in noninduced shoot tips, the glucose ester of the hydroxy KA metabolite was the main product. Gibberellin A9 (GA9) was the only GA in which the incorporation of deuterium was detected by GC-MS, and this was observed only in thermoinduced shoot tips. The amount of incorporation was small as indicated by the large dilution by endogenous GA9. In contrast, thermo- and noninduced leaves metabolized exogenous [2H]-KA into GA20 equally well, although the amount of conversion was also limited. These results are consistent with the suggestion (JD Metzger [1990] Plant Physiol 94: 000-000) that the conversion of KA in to GAs is under thermoinductive control only in the shoot tip, the site of perception for thermoinductive temperatures in field pennycress. There were essentially no differences in the qualitative or quantitative distribution of metabolites formed following the application of [14C]-GA12-aldehyde to the shoot tips of thermo- or noninduced plants. Thus, the apparent thermoinductive regulation of the KA metabolism into GAs is probably limited to the two metabolic steps involved in converting KA to GA12-aldehyde.  相似文献   

8.
From previous work (Zeevaart 1980 Plant Physiol 66: 672-678) Xanthium leaves are known to contain a high level of alkali-hydrolyzable conjugated abscisic acid. This abscisic acid conjugate has been isolated and identified by mass spectrometry, nuclear magnetic resonance, and chemical and enzymic degradation techniques, as the glucosyl ester of abscisic acid, β-d-glucopyranosyl abscisate. The glucosyl ester of abscisic acid was the only abscisic acid conjugate found in Xanthium leaves. It was also isolated from spinach leaves.  相似文献   

9.
The effect of photoperiod on ent-kaurene biosynthesis was determined in the long-day (LD) plants spinach (Spinacia oleracea L.) and Agrostemma githago L. Further metabolism of ent-kaurene was blocked by application of the growth retardant tetcyclacis, and ent-kaurene accumulation was measured by isotopic dilution using gas chromatography-selected ion monitoring (GC-SIM) (E. Grosselindemann, J.E. Graebe, D. Stöckl, P. Hedden [1991] Plant Physiol 96: 1099-1104). In spinach, the rate of ent-kaurene accumulation in shoots grown under LD conditions was 3 times higher than in shoots grown under short-day (SD) conditions. ent-Kaurene also accumulated in fully expanded leaves, but at a lower rate than in shoots (15 and 55 pmol g-1 dry weight h-1, respectively). In Agrostemma, ent-kaurene accumulated at a rate 2.5 times higher in plants grown under LD conditions than in those grown under SD conditions. In spinach, enhanced ent-kaurene accumulation was detectable after 1 long day, and with exposure to additional long days, the rate of ent-kaurene accumulation increased further. Conversely, when plants were exposed to LD conditions and then returned to SD conditions, the rate of ent-kaurene accumulation decreased. Following tetcyclacis application, ent-kaurene accumulation was observed in all parts of spinach that were analyzed, but there were large quantitative differences between organs of different ages. As the leaves matured, ent-kaurene biosynthesis declined. Petioles accumulated more ent-kaurene than the corresponding leaf blades. It is concluded that stimulation of ent-kaurene biosynthesis by LD conditions leads to a higher rate of gibberellin biosynthesis, which is essential for stem elongation in rosette plants.  相似文献   

10.
Vernalization of Thlaspi arvense L. results in the alteration of gibberellin (GA) metabolism such that the metabolism and turnover of the GA precursor ent-kaur-16-en-19-oic acid (kaurenoic acid) is dramatically increased. This cold-induced change in GA metabolism is restricted to the shoot tip, the site of perception of cold in this species (J.P. Hazebroek, J.D. Metzger [1990] Plant Physiol 94: 157-165). In the present report additional biochemical information about the nature of this low-temperature-regulated process is provided. The endogenous levels of kaurenoic acid in leaves and shoot tips of plants were estimated by combined gas chromatography-chemical ionization mass spectrometry at various times after 4 weeks of vernalization at 6[deg]C. The endogenous levels in shoot tips declined 10-fold by 2 d after the plants were returned to 21[deg]C; this decline continued such that there was nearly 50-fold less kaurenoic acid by 10 d after the end of vernalization. No effect of vernalization on the endogenous levels of kaurenoic acid in leaves was observed. An in vitro enzyme assay was developed to monitor changes in the ability of tissues to convert kaurenoic acid to ent-7[alpha]-hydroxykaur-16-en-19-oic acid (7-OH kaurenoic acid). The activity of this enzyme rapidly increased in microsomal extracts from shoot tips following the end of vernalization. No thermoinduced increase in activity was observed in leaves. The enzymic oxidation of ent-kaurene to ent-kaurenol was also induced in shoot tips by vernalization. However, this reaction does not appear to be rate limiting for GA biosynthesis, because substantial amounts of kaurenoic acid accumulated in noninduced shoot tips. These results corroborate our hypothesis that the conversion of kaurenoic acid to 7-OH kaurenoic acid is the primary step in GA metabolism regulated by vernalization in Thlaspi shoot tips.  相似文献   

11.
Auxin promotes gibberellin biosynthesis in decapitated tobacco plants   总被引:17,自引:0,他引:17  
Excision of the apical bud (decapitation) of tobacco (Nicotiana tabacum L.) plants reduced the endogenous levels of indole-3-acetic acid (IAA), gibberellin A20 (GA20), and GA1 (the bioactive GA), in internode tissue below the excision site. Application of IAA to the stump of decapitated plants dramatically increased GA20 content, to a level 3-fold greater than in intact plants. Gibberellin A1 content was also increased by IAA. Decapitation reduced the conversion of [14C]GA19 to [14C]GA20 and of [14C]GA20 to [14C]GA1, and appeared to promote the deactivation pathway [14C]GA20 to [14C]GA29 to [14C]GA29-catabolite. Application of auxin counteracted these effects, but did not restore the conversion of [14C]GA20 to [14C]GA1 to the level found in intact plants. The results indicate that auxin is necessary for normal GA biosynthesis in stems of tobacco.  相似文献   

12.
[14C4]GA53, [14C4]GA44, and [2H2/14C4]GA19 were injected separately into seedlings of rice (Oryza sativa) using a dwarf mutant (d35) that has low levels of endogenous gibberellins (GAs). After 8 h incubation, the shoots were extracted and the labeled metabolites were identified by full-scan gas chromatography mass spectrometry (GC-MS) and Kovats retention indices (KRIs). Our results document the metabolic sequence, GA53-->GA44-->GA19-->GA20 and the presence of endogenous GA53, GA44, GA19, GA20 and GA1. Previous metabolic studies have shown the presence of the step, GA20-->GA1 in rice. Taken together, the data establish in vegetative shoots of rice the presence of the early 13-hydroxylation pathway, a pathway that originates from GA12 and leads to bioactive GA1.  相似文献   

13.
Winter canola (Brassica napus cv Crystal) is an oilseed crop that requires vernalization (chilling treatment) for the induction of stem elongation and flowering. To investigate the role of gibberellins (GAs) in vernalization-induced events, endogenous GA content and the metabolism of [3H]GAs were examined in 10-week vernalized and nonvernalized plants. Shoot tips were harvested 0, 8, and 18 d postvernalization (DPV), and GAs were purified and quantified using 2H2-internal standards and gas chromatography-selected ion monitoring. Concentrations of GA1, GA3, GA8, GA19, and GA20 were 3.1-, 2.3-, 7.8-, 12.0-, and 24.5-fold higher, respectively, in the vernalized plants at the end of the vernalization treatment (0 DPV) relative to the nonvernalized plants. Thermoregulation apparently occurs prior to GA19 biosynthesis, since vernalization elevated the concentration of all of the monitored GAs. [3H]GA20 or [3H]GA1 was applied to the shoot tips of vernalized and nonvernalized plants, and after 24 h, plants were harvested at 6, 12, and 15 DPV. Following high-performance liquid chromatography analyses, vernalized plants showed increased conversion of [3H]GA20 to a [3H]GA1-like metabolite and reduced conversion of [3H]GA1 or [3H]GA20 to polar 3H-metabolites, putative glucosyl conjugates. These results demonstrate that vernalization influences GA content and GA metabolism, with GAs serving as probable regulatory intermediaries between chilling treatment and subsequent stem growth.  相似文献   

14.
15.
Isotope-labelled GA metabolites were identified by GC--MS, following HPLC fractionation of extracts derived from fruits or shoots, that had been incubated with [2H]- and [3H]- GA1 or [2H]- and [3H]- GA3. GA1 (1) was converted into GA8 (10) by developing fruits and vegetative shoots of sweet cherry (Prunus avium cv. 'Stella'), while GA3 (4) was converted into GA3-isolactone (17). Other metabolites of each GA were detected but were not identified unequivocally. These included a metabolite of GA1 (1) in fruitlets that was more polar (by reverse phase HPLC) than GA8 (10) and a metabolite of similar polarity to GA87 (6), was obtained after incubating fruitlets with GA3 (4). However, no evidence was obtained to suggest that GA87 (6) was a metabolite of GA3 (4) or that GA85 (2) was a metabolite of GA1 (1) in these tissues, under the conditions used. The pattern of metabolites obtained from vegetative tissues was similar to that from fruitlets. However, the results suggested that GA1 (1) and GA3 (4) were metabolised at a greater rate in shoots from mature trees than in shoots from seedlings, and that GA1 (1) was metabolised more rapidly than GA3 (4) in juvenile and mature shoots. We conclude from these observations that GA3 (4) is not a precursor of GA87 (6) and GA32 (5), also, that GA1 (1) is not a precursor of GA85 (2) and GA86 (3) in developing fruits or in vegetative shoots of sweet cherry.  相似文献   

16.
The stepwise metabolism of gibberellin A12-aldehyde (GA12-aldehyde) to GA20 is demonstrated from seedling shoots of maize (Zea mays L.). The labeled substrates [13C,3H]GA12-aldehyde, [13C,3H]GA12, [14C4]GA53, [14C4/2H2]GA44, and [14C4/2H2]GA19 were fed individually to dwarf-5 vegetative shoots. Both [13C,3H]GA12-aldehyde and [13C,3H]GA12 were also added individually to normal shoots. The labeled metabolites were identified by full-scan gas chromatography-mass spectrometry and Kovats retention indices. GA12-aldehyde was metabolized to GA53-aldehyde, GA12, GA53, GA44, and GA19; GA12 was metabolized to 2[beta]-hydroxy-GA12, GA53, 2[beta]-hydroxyGA53, GA44, 2[beta]-hydroxyGA44, and GA19; GA53 was metabolized to GA44, GA19, GA20, and GA1; GA44 was metabolized to GA19; and GA19 was metabolized to GA20. These results, together with previously published data from this laboratory, document the most completely defined gibberellin pathway for the vegetative tissues of higher plants.  相似文献   

17.
The application of gibberellin A4/7 (GA4/7) to the stem of previous-year (1-year-old) terminal shoots of Scots pine (Pinus sylvestris) seedlings has been observed to stimulate cambial growth locally, as well as at a distance in the distal current-year terminal shoot, but the distribution and metabolic fate of the applied GA4/7, as well as the pathway of endogenous GA biosynthesis in this species, has not been investigated. As a first step, we analysed for endogenous GAs and monitored the transport and metabolism of labelled GAs 4, 9 and 20. Endogenous GAs from the elongating current-year terminal shoot of 2-year-old seedlings were purified by column chromatography and high-performance liquid chromatography and analysed by combined gas chromatography-mass spectrometry (GC-MS). GAs 1, 3, 4, 9, 12 and 20 were identified in the stem, and GAs 1, 3 and 4 in the needles, by full-scan mass spectrometry (GAs 1, 3, 4, 9 and 12) or selected-ion monitoring (GA20) and Kovats retention index. Tritiated and deuterated GA4, GA9 or GA20 were applied around the circumference at the midpoint of the previous-year terminal shoot, and metabolites were extracted from the elongating current-year terminal shoot, the application point, and the 1-year-old needles and the cambial region above and below the application point. After purification, detection by liquid scintillation spectrometry and analysis by GC-MS, it was evident that, for each applied GA, unmetabolised [2H2]GA and [3H]radioactivity were present in every seedling part analysed. Most of the radioactivity was retained at the application point when [3H]GA9 and [3H]GA20 were applied, whereas the largest percentage of radioactivity derived from [3H]GA4 was recovered in the current-year terminal shoot. It was also found that [2H2]GA9 was converted to [2H2]GA20 and to both [2H2]GA4 and [2H2]GA1, [2H2]GA4 was metabolised to [2H2]GA1, and [2H2]GA20 was converted to [2H2]GA29. The data indicate that for Pinus sylvestris shoots (1) GAs applied laterally to the outside of the vascular system of previous-year shoots not only are absorbed and translocated extensively throughout the previous-year and current-year shoots, but also are readily metabolised, (2) the GA metabolic pathways found are closely related to the endogenous GAs identified, and (3) GA9 metabolism follows two distinctly different routes: in one, GA9 is converted to GA1 through GA4, and in the other it is converted to GA20, which is then metabolised to GA29. The results suggest that the late 13-hydroxylation pathway is an important route for GA biosynthesis in shoots of Pinus sylvestris, and that the stimulation of cambial growth in Scots pine by exogenous GA4/7 may be due to its conversion to GA1, rather than to it being active per se.  相似文献   

18.
Barley (Hordeum vulgare L.) aleurone layers are known to constitutively acidify their surroundings, primarily by L-malic acid release (J. Mikola, M. Virtanen [1980] Plant Physiol 66: S-142). Here we demonstrate the antagonistic effects of the plant hormones gibberellic acid (GA3) and abscisic acid (ABA) on the regulation of extracellular pH (pHe) of barley aleurone layers. We observed a strong correlation between ABA-induced enhancement of extracellular acidification and an ABA-induced increase in L-malic acid release. In addition, ABA caused an increase in intracellular L-malate level. GA3 caused a slight decrease in intracellular L-malate level and was able to inhibit the ABA-induced increase in L-malate intracellular concentration and release. In addition, this ABA-induced L-malate release could be completely inhibited by GA3. The ABA-induced release of L-malic acid could not account for the total ABA-induced pHe decrease, suggesting the existence of an additional mechanism involved in the regulation of pHe. It has been reported that ABA induces an intracellular pH (pHi) increase, possibly due to the activation of plasma membrane proton pumps (R. Van der Veen, S. Heimovaara-Dijkstra, M. Wang [1992] Plant Physiol 100: 699-705). A pHi increase, such as that caused by ABA, might be correlated with the intracellular L-malate increase as suggested by the pH stat model of D.D. Davies ([1986] Physiol Plant 67: 702-706). We studied if the effects of GA3 on L-malate concentration were correlated with changes in pHi and found that GA3 caused a pHi decrease and that GA3 and ABA could interfere in the regulation of pHi. In addition, we were able to mimic the effect of both hormones on L-malate release by bringing about artifical pHi changes with the weak acid 5,5-dimethyl-2,4-oxazolidinedione and the weak base methylamine. The physiological meaning of the effects of GA3 and ABA on the regulation of both pHe and pHi during grain germination are discussed.  相似文献   

19.
The purpose of this study was to demonstrate the metabolism of gibberellin A20 (GA20) to gibberellin A1 (GA1) by tall and mutant shoots of rice (Oryza sativa L.) and Arabidopsis thaliana (L.) Heynh. The data show that the tall and dx mutant of rice and the tall and ga5 mutant of Arabidopsis metabolize GA20 to GA1. The data also show that the dy mutant of rice and the ga4 mutant of Arabidopsis block the metabolism of GA20 to GA1. [17-13C,3H]GA20 was fed to tall and the dwarf mutants, dx and dy, of rice and tall and the dwarf mutants, ga5 and ga4, of Arabidopsis. The metabolites were analyzed by high-performance liquid chromatography and full-scan gas chromatography-mass spectrometry together with Kovats retention index data. For rice, the metabolite [13C]GA, was identified from tall and dx seedlings; [13C]GA1 was not identified from the dy seedlings. [13C]GA29 was identified from tall, dx, and dy seedlings. For Arabidopsis, the metabolite [13C]GA1 was identified from tall, ga5, and ga4 plants. The amount of [13C]GA1 from ga4 plants was less than 15% of that obtained from tall and ga5 plants. [13C]GA29 was identified from tall, ga5, and ga4 plants. [13C]GA5 and [13C]GA3 were not identified from any of the six types of plant material.  相似文献   

20.
Binding of [(3)H]gibberellin A(1) (GA(1)) to extracts of dwarf pea epicotyls was investigated using sliced pea epicotyls (0.5-1.0 millimeter thick) that had been incubated in a solution containing [(3)H]GA(1) at 0 C for 3 days. Gel filtration of a 100,000g supernatant indicated binding to a high (HMW) and an intermediate molecular weight (IMW) fraction with estimated molecular weights of 6 x 10(5) daltons and 4 to 7 x 10(4) daltons, respectively. The bound (3)H-activity was [(3)H]GA(1) and not a metabolite as deduced by thin layer chromatography. The bound label did not sediment during centrifugation at 100,000g for 2 hours; also, binding was not disrupted after treatment of a combined HMW and IMW fraction with DNase, RNase, or phospholipase A or C, but it was disrupted by protease or heat treatment. These facts suggest that binding of [(3)H]GA(1) was occurring to a soluble protein(s). [(3)H]GA(1) bound to a combined HMW and IMW fraction was not susceptible to changes in pH, nor could it be exchanged with a variety of GAs tested under in vitro conditions. Under in vivo equilibrium conditions, biologically active GAs, such as GA(1), GA(3), GA(4), GA(5), GA(7), and keto GA(1), could reduce the level of [(3)H]GA(1) binding, whereas inactive GAs, such as iodo GA(1) methyl ester, GA(8), GA(13), GA(26), and non-GAs, such as (+/-)abscisic acid, had no effect. By varying the concentration of [(3)H]GA(1) in the incubation medium, the specific binding of [(3)H]GA(1) appeared to be due to two classes of binding sites having estimated K(d) of 6 x 10(-8) molar and 1.4 x 10(-6) molar. The concentrations of the two sites were estimated to be 0.45 picomole per gram and 4.04 picomoles per gram on a fresh weight and 0.1 picomole per milligram and 0.9 picomole per milligram on a soluble protein basis, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号