首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inputs of biologically fixed N into agricultural systems may be derived from symbiotic relationships involving legumes and Rhizobium spp., partnerships between plants and Frankia spp. or cyanobacteria, or from non-symbiotic associations between free-living diazotrophs and plant roots. It is assumed that these N2-fixing systems will satisfy a large portion of their own N requirements from atmospheric N2, and that additional fixed N will be contributed to soil reserves for the benefit of other crops or forage species. This paper reviews the actual levels of N2 fixation attained by legume and non-legume associations and assesses their role as a source of N in tropical and sub-tropical agriculture. We discuss factors influencing N2 fixation and identify possible strategies for improving the amount of N2 fixed.  相似文献   

2.
Antunes PM  Deaville D  Goss MJ 《Mycorrhiza》2006,16(3):167-173
This study is the first in assessing the effect of soil disturbance on the contribution of arbuscular mycorrhizal fungi (AMF) with different life-history strategies to the tripartite symbiosis with soybeans and Bradyrhizobium japonicum (Kirchner) Jordan. We hypothesized that Gigaspora margarita Becker and Hall would be more affected by soil disturbance than Glomus clarum Nicol. and Schenck, and consequently, the tripartite symbiosis would develop more rapidly and lead to greater N2 fixation in the presence of the latter. Soil pasteurization allowed the establishment of treatments with individual AMF species and soil disturbance enabled the development of contrasting root colonization potentials. In contrast, the colonization potential of B. japonicum was kept the same in all treatments. Soil disturbance significantly reduced root colonization by both AMF, with Gi. margarita being considerably more affected than G. clarum. Furthermore, the tripartite symbiosis progressed faster with G. clarum, and at 10 days after plant emergence, there was 30% more nodules when G. clarum was present compared to that when the bacterial symbiont alone was present. At flowering, the absence of soil disturbance stimulated N2 fixation by 17% in mycorrhizal plants. However, this response was similar for both AMF.  相似文献   

3.
4.
Split‐root system (SRS) approaches allow the differential treatment of separate and independent root systems, while sharing a common aerial part. As such, SRS is a useful tool for the discrimination of systemic (shoot origin) versus local (root/nodule origin) regulation mechanisms. This type of approach is particularly useful when studying the complex regulatory mechanisms governing the symbiosis established between legumes and Rhizobium bacteria. The current work provides an overview of the main insights gained from the application of SRS approaches to understand how nodule number (nodulation autoregulation) and nitrogen fixation are controlled both under non‐stressful conditions and in response to a variety of stresses. Nodule number appears to be mainly controlled at the systemic level through a signal which is produced by nodule/root tissue, translocated to the shoot, and transmitted back to the root system, involving shoot Leu‐rich repeat receptor‐like kinases. In contrast, both local and systemic mechanisms have been shown to operate for the regulation of nitrogenase activity in nodules. Under drought and heavy metal stress, the regulation is mostly local, whereas the application of exogenous nitrogen seems to exert a regulation of nitrogen fixation both at the local and systemic levels.  相似文献   

5.
Legume N2 fixation is variable, but nonetheless is a valuable process in world agriculture. There is great potential to increase the contribution by the crop legumes to the world's supply of soil.N. This will be achieved by (i) increasing the area of legumes sown by farmers; (ii) improved management of the crops in order that the major determinants of productivity, e.g. land area, water availability, are converted to harvested product with maximum efficiency; and (iii) genetic modification of the commonly-grown species to ensure high dependence of the legume crop on N2 fixation at all levels of productivity. Currently-used methods for measuring N2 fixation and for assessing heritability and repeatability of N2 fixation in breeding and selection programs are reviewed. Results from research programs to define genetic variation in N2 fixation and to enhance N2 fixation through selection and breeding are presented with particular emphasis on common bean (Phaseolus vulgaris) and soybean (Glycine max).  相似文献   

6.
Atmospheric N2 fixed symbiotically by associations between Rhizobium spp. and legumes represents a renewable source of N for agriculture. Contribution of legume N2 fixation to the N-economy of any ecosystem is mediated by: (i) legume reliance upon N2 fixation for growth, and (ii) the total amount of legume-N accumulated. Strategies that change the numbers of effective rhizobia present in soil, reduce the inhibitory effects of soil nitrate, or influence legume biomass all have potential to alter net inputs of fixed N. A range of management options can be applied to legumes growing in farming systems to manipulate N2 fixation and improve the N benefits to agriculture and agroforestry.  相似文献   

7.
An experiment was conducted under greenhouse conditions to evaluate the effect of mineral nitrogen on N2 fixation of two cultivars of Phaseolus vulgaris L., Puebla 152 and Negro Argel. Nitrogen application was 0, 2.5, 12.5 and 25 mg N Kg–1 of a vermiculite-sand-mixture at planting time. Shoot and root growth were elevated by nitrogen application at all growth stages. During vegetative growth (V 5) nodule dry weight and nitrogenase activity (acetylene reducing activity) per plant were reduced by nitrogen supply in both cultivars, but less in Negro Argel than in Puebla 152. At later stages nodulation in nitrogen-treated Puebla 152 did not differ from that in non-treated plants, whereas increased nodule number was found in Negro Argel at high nitrogen levels. The influence of mineral N on the total amount of nitrogen fixed in the two bean cultivars was only slightly different.  相似文献   

8.
Common bean (Phaseolus vulgaris) has become a cosmopolitan crop, but was originally domesticated in the Americas and has been grown in Latin America for several thousand years. Consequently an enormous diversity of bean nodulating bacteria have developed and in the centers of origin the predominant species in bean nodules is R. etli. In some areas of Latin America, inoculation, which normally promotes nodulation and nitrogen fixation is hampered by the prevalence of native strains. Many other species in addition to R. etli have been found in bean nodules in regions where bean has been introduced. Some of these species such as R. leguminosarum bv. phaseoli, R. gallicum bv. phaseoli and R. giardinii bv. phaseoli might have arisen by acquiring the phaseoli plasmid from R. etli. Others, like R. tropici, are well adapted to acid soils and high temperatures and are good inoculants for bean under these conditions. The large number of rhizobia species capable of nodulating bean supports that bean is a promiscuous host and a diversity of bean-rhizobia interactions exists. Large ranges of dinitrogen fixing capabilities have been documented among bean cultivars and commercial beans have the lowest values among legume crops. Knowledge on bean symbiosis is still incipient but could help to improve bean biological nitrogen fixation.  相似文献   

9.
Nitrogenase activity and the rate of photosynthesis were measured simultaneously in Azolla by a continuous gas flow system. The mode of interaction between light, photosynthesis and nitrogenase activity was analysed.Nitrogenase activity dropped off when either Azolla plants or the cyanobiont Anabaena were transferred from light to dark. This decline was immediate and was independent of length or intensity of the prior light phase. Reillumination restored nitrogenase activity.Nitrogenase activity did not depend on the rate of photosynthesis at light intensities below 10 μE m−2 s−1. Its activity was saturated at 200 μE m−2 s−1 while CO2 fixation was saturated at a light intensity of 850 μE m−2 s−1. Azolla photosynthetic activity followed the absorption spectrum of chlorophyll a, while nitrogenase activity markedly increased between 690 and 710 nm. Inhibition of photosynthesis by DCMU was accompanied by an increase in nitrogenase activity. These results suggest direct light regulation of nitrogenase activity in Azolla independent of CO2 fixation, and a possible inhibition of nitrogenase activity by the oxygen produced in photosynthesis.  相似文献   

10.
Three wheat cultivars with different tolerances against free aluminium were grown monoxenically in association with Azospirillum brasilense. In situ nitrogen fixation, measured with the acetylene reduction assay, was higher by the aluminium-tolerant cultivars than by the sensitive cultivar. The transfer of fixed nitrogen to the host plant, determined by the 15N dilution technique, was also significantly higher in the aluminium-resistant wheat plants. The total accumulation of fixed nitrogen in the host plants due to an A. brasilense inoculation varied from approximately 13% to 17% of the total nitrogen in the root and 2.9% to 3.9% of the nitrogen in the shoot.The quantity and quality of exudates released in liquid nutrient solution were analysed separately for two of the wheat cultivars, one aluminium-tolerant and one aluminium-sensitive. After 29 days of growth the aluminium-tolerant plants exudated significantly higher total amounts of carbon than aluminium-sensitive plants. No differences between the two cultivars existed in the carbon exudation rate per gram dry root.Much higher concentrations of low molecular dicarboxylic acids i.e. succinic, malic and oxalic acid, were found in the exudates of aluminium-tolerant plants. Dicarboxylic acids are potential chelating compounds for positively charged metals such as aluminium and they may play an important role in protecting the plant against aluminium incorporation. They are also very suitable substrates for Azospirillum spp. It is therefore suggested that these factors may be causing the higher associative nitrogen fixation rates which was found in the aluminium-tolerant wheat cultivars.  相似文献   

11.
Gan  Yinbo  Stulen  Ineke  van Keulen  Herman  Kuiper  Pieter J.C. 《Plant and Soil》2004,258(1):281-292
Nitrate N is a major inhibitor of the soybean/Bradyrhizobium symbiosis in legumes and although this inhibition has been studied for many years, as yet no consensus has been reached on the specific and quantitative interactions between nitrate and ammonium supply and N2 fixation. The effect of nitrate and ammonium supply on plant growth, nodulation and N2 fixation capacity during the full growth cycle was investigated in both greenhouse and growth chamber experiments with three soybean genotypes. The results show that a high concentration of mineral N (10 mM), either as nitrate or ammonium or ammonium nitrate significantly suppressed nodule number, nodule dry weight and total N2 fixed per plant of nodulated soybeans. However, lower mineral N concentrations, either 1 mM or 3.75 mM significantly enhanced nodule number, nodule dry weight and total N2 fixed per plant, while specific nodulation (nodule dry weight g–1 root DW, SNOD) and specific N2 fixation (total N2 fixed g–1 root DW, SNF) were significantly reduced, particularly at the early vegetative growth stage V4, compared to the treatment with N2 fixation as the only N source, in both growth chamber and greenhouse experiments. Therefore, we suggest that SNOD or SNF might be better indicators to express the suppressing effect of mineral N addition on nodule performance and N2 fixed. Our studies also showed that ammonium alone was the more efficient N source than either ammonium nitrate or nitrate for soybean, as it resulted in higher biomass accumulation, nodule dry weight, total N accumulation and total N2 fixed by 23, 20, 18 and 44%, respectively, compared to NO3 as the N source.  相似文献   

12.
Reactive oxygen species such as hydrogen peroxide (H(2)O(2)), play a crucial role as signaling molecules in the establishment and functioning of the nitrogen-fixing legume-Rhizobium symbiosis. The regulation of protein function through oxidative modification has emerged as an important molecular mechanism modulating various biological processes. Protein cysteine residues are known to be sensitive targets of H(2)O(2), in a posttranslational modification called sulfenylation. We trapped and identified sulfenylated proteins in the Medicago truncatula-Sinorhizobium meliloti symbiosis, by combining the use of chemical and genetic probes with mass spectrometry analysis. We identified 44 M. truncatula proteins sulfenylated in inoculated roots (two days post infection, 2dpi) and 65 such proteins in the functioning symbiotic organ, the nodule (four weeks post infection, 4wpi); 18 proteins were identified at both time points. However, the largest functional groups at 2dpi and 4wpi were different: redox state-linked proteins early in the interaction and proteins involved in amino-acid and carbohydrate metabolism in the nodule. Twenty proteins from S. meliloti, including some directly involved in nitrogen fixation, were also identified as sulfenylated. These results suggest that sulfenylation may regulate the activity of proteins playing major roles in the development and functioning of the symbiotic interaction.  相似文献   

13.
Sustainable agriculture relies greatly on renewable resources like biologically fixed nitrogen. Biological nitrogen fixation plays an important role in maintaining soil fertility. However, as BNF is dependent upon physical, environmental, nutritional and biological factors, mere inclusion of any N2-fixing plant system does not guarantee increased contributions to the soil N pool. In the SAT where plant stover is also removed to feed animals, most legumes might be expected to deplete soil N. Yet beneficial legume effects in terms of increased yields in succeeding cereal crops have been reported. Such benefits are partly due to N contribution from legumes through BNF and soil N saving effect. In addition, other non-N rotational benefits, for example, improved nutrient availability, improved soil structure, reduced pests and diseases, hormonal effects are also responsible. In this paper we have reviewed the research on the contribution of grain legumes in cropping systems and the factors affecting BNF. Based on the information available, we have suggested ways for exploiting BNF for developing sustainable agriculture in the semi-arid tropics (SAT). A holistic approach involving host-plant, bacteria, environment and proper management practices including need based inoculation for enhancing BNF in the cropping systems in the SAT is suggested.  相似文献   

14.
Phosphorus is one of several factors which affect N2 fixation and along with N, is a principal yield-limiting nutrient in many regions of the world. Since the legume plant is an essential partner in symbiotic N2 fixation, knowledge of host genotype variability for this process at different levels of P availability will be useful when breeding bean cultivars for enhanced N2 fixation. The objective of this study was to obtain common bean (Phaseolus vulgaris L.) lines able with enhanced ability to support biological N2 fixation under different levels of available phosphorus.Experiments were conducted in a growth room using a sand-alumina system to provide different levels of available P and in the field on a low-N soil. In the growth room studies, P availability strongly affected plant growth and traits related to N2 fixation. No significant interaction was detected for P levels × bean lines, indicating that bean lines performed similarly at both high and low P levels.Total shoot N was used as a direct and indirect measure of N2-fixation potential under growth room (N-free media) and field (low-N soil) conditions, respectively. Based on this criterion, two of the 41 and 54 inbred backcross lines of a segregating population evaluated in the growth room and the field, respectively, contained greater shoot N content than the recurrent parent and N shoot contents similar to the donor parent. Variability of N2 fixation under low available P was observed, and high N2 fixing and high yielding progeny lines were detected.  相似文献   

15.
Pesticidal effect on soybean-rhizobia symbiosis   总被引:2,自引:0,他引:2  
Summary Relative compatibility of selected pesticides at two levels of application (recommended rate and 5× or 10 ×) with soybean-rhizobia symbiosis was tested in pot culture experiments using a prepared peat inoculant.PCNB, carboxin and carboxin+captan at recommended level were innocuous to growth, nodulation, N2-fixation and total N content of shoot. Carboxin and carboxin+captan but not PCNB at 10 times recommended level proved detrimental to nodulation and N2-fixation. Carbaryl and malathion at recommended level had no adverse effect but at 10 times recommended level severely reduced N2-fixation but not other parameters. Acephate, diazinon and toxaphene at both levels reduced N2-fixation and total N content but not growth and nodulation. All five herbicides used at recommended and 5 times recommended level adversely affected nodulation and N2-fixation. Glyphosate proved least toxic to all parameters. 2,4-DB at recommended level was less harmful to nodulation and N2-fixation than trifluralin, alachlor and metribuzin.  相似文献   

16.
When nitrogen fixing root nodules are formed, Sarothamnus scoparius (broom) is inoculated with its microsymbionts. Nodules studied under light and electron microscopy exhibited typical indeterminate nodule histology with apical, persistent meristem, age gradient of nodule tissues, and open vascular bundles, and also with some particular features such as: the presence of mitotic activity in the infected meristematic cells, lack of infection threads, distribution of bacteria by process of host cell division, and occurrence of a large bacteroid zone only with infected cells. The results of cross-inoculation tests have shown a broad host range for S. scoparius microsymbionts including not only the native host but also species such as: Lupinus luteus, Ornithopus sativa, Lotus corniculatus, Genista tinctoria, Chamaecitisus ratisbonensis, Macroptilium atropurpureum, and Phaseolus vulgaris. In addition, our data established a close symbiotic relationship of S. scoparius nodulators to Bradyrhizobium sp. (Lupinus) by comparison of the partial sequence of nodC gene of the strain CYT7, specific for the broom, to those from Bradyrhizobium sp. (Lupinus) strain D1 and others available in the public databases.  相似文献   

17.
The combined effect of Vesicular Arbuscular Mycorrhizae (VAM) and Rhizobium on the cold season legumes, lentil and faba bean, as well as on summer legume, soybean, were studied in soils with low indeginous VA mycorrhizal spores. Inoculation of the plant with VA mycorrhizal fungi increased the level of mycorrhizal root infection of lentil, faba bean and soybean. The inoculation with Rhizobium had no significant effect on VA mycorrhizal infection percent, but VA mycorrhizal inoculation increased nodulation of the three legumes. The inoculation with Rhizobium alone significantly increased plant dry weight and N content of lentil and faba bean as well as seed yield of soybean. VA mycorrhizal inoculation also significantly increased plant dry weight and phosphorus content of the plants as did fertilization with superphosphate. Rock phosphate fertilization, however, had no significant effect on plant growth or phosphorus uptake. The addition of rock phosphate in combination with VA mycorrhizal inoculation significantly increased plant dry weight and P uptake of the plants. The dual inoculation with both rhizobia and mycorrhizae induced more significant increases in plant dry weight, N and P content of lentil and faba bean as well as seed yield of soybean than inoculation with either VA mycorrhizae or Rhizobium alone.  相似文献   

18.
In monocropped cereal systems, annual N inputs from non-fertilizer sources may be more than 30 kg ha-1. We examined the possibility that these inputs are due to biological N2 fixation (BNF) associated with roots or decomposing residues. Wheat was grown under greenhouse conditions in pots (34 cm long by 10 cm diameter) containing soil from a plot cropped to spring wheat since 1911 without fertilization. The roots and soil were sealed from the atmosphere and exposed to a15N2-enriched atmosphere for three to four weeks during vegetative, reproductive or post-reproductive stages. This technique permitted detection of as little as 1 μg fixed N plant-1 in plant material and 40 μg fixed N plant-1 in soil. No fixation of15N2 occurred during either of the first two labelling periods. In the final labelling period, straw returned to the soil was significantly enriched in15N, especially in a pot with a higher soil moisture content. Total BNF in this pot was 13 μg N plant-1, or about 30 g N ha-1. In a separate experiment with soil from the same plot, we detected BNF only when soil was amended with glucose at a high soil moisture content. Measured associative BNF was insufficient to account for observed N gains under field conditions. Lethbridge Research Centre contribution no. 3879488. Lethbridge Research Centre contribution no. 3879488.  相似文献   

19.
Improvement of dinitrogen fixation in beans (Phaseolus vulgaris L.) will depend on the selection of superior plant genotypes and the presence of efficient rhizobial strains. This study was conducted to evaluate diverse bean lines for N2 fixation potential using the15N-depleted dilution technique under field conditions in Wisconsin, USA. Plants of 21 bean lines and three non-nodulating isolines of soybean received appliin Wisconsin, USA. Plants of 21 bean lines and three non-nodulating isolines of soybean received applications of15N-depleted ammonium sulphate. Shoots harvested at the V6, R3 and R7 stages and dry seeds were analyzed for total N using the Kjeldahl procedure, and the ratio of15N to14N was determind on a MAT 250 mass spectrometer. Nodule occupancy of the applied strain ofR. leguminosarum biovarphaseoli, CIAT 899, was determined in five of the bean lines. Total shoot N content showed a pattern of accumulation similar to shoot dry weight and fixed N2 in the shoot. Based on shoot total N, N2 fixed in the shoot and shoot dry weight Riz 30 and Preto Cariri were identified as being as good fixers as Puebla 152 and Cargamanto appear to begin N2 fixation early. Furthermore, some bean lines that fixed considerable N2 did not translocate a large amount of N to the grains. Preto Cariri accumulated 21.2 kg N ha−1 in the seeds compared to Puebla 152 which accumulated 43.8 kg N ha−1 of the fixed N2 into the grains. At the early sampling, Puebla 152 and 22–27 had a considerable higher percentage of their crown nodules formed by the inoculant strain CIAT 899, than did Rio Tibagi which has been considered a poor N2 fixer.  相似文献   

20.
The influence ofKlebsiella oxytoca andEnterobacter cloacae inoculation on dinitrogen fixation by the rice-bacteria association was examined in pots in a greenhouse. For inoculation,K. oxytoca NG13 isolated from a Japan paddy soil,E. cloacae E26 isolated from a China soil and following three strains were employed.K. oxytoca NG1389 is a mutant from NG13 and has no nitrogenase activity (nif). K. oxytoca NG13/pMC71A andE. cloacae E26/pMC71A were produced by inserting anif A containingK. pneumoniae plasmid (pMC71A) to NG13 and E26, respectively. These two strains were able to fix dinitrogen fixation in the presence of ammonium, whereas nitrogenase activity of wild strains (NG13 and E26) were repressed under this condition. Inoculation effects were tested on two rice (Oryza sativa L.) varieties, a Indica type C5444 and a Japonica type T65. Rice seedlings were planted to nonsterilized potted soil, and grown under flooded conditions. Upon inoculation with NG13 and E26, growth and N increment of plants particularly in T65 were stimulated above NG1389 inoculated plants. Assay by15N dilution and acetylene reduction techniques indicated that this N increment may be due to fixed N. Inoculation with NG13/pMC71A and E26/pMC71A resulted in more dry weight and fixed N than those of NG13 and E26 inoculated plants. Dr Y. Hirota died on 23 December 1986.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号