首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sesquiterpene lactones are well established as chemosystematic markers in the Asteraceae family. From the Lactuceae tribe of the Asteraceae family a large number of sesquiterpene lactones – mainly of the guaiane type – have been isolated. One of the 11 subtribes of the Lactuceae recognized by Bremer is the subtribe Hypochaeridinae, which encompasses 10 genera with approximately 170 species. The present communication summarizes the sesquiterpene derivatives reported from these 10 genera, points out, which constituents are characteristic for particular groups, and discusses the occurrence of these secondary metabolites in a chemosystematic context. To this end, each of the reported sesquiterpenoids reported for the Hypochaeridinae is classified into one of three main compound classes (MCCs; eudesmane-, germacrane-, guaiane-derivatives) and into one of a number of compound classes (CCs) within these principal groups. The distribution of sesquiterpenoids belonging to these particular classes of sesquiterpenoids generally follows the currently accepted generic limits. However, the genus Helminthoteca, which is included into Picris by many authors, possesses an array of compounds implying a closer relationship to the genus Hypochaeris than to the remainder of the genus Picris. Furthermore, Leontodon subgenus Oporinia shows closer similarity in secondary metabolite patterns to the genus Picris than to Leontodon subgenus Leontodon. On the other hand Leontodon subgenus Leontodon has more chemical characters in common with the genus Hedypnois than with Leontodon subgenus Oporinia. These findings are in-line with recent results of molecular analyses, which imply that current generic limits within the Hypochaeridinae might not reflect the phylogeny of the subtribe.  相似文献   

2.
A chemosystematic study of the subgenus Oporinia of the genus Leontodon (Asteraceae) was performed, using flavonoids and phenolic acids in the flowerheads as diagnostic characters. A total of 44 samples from nine different Oporinia taxa were analyzed. Five luteolin-derivatives (luteolin, luteolin 7-O-β-d-gentiobioside, luteolin 7-O-β-d-glucoside, luteolin 7-O-β-d-glucuronide, and luteolin 4′-O-β-d-glucoside) and four caffeic acid derivatives (caffeoyl tartaric acid, chlorogenic acid, cichoric acid, and 3,5-dicaffeoylquinic acid) were identified in crude extracts by means of HPLC retention times, on-line UV spectra and on-line MS spectra. Quantification of these compounds was performed by HPLC, using quercetin as internal standard. The data obtained were processed by Principal Component Analysis, resulting in the formation of five different clusters. These clusters were taxonomically interpretable and are in good agreement with the morphologically based system of the genus Leontodon.  相似文献   

3.
Martinsson, S., Kjærandsen, J. & Sundberg, P. (2011). Towards a molecular phylogeny of the fungus gnat genus Boletina (Diptera: Mycetophilidae). —Zoologica Scripta, 40, 272–281. Boletina is a species rich genus of fungus gnats (Diptera: Mycetophilidae) with a mainly Holarctic distribution. The systematics within the genus has gained little attention and this is a first attempt to shed some light over the systematics of Boletina and to test the segregation of the genera Saigusaia and Aglaomyia from Boletina. The nuclear marker 28S and mitochondrial 16S, COI and CytB were amplified and sequenced for 23 taxa that were analysed separately and together with a broad sample of outgroup taxa obtained from GenBank, where also 18S sequences were added. Phylogenies were estimated using maximum likelihood, Bayesian inference and parsimony. We strengthen the hypothesized sister‐group relationship between Docosia and Boletina, but the genus Boletina as currently delimited appears to be paraphyletic and nested in a clade together with Aglaomyia, Coelosia and Gnoriste. The genus Saigusaia, on the other hand, seems to be well separated from Boletina. The Boletina erythropyga species group is consistently found as a distinct basal clade within Boletina s.l. The results obtained are otherwise ambiguous both for the taxa in focus and in some analyses globally with a statistically supported total breakdown of the traditional higher classification into tribes, subfamilies and even families. Interestingly, this breakdown almost disappeared when additional 18S sequences were added.  相似文献   

4.
Recent phylogenetic research suggests that Malvaceae s.l. comprises formerly Tiliaceae, Byttneriaceae, Bombacaceae, and Sterculiaceae. Corchoropsis is traditionally included in Tiliaceae or Sterculiaceae and is distributed in China, Korea, and Japan. One to three species have been recognized for this genus. Phylogenetic relationships among the Malvacean taxa have been intensively studied with molecular data, and the evolution of their morphological characteristics has been re-interpreted accordingly. However, no Corchoropsis species have been included for their phylogenetic position. Here, three chloroplast coding regions—rbcL, atpB, and ndhF, from Corchoropsis psilocarpa and Corchoropsis crenata—were amplified and sequenced, then compared with other Malvacean taxa. This analysis of the three plastid gene sequences now places Corchoropsis species in Dombeyoideae, as previously proposed by Takeda (Bull Misc Inform Kew 365, 1912), Tang (Cathaya 4:131–150, 1992), and Bayer and Kubitzki (2003). Within Dombeyoideae, Corchoropsis forms a strongly supported sister relationship with the DombeyaRuizia clade.  相似文献   

5.
6.
Chocolate Spot leaf disease of Eucalyptus is associated with several Heteroconium-like species of hyphomycetes that resemble Heteroconium s.str. in morphology. They differ, however, in their ecology, with the former being plant pathogenic, while Heteroconium s.str. is a genus of sooty moulds. Results of molecular analyses, inferred from DNA sequences of the large subunit (LSU) and internal transcribed spacers (ITS) region of nrDNA, delineated four Heteroconium-like species on Eucalyptus, namely H. eucalypti, H. kleinziense, Alysidiella parasitica, and one isolate resembling a novel species in a clade separate from the holotype of Heteroconium, H. citharexyli. Based on molecular phylogeny, morphology and ecology, the Heteroconium-like species associated with Chocolate Spot disease are reclassified in the genus Alysidiella, which is shown to have mycelium that is immersed in and superficial on the host tissue and conidiogenous cells that can have loci that are either inconspicuous or proliferating percurrently. Furthermore, conidiogenous cells can either occur solitary on hyphae, or be sporodochial, arranged on a weakly developed stroma, which further distinguishes Alysidiella from Heteroconium.  相似文献   

7.
8.
The genus Hypochaeris (Asteraceae, Lactuceae) contains ten species in Europe, three in Asia, and approximately 50 in South America. Previous cytotaxonomic studies have shown two groups of taxa: (1) European species with different basic chromosome numbers and differentiated karyotypes, and (2) South American species with x=4 and uniform asymmetric and bimodal karyotypes. Karyotypic data are synthesized for South American species of Hypochaeris with new information for six Chilean species: H. acaulis, H. apargioides, H. palustris, H. spathulata, H. tenuifolia and H. thrincioides. Four main groups can be distinguished based on presence and localization of secondary constrictions – SCs (bearing Nucleolar Organizer Regions – NORs) on chromosomes 2 and 3, and 18S–25S and 5S rDNA loci number, localization, and activity. We propose karyotypic evolution of South American Hypochaeris (x=4) from H. maculata-like (x=5) European ancestors. The original South American karyotype would have possessed two SCs, one on the long arm of chromosome 2, and the other on the short arm of chromosome 3 (in terminal position). Further evolution would have involved inversion within the short arm of chromosome 3 and inactivation/loss of the SC on chromosome 2.  相似文献   

9.
Rinorea, the second most species-rich genus in the Violaceae, has been shown to be polyphyletic with four separate clades recovered in phylogenetic studies. Among these clades is the Rinorea crenata group, which is composed of three Neotropical species. This group has been shown in family- and genus-level molecular phylogenies to be resolved outside of a large clade representing Rinorea s.str. Based on phylogenetic, morphological, and anatomical evidence, Bribria, a new genus, is segregated from Rinorea s.str. and described, with new combinations made for its three species: Bribria apiculata, Bribria crenata, and Bribria oraria. In addition, two new sections in Rinorea s.str. are described to accommodate the remaining Neotropical species: Rinorea sect. Rinorea and Rinorea sect. Pubiflora, which correspond to Group IIa Rinorea and Group IIc Pubiflora, respectively, in W. H. A. Hekking’s monograph of Neotropical Rinorea.  相似文献   

10.
The genus Sorex is one of the most diverse and ecologically successful lineages of the family Soricidae. We present the first multilocus nuclear phylogeny focusing on the nominal subgenus Sorex s.str., which is distributed mainly in the northern Palearctic. The nuclear tree (six exons) provides more resolution than the mitochondrial data (cytb) and supports subdivision into eight species groups within Sorex s.str., most of which correspond to those recognized from chromosome data. The European species S. alpinus is consistently placed as the basal lineage in the Palearctic clade, while the next split separates the east‐Tibetan group of striped shrews (S. aff. cylindricauda, S. bedfordiae, S. excelsus). Within the remaining species, the following well‐supported clades are identified at the supra‐group level: “araneus” species group+S. samniticus; the “caecutiens” group+the “minutus” group, the latter also including S. minutissimus, S. gracillimus and S. thibetanus. S. raddei and S. roboratus represent separate lineages with no close relatives. The fossil‐calibrated molecular clock placed the divergence between Sorex s.str. and Otisorex at the Early/Middle Miocene boundary. Basal radiation of the crown Sorex s.str. was estimated to have occurred in the middle of the Late Miocene. A more than threefold increase in the diversification rate is inferred for the Early Pliocene. Taxonomic implications including potential genus ranks for Sorex s.str. and Otisorex are discussed. S. alpinus is placed in the monotypic subgenus Homalurus. The full species status of S. buchariensis and S. thibetanus and close relationships between S. cf. cansulus and S. caecutiens are confirmed.  相似文献   

11.
The Vittiaceae are a small family of aquatic mosses that are defined based on gametophytic traits whose interpretation has led to conflicting taxonomic arrangements. Phylogenetic analyses of two cpDNA regions, trnL-trnF and atpB-rbcL, indicate that Vittia is nested within the Amblystegiaceae s. str., suggesting that the family Vittiaceae should not be recognized. Platylomella lescurii appears nested within the Thuidiaceae/Leskeaceae. This suggests that the series of character states shared by Vittia and Platylomella, including a differentiated leaf border, short laminal cells, stiff stems, and a thick costa, are convergent features that arose independently in unrelated lineages of aquatic Hypnales. Within the Amblystegiaceae, phylogenetic analyses of the two cpDNA regions combined with ITS sequence data show that Hypnobartlettia, Vittia elimbata spec. nov., V. pachyloma, and V. salina, despite their strong morphological similarity to aquatic Amblystegium species, form a clade that is sister to the Drepanocladus/Pseudo-calliergon complex. This combined clade is unresolved at a polytomy that includes Amblystegium serpens and a clade including all the other Amblystegium species. The occurrence of A. serpens outside the strongly supported clade including other Amblystegium species suggests that A. serpens may be better accommodated in a distinct genus. Amblystegium serpens is the type species of Amblystegium and thus retains the name. The other species are accommodated in their own genus, Hygroamblystegium, including H. fluviatile, H. humile comb. nov., H. noterophyllum, H. tenax, and H. varium.  相似文献   

12.
Recent molecular analyses of Dictyosphaerium strains revealed a polyphyletic origin of this morphotype within the Chlorellaceae. The type species Dictyosphaerium ehrenbergianum Nägeli formed an independent lineage within the Parachlorella clade, assigning the genus to this clade. Our study focused on three different Dictyosphaerium species to resolve the phylogenetic position of remaining species. We used combined analyses of morphology; molecular data based on SSU and internally transcribed spacer region (ITS) rRNA sequences; and the comparison of the secondary structure of the SSU, ITS‐1, and ITS‐2 for species and generic delineation. The phylogenetic analyses revealed two lineages without generic assignment and two distinct clades of Dictyosphaerium‐like strains within the Parachlorella clade. One clade comprises the lineages with the epitype strain of D. ehrenbergianum Nägeli and two additional lineages that are described as new species (Dictyosphaerium libertatis sp. nov. and Dictyosphaerium lacustre sp. nov.). An emendation of the genus Dictyosphaerium is proposed. The second clade comprises the species Dictyosphaerium sphagnale Hindák and Dictyosphaerium pulchellum H. C. Wood. On the basis of phylogenetic analyses, complementary base changes, and morphology, we describe Mucidosphaerium gen. nov with the four species Mucidosphaerium sphagnale comb. nov., Mucidosphaerium pulchellum comb. nov., Mucidosphaerium palustre sp. nov., and Mucidosphaerium planctonicum sp. nov.  相似文献   

13.
The phylogeny of Cyclops (~30 spp.), a predominantly Palearctic cold‐adapted genus, was reconstructed based on morphological and molecular characters. The morphological analysis used extensive taxon sampling from the entire Holarctic range of the genus and included 53 morphological characters. Polymorphic traits were coded by the “unordered,” “unscaled” and “scaled” methods; maximum parsimony criterion was applied in tree building. Molecular phylogenetic reconstructions utilized partial nuclear 18S and 28S ribosomal genes, mitochondrial cytochrome oxidase I and complete internal transcribed spacer regions I and II, albeit with limited taxon sampling. Bayesian inference and maximum likelihood were used in these tree reconstructions. The molecular characters were used both in combination with morphology and as an independent test of the basal relationships inferred from morphology. Monophyly of the genus received strong support in both the morphological and molecular phylogenies; the basal relationships remain unresolved. The morphology‐based phylogenies, along with the geographic distribution patterns and ecological traits, supported monophyly of the ankyrae?ladakanus clade, scutifer‐clade (C. scutifer, C. jashnovi, C. columbianus), kolensis‐clade (C. kolensis, C. kikuchii, C. vicinus, C. furcifer, C. insignis, C. alaskaensis), abyssorum‐clade (C. abyssorum s. str., C. abyssorum larianus, C. ricae, C. sevani) and divergens‐clade (South Carpathian “Cyclops sp. Y,” C. mauritaniae, C. divergens, C. bohater, C. lacustris). Relationships among European and North American populations of C. scutifer and C. columbianus based on partial sequences of the 12S mitochondrial gene show C. scutifer to be paraphyletic, suggesting two independent invasions into North America via the Bering Land Bridge from Siberia to Alaska.  相似文献   

14.
Recent advances in scleractinian systematics and taxonomy have been achieved through the integration of molecular and morphological data, as well as rigorous analysis using phylogenetic methods. In this study, we continue in our pursuit of a phylogenetic classification by examining the evolutionary relationships between the closely related reef coral genera Merulina, Goniastrea, Paraclavarina and Scapophyllia (Merulinidae). In particular, we address the extreme polyphyly of Favites and Goniastrea that was discovered a decade ago. We sampled 145 specimens belonging to 16 species from a wide geographic range in the Indo‐Pacific, focusing especially on type localities, including the Red Sea, western Indian Ocean and central Pacific. Tree reconstructions based on both nuclear and mitochondrial markers reveal a novel lineage composed of three species previously placed in Favites and Goniastrea. Morphological analyses indicate that this clade, Paragoniastrea Huang, Benzoni & Budd, gen. n., has a unique combination of corallite and subcorallite features observable with scanning electron microscopy and thin sections. Molecular and morphological evidence furthermore indicates that the monotypic genus Paraclavarina is nested within Merulina, and the former is therefore synonymised.  相似文献   

15.
16.
The jumping pitvipers, genus Atropoides, occur at low to middle elevations throughout Middle America. Recent molecular phylogenetic analyses have included all six species of Atropoides, but only two studies have found Atropoides to be monophyletic and questions persist about relationships within the A. nummifer complex. In this study, our phylogenetic analyses of morphological data provide strong support for the monophyly of Atropoides and recover relationships within the genus that are mostly congruent with those of recent molecular studies, further supporting the evolutionary and biogeographic hypotheses proposed in those studies. Our analyses find support for a sister relationship between A. picadoi and the other Atropoides species and an A. occiduus–A. indomitus clade sister to an A. nummifer–A. mexicanus–A. olmec clade. Within the A. nummifer complex, we find A. mexicanus and A. olmec to be sister species to the exclusion of A. nummifer. We include morphological synapomorphies to support each clade within Atropoides and describe and illustrate the hemipenes of each species. In addition, we discuss the importance of morphological phylogenetics and the functionality and limitations of hemipenial data in systematics.  相似文献   

17.

Introduction

Hieracium s. str. represents one of the largest and most complex genera of flowering plants. As molecular genetics seems unlikely to disentangle intricate relationships within this reticulate species complex, analysis of flavonoids and phenolic acids, known as good chemosystematic markers, promise to be more reliable. Data about pharmacological activity of Hieracium species are scarce.

Objective

Evaluation of the chemosystematic significance of flavonoids and phenolic acids of methanol extracts of aerial flowering parts of 28 Hieracium species from the Balkans. Additionally, investigation of antioxidant potentials of the extracts.

Methods

Comparative qualitative and quantitative analysis of flavonoids and phenolic acids was performed by LC–MS. Multivariate statistical data analysis included non‐metric multidimensional scaling (nMDS), unweighted pair‐group arithmetic averages (UPGMA) and principal component analysis (PCA). Antioxidant activity was evaluated using three colorimetric tests.

Results

Dominant phenolics in almost all species were luteolin type flavonoids, followed by phenolic acids. Although the investigated Hieracium species share many compounds, the current classification of the genus was supported by nMDS and UPGMA analyses with a good resolution to the group level. Hieracium naegelianum was clearly separated from the other investigated species. Spatial and ecological distances of the samples were likely to influence unexpected differentiation of some groups within H. sect. Pannosa. The vast majority of dominant compounds significantly contributed to differences between taxa. The antioxidant potential of the extracts was satisfactory and in accordance with their phenolics composition.

Conclusions

Comparative LC–MS analysis demonstrated that flavonoids and phenolic acids are good indicators of chemosystematic relationships within Hieracium, particularly between non‐hybrid species and groups from the same location. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
Based on the study of the neotype and the astogeny of the type specimens of the species Ascopora nodosa (Fischer von Waldheim, 1837), the diagnosis and species composition of the genus Ascopora Trautschold, 1876 are emended. The genus Ascopora and three species out of the five included in this genus—A. nodosa (Fischer von Waldheim, 1837); A. sokolovae Schulga-Nesterenko, 1955; and A. latiaxis Schulga-Nesterenko, 1955—are described. A new genus, Tetrasella gen. nov., with the type species T. blanda sp. nov. is described. This genus comprises five species, transferred from the composition of the genus Ascopora. An emended diagnosis of the genus Ascoporella Krutchinina, 1986, is provided. This genus comprises nine species, of which two, A. lecta sp. nov. and A. mera sp. nov., are described as new species.  相似文献   

19.
Acer (the maple genus) is one of the diverse tree genera in the Northern Hemisphere with about 152 species, most of which are in eastern Asia. There are roughly a dozen species in Europe/western Asia and a dozen in North America. Several phylogenetic studies of Acer have been conducted since 1998, but none have provided a satisfactory resolution for basal relationships among sections of Acer. Here we report the first well‐resolved phylogeny of Acer based on DNA sequences of over 500 nuclear loci generated using the anchored hybrid enrichment method and explore the implications of the robust phylogeny for Acer systematics and biogeography. Our phylogenetic results support the most recent taxonomic treatment of Acer by de Jong with some modifications; section Pentaphylla may be expanded to include section Trifoliata, and A. yangbiense may be included in section Lithocarpa. Sections Spicata, Negundo, Arguta, and Palmata form a clade sister to the rest of the genus where sections Glabra and Parviflora comprise the first clade followed by section Macrantha, sections Ginnala, Lithocarpa, Indivisa, sections Platanoidea and Macrophylla, section Rubra, section Acer, and section Pentaphylla. Monotypic sections Glabra and Macrophylla in North America are sister to the Japanese section Parviflora and Eurasian section Platanoidea, respectively. Ancestral area inferences using statistical dispersal and vicariance analysis (S‐DIVA) and dispersal and extinction cladogenesis (DEC) methods suggest that Asia might be the most likely ancestral area of Acer as proposed by Wolfe and Tanai and molecular dating using Bayesian evolutionary analysis by sampling trees (BEAST) indicate that section diversifications of Acer might have completed largely in the late Eocene and the intercontinental disjunctions of Acer between eastern Asia and eastern North America formed mostly in the Miocene.  相似文献   

20.
The internal transcribed spacers (ITSs) of nuclear ribosomal DNA have been sequenced for 20 species of Gentiana. By incorporating previously released sequence data of eight species, phylogenelic analyses using Fitch parsimony and character-state weighted parsimony were carried out. The length of ITS 1 in the taxa surveyed ranged from 223 to 238 bp and ITS2 from 216 to 234 bp. Sequence divergence between pairs of species ranged from 5.0% to 48.9% in ITS1, from 1.1% to 45.3% in ITS2, and from 3.2% to 46.1% in combined data of ITS1 and ITS2. The ITS phylogeny was generally congruent with morphological classifications except that G. asclepiadea was revealed to be closely related to section Gentiana instead of section Pneumonanthe and section Stenogyne was shown to be a paraphyletic group of the genus Gentiana that would be better excluded from the genus. A divergence among the three European endemic sections and the remaining sections of the genus other than section Stenogyne was revealed. Thus the European species of the genus together do not form a monophyletic group. A close relationship between the sections Chondrophyllae s. l. (including section Dolichocarpa), Cruciata and Pneumonanthe was suggested. The section Frigidae s. l. (including sections Monopodiae, Isomeria, Microsperma, and Phyllocalyx) contained two well-supported clades: section Frigidae s. str. and all others together. The monophyly of the typically dysploid group section Chondrophyllae s. l. was confirmed. Optimization of chromosome numbers on the ITS phylogeny suggested that 2/1 = 26 is a plesiomorphic state for the clade comprising sections Frigidae s. l., Cruciata, Pneumonanthe, and Chondrophyllae s. l., and probably 2n = 20 is a plesiomorphic state for the dysploid group, section Chondrophyllae s. l.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号