首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Phosphorylation of the cardiac ryanodine receptor (RyR2) is thought to be important not only for normal cardiac excitation-contraction coupling but also in exacerbating abnormalities in Ca2+ homeostasis in heart failure. Linking phosphorylation to specific changes in the single-channel function of RyR2 has proved very difficult, yielding much controversy within the field. We therefore investigated the mechanistic changes that take place at the single-channel level after phosphorylating RyR2 and, in particular, the idea that PKA-dependent phosphorylation increases RyR2 sensitivity to cytosolic Ca2+. We show that hyperphosphorylation by exogenous PKA increases open probability (P o) but, crucially, RyR2 becomes uncoupled from the influence of cytosolic Ca2+; lowering [Ca2+] to subactivating levels no longer closes the channels. Phosphatase (PP1) treatment reverses these gating changes, returning the channels to a Ca2+-sensitive mode of gating. We additionally found that cytosolic incubation with Mg2+/ATP in the absence of exogenously added kinase could phosphorylate RyR2 in approximately 50% of channels, thereby indicating that an endogenous kinase incorporates into the bilayer together with RyR2. Channels activated by the endogenous kinase exhibited identical changes in gating behavior to those activated by exogenous PKA, including uncoupling from the influence of cytosolic Ca2+. We show that the endogenous kinase is both Ca2+-dependent and sensitive to inhibitors of PKC. Moreover, the Ca2+-dependent, endogenous kinase–induced changes in RyR2 gating do not appear to be related to phosphorylation of serine-2809. Further work is required to investigate the identity and physiological role of this Ca2+-dependent endogenous kinase that can uncouple RyR2 gating from direct cytosolic Ca2+ regulation.  相似文献   

2.
Intracellular calcium ([Ca2+]i) plays a pivotal role in neuronal ischemia. The aim of the present study was to investigate the routes of Ca2+ entry during non-excitotoxic oxygen and glucose deprivation (OGD) in acutely dissociated rat CA1 neurons. During OGD the fluo-3/fura red ratio reflecting [Ca2+]i increased rapidly and irreversibly. [Ca2+]i increased to the same degree in Ca2+ depleted medium, and also when both the ryanodine receptors (RyR) and the inositol 1,4,5-trisphosphate (IP3) receptors were blocked. When the endoplasmic reticulum (ER) Ca2+ stores were emptied with thapsigargin no increase in [Ca2+]i was observed independent of extracellular Ca2+. The OGD induced Ca2+ deregulation in isolated CA1 neurons is not prevented by removing Ca2+, or by blocking the IP3– or RyR receptors. However, when SERCA was blocked, no increase in [Ca2+]i was observed suggesting that SERCA dysfunction represents an important mechanism for ischemic Ca2+ overload.  相似文献   

3.
We investigate the role of heterogeneous expression of IP3R and RyR in generating diverse elementary Ca2+ signals. It has been shown empirically (Wojcikiewicz and Luo in Mol. Pharmacol. 53(4):656–662, 1998; Newton et al. in J. Biol. Chem. 269(46):28613–28619, 1994; Smedt et al. in Biochem. J. 322(Pt. 2):575–583, 1997) that tissues express various proportions of IP3 and RyR isoforms and this expression is dynamically regulated (Parrington et al. in Dev. Biol. 203(2):451–461, 1998; Fissore et al. in Biol. Reprod. 60(1):49–57, 1999; Tovey et al. in J. Cell Sci. 114(Pt. 22):3979–3989, 2001). Although many previous theoretical studies have investigated the dynamics of localized calcium release sites (Swillens et al. in Proc. Natl. Acad. Sci. U.S.A. 96(24):13750–13755, 1999; Shuai and Jung in Proc. Natl. Acad. Sci. U.S.A. 100(2):506–510, 2003a; Shuai and Jung in Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 67(3 Pt. 1):031905, 2003b; Thul and Falcke in Biophys. J. 86(5):2660–2673, 2004; DeRemigio and Smith in Cell Calcium 38(2):73–86, 2005; Nguyen et al. in Bull. Math. Biol. 67(3):393–432, 2005), so far all such studies focused on release sites consisting of identical channel types. We have extended an existing mathematical model (Nguyen et al. in Bull. Math. Biol. 67(3):393–432, 2005) to release sites with two (or more) receptor types, each with its distinct channel kinetics. Mathematically, the release site is represented by a transition probability matrix for a collection of nonidentical stochastically gating channels coupled through a shared Ca2+ domain. We demonstrate that under certain conditions a previously defined mean-field approximation of the coupling strength does not accurately reproduce the release site dynamics. We develop a novel approximation and establish that its performance in these instances is superior. We use this mathematical framework to study the effect of heterogeneity in the Ca2+-regulation of two colocalized channel types on the release site dynamics. We consider release sites consisting of channels with both Ca2+-activation and inactivation (“four-state channels”) and channels with Ca2+-activation only (“two-state channels”) and show that for the appropriate parameter values, synchronous channel openings within a release site with any proportion of two-state to four-state channels are possible, however, the larger the proportion of two-state channels, the more sensitive the dynamics are to the exact spatial positioning of the channels and the distance between channels. Specifically, the clustering of even a small number of two-state channels interferes with puff/spark termination and increases puff durations or leads to a tonic response.  相似文献   

4.
The clustering of cardiac RyR mutations, linked to sudden cardiac death (SCD), into several regions in the amino acid sequence underlies the hypothesis that these mutations interfere with stabilising interactions between different domains of the RyR2. SCD mutations cause increased channel sensitivity to cytoplasmic and luminal Ca2+. A synthetic peptide corresponding to part of the central domain (DPc10:2460G–P2495) was designed to destabilise the interaction of the N-terminal and central domains of wild-type RyR2 and mimic the effects of SCD mutations. With Ca2+ as the sole regulating ion, DPc10 caused increased channel activity which could be reversed by removal of the peptide whereas in the presence of ATP DPc10 caused no activation. In support of the domain destablising hypothesis, the corresponding peptide (DPc10-mut) containing the CPVT mutation R2474S did not affect channel activity under any circumstances. DPc10-induced activation was due to a small increase in RyR2 sensitivity to cytoplasmic Ca2+ and a large increase in the magnitude of luminal Ca2+ activation. The increase in the luminal Ca2+ response appeared reliant on the luminal-to-cytoplasmic Ca2+ flux in the channel, indicating that luminal Ca2+ was activating the RyR2 via its cytoplasmic Ca2+ sites. DPc10 had no significant effect on the RyR2 gating associated with luminal Ca2+ sensing sites. The results were fitted by the luminal-triggered Ca2+ feed-through model and the effects of DPc10 were explained entirely by perturbations in cytoplasmic Ca2+-activation mechanism.  相似文献   

5.
Adipocytes of white adipose tissue are the cells maintaining glucose homeostasis in an organism, which is controlled by insulin. Insulin stimulates the translocation of glucose transporter GLUT4 from the cytosol into the cell membrane, as well as glucose transport and utilization in these cells. Here we show that insulin-induced [Ca2+]i oscillations are supported by the two signaling pathways involving: (1) phosphoinositide 3-kinase (PI3K), protein kinase B (Akt/PKB), endothelial NO synthase (eNOS), nitric oxide (NO), and ryanodine receptor (RyR) and (2) phospholipase C (PLC) and inositol 3-phosphate receptor (IP3R). Thus, the PI3K Akt/PKB signaling pathway initiates not only metabolic but also Ca2+-signaling pathways in response to insulin.  相似文献   

6.
Ryanodine receptors (RyRs) are the Ca2+ release channels in the sarcoplasmic reticulum in striated muscle which play an important role in excitation-contraction coupling and cardiac pacemaking. Single channel recordings have revealed a wealth of information about ligand regulation of RyRs from mammalian skeletal and cardiac muscle (RyR1 and RyR2, respectively). RyR subunit has a Ca2+ activation site located in the luminal and cytoplasmic domains of the RyR. These sites synergistically feed into a common gating mechanism for channel activation by luminal and cytoplasmic Ca2+. RyRs also possess two inhibitory sites in their cytoplasmic domains with Ca2+ affinities of the order of 1 μM and 1 mM. Magnesium competes with Ca2+ at these sites to inhibit RyRs and this plays an important role in modulating their Ca2+-dependent activity in muscle. This review focuses on how these sites lead to RyR modulation by Ca2+ and Mg2+ and how these mechanisms control Ca2+ release in excitation-contraction coupling and cardiac pacemaking.  相似文献   

7.
Visinin-like protein (VILIP-1) belongs to the neuronal Ca2+ sensor family of EF-hand Ca2+-binding proteins that regulate a variety of Ca2+-dependent signal transduction processes in neurons. It is an interaction partner of α4β2 nicotinic acetylcholine receptor (nAChR) and increases surface expression level and agonist sensitivity of the receptor in oocytes. Nicotine stimulation of nicotinic receptors has been reported to lead to an increase in intracellular Ca2+ concentration by Ca2+-permeable nAChRs, which in turn might lead to activation of VILIP-1, by a mechanism described as the Ca2+-myristoyl switch. It has been postulated that this will lead to co-localization of the proteins at cell membranes, where VILIP-1 can influence functional activity of α4-containing nAChRs. In order to test this hypothesis we have investigated whether a nicotine-induced and reversible Ca2+-myristoyl switch of VILIP-1 exists in primary hippocampal neurons and whether pharmacological agents, such as antagonist specific for distinct nAChRs, can interfere with the Ca2+-dependent membrane localization of VILIP-1. Here we report, that only α7- but not α4-containing nAChRs are able to elicit a Ca2+-dependent and reversible membrane-translocation of VILIP-1 in interneurons as revealed by employing the specific receptor antagonists dihydro-beta-erythroidine and methylallylaconitine. The nAChRs are associated with processes of synaptic plasticity in hippocampal neurons and they have been implicated in the pathology of CNS disorders, including Alzheimer’s disease and schizophrenia. VILIP-1 might provide a novel functional crosstalk between α4- and α7-containing nAChRs.  相似文献   

8.
The thermogenic capability of brown adipose tissue is controlled by noradrenaline. By interacting with α1- and β-adrenoreceptors of adipocytes, noradrenaline (NA) increases the intracellular concentration of Ca2+ ([Ca2+]i) and cAMP. The changes in [Ca2+]i under the action of NA and selective agonists of α1- and β-adrenoreceptors, i.e., cirazoline and isoproterenol (IP), are recorded on individual cells of the primary culture of adipocytes during the day in vitro (DIV) 1, DIV 3, and DIV 6. The change in [Ca2+]i under the effect of IP as compared to the response to cirazoline in cells of DIV 1 is characterized by a higher amplitude and shorter duration of impulses in the entire diapason of the used physiological concentrations. After DIV 3, these differences are insignificant and, after DIV 6, the differences in kinetics are nearly absent. For all three agonists, the kinetics of the [Ca2+]i change in the proliferating and differentiated cells is significantly different; i.e., the response amplitude increases with the age of the culture and the duration of transitory response decreases, while sensitivity to agonists of adrenoreceptors increases. It can be seen from the rise in [Ca2+]i with an inhibitor of Ca2+-ATPase of the endoplasmic reticulum thapsigargin in calcium-free medium that the source of calcium ions in the endoplasmic reticulum rises with the growth and development of cells in culture, while the rate at which Ca2+ is pumped out of cells, which characterizes the activity of Ca2+-ATPase of the plasma membrane, increases.  相似文献   

9.
Summary Neuropeptide tachykinins, present within sensory nerves, have been implicated as neurotransmitters involved in nonadrenergic and noncholinergic airway muscle contraction. The signal transduction pathways of tachykinins on muscle contraction and Ca2+ mobilization were investigated in swine trachea. Tachykinins, substance P (SP) and neurokinin A (NKA), concentration (1 nM to 1 μM)-dependently induced contractile responses with removal of epithelium, whereas neurokinin B (NKB) did not alter the muscle tension. The SP- and NKA-evoked muscle contractions were inhibited by NK1-R antagonist L732138, but not by either NK2-R antagonist MDL29913 or NK3-R antagonist SB218795. Consistently, SP-elicited increase in [Ca2+]i was abolished by NK1-R antagonist, neither by NK2-R nor NK3-R antagonists. The SP-induced muscular responses were significantly inhibited by L-type Ca2+ channel blocker verapamil and withdrawal of external Ca2+. Caffeine (10 mM) or ryanodine (50 μM) also partly suppressed the SP-induced muscle responses. Inhibition of inositol 1,4,5-trisphosphate (InsP3) receptor with 2-APB (75 μM) potently attenuated SP-evoked Ca2+ mobilization and muscle contraction, which was further inhibited by 2-APB under Ca2+-free external solution, but not completely. Unexpectedly, simultaneous blockade of InsP3 receptor and ryanodine receptor (RyR) by 2-APB and ryanodine enhanced SP-evoked muscle contraction and Ca2+ mobilization. This potentiation was virtually abolished by removal of external Ca2+, suggesting native Ca2+ channels may contribute to this phenomenon. These results demonstrate that tachykinins produce a potent muscle contraction associated with Ca2+ mobilization via tachykinin NK1- R-dependent activation of multiple signal transduction pathways involving Ca2+ influx and release of Ca2+ from InsP3- and ryanodine-sensitive Ca2+ stores. Blockade of both InsP3 receptor and RyR enhances the Ca2+ influx through native Ca2+ channels in plasma membrane, which is crucial to Ca2+ signaling in response to NK1 receptor activation.  相似文献   

10.
Purinergic signaling mediated by P2 receptors (P2Rs) plays important roles in embryonic and stem cell development. However, how it mediates Ca2+ signals in human embryonic stem cells (hESCs) and derived cardiovascular progenitor cells (CVPCs) remains unclear. Here, we aimed to determine the role of P2Rs in mediating Ca2+ mobilizations of these cells. hESCs were induced to differentiate into CVPCs by our recently established methods. Gene expression of P2Rs and inositol 1,4,5-trisphosphate receptors (IP3Rs) was analyzed by quantitative/RT-PCR. IP3R3 knockdown (KD) or IP3R2 knockout (KO) hESCs were established by shRNA- or TALEN-mediated gene manipulations, respectively. Confocal imaging revealed that Ca2+ responses in CVPCs to ATP and UTP were more sensitive and stronger than those in hESCs. Consistently, the gene expression levels of most P2YRs except P2Y1 were increased in CVPCs. Suramin or PPADS blocked ATP-induced Ca2+ transients in hESCs but only partially inhibited those in CVPCs. Moreover, the P2Y1 receptor-specific antagonist MRS2279 abolished most ATP-induced Ca2+ signals in hESCs but not in CVPCs. P2Y1 receptor-specific agonist MRS2365 induced Ca2+ transients only in hESCs but not in CVPCs. Furthermore, IP3R2KO but not IP3R3KD decreased the proportion of hESCs responding to MRS2365. In contrast, both IP3R2 and IP3R3 contributed to UTP-induced Ca2+ responses while ATP-induced Ca2+ responses were more dependent on IP3R2 in the CVPCs. In conclusion, a predominant role of P2Y1 receptors in hESCs and a transition of P2Y-IP3R coupling in derived CVPCs are responsible for the differential Ca2+ mobilization between these cells.  相似文献   

11.
It has been suggested in Arabidopsis thaliana (L.) Heynh. cv. Columbia that, contrary to 30 μM abscisic acid (ABA), 20 μM ABA induces guard cell Ca2+ mobilization through activating phosphoinositide-specific phospholipase C (PI-PLC)-dependent inositol 1,4,5-triphosphate (IP3) production. Here, it was investigated whether Ca2+-dependent protein kinase, CPK3 or CPK6 would mediate ABA-induced stomatal closure downstream of IP3 production. In the knockout cpk3-1 mutant, the PLC inhibitor (U73122) adjusted 20 μM ABA-induced stomatal closure to the extent observed in the knockout cpk6-1 and cpk3-1cpk6-1 mutants and the wild type, whereas, in the wild type, the inhibitor of IP3-induced Ca2+ mobilization, xestospongin C (XeC), adjusted this closure to the extent observed in the cpk3-1 mutant. The Ca2+ buffer, EGTA and XeC positively interacted with the slow anion channel blocker, anthracene-9-carboxylic acid (9-AC) to inhibit 20 μM ABA-induced stomatal closure, which was suppressed in the dexamethasone-inducible AtPLC1 antisense transgene or the knockout cpk3-1, cpk6-1, cpk3-1cpk6-1 and NADPH oxidase atrbohD/F mutants. Discrete concentrations of 9-AC or another slow anion channel blocker (probenecid) negatively interacted with the Ca2+ buffer, BAPTA or the inhibitor of cyclic ADP-ribose-induced Ca2+ mobilization, ruthenium red, to inhibit 30 μM ABAinduced stomatal closure in the wild type but not in the cpk6-1, cpk3-1cpk6-1 and atrbohD/F mutants. Based on so far revealed features of the tested compounds and plant materials, interpretation of the results confirmed that guard cell ABA concentration discriminates between two Ca2+ mediations and outlined that one of them sequentially implicates CPK6, PLC1, a putative IP3 receptor homologue, CPK3, and the slow anion channel, whereas the other one excludes AtPLC1-dependent IP3 production and CPK3.  相似文献   

12.
Intercellular Ca2+ waves can coordinate the action of large numbers of cells over significant distances. Recent work in many different systems has indicated that the release of ATP is fundamental for the propagation of most Ca2+ waves. In the organ of hearing, the cochlea, ATP release is involved in critical signalling events during tissue maturation. ATP-dependent signalling is also implicated in the normal hearing process and in sensing cochlear damage. Here, we show that two distinct Ca2+ waves are triggered during damage to cochlear explants. Both Ca2+ waves are elicited by extracellular ATP acting on P2 receptors, but they differ in their source of Ca2+, their velocity, their extent of spread and the cell type through which they propagate. A slower Ca2+ wave (14 μm/s) communicates between Deiters’ cells and is mediated by P2Y receptors and Ca2+ release from IP3-sensitive stores. In contrast, a faster Ca2+ wave (41 μm/s) propagates through sensory hair cells and is mediated by Ca2+ influx from the external environment. Using inhibitors and selective agonists of P2 receptors, we suggest that the faster Ca2+ wave is mediated by P2X4 receptors. Thus, in complex tissues, the expression of different receptors determines the propagation of distinct intercellular communication signals.  相似文献   

13.
The anoxia-dependent elevation of cytosolic Ca2+ concentration, [Ca2+]cyt, was investigated in plants differing in tolerance to hypoxia. The [Ca2+]cyt was measured by fluorescence microscopy in single protoplasts loaded with the calcium-fluoroprobe Fura 2-AM. Imposition of anoxia led to a fast (within 3 min) significant elevation of [Ca2+]cyt in rice leaf protoplasts. A tenfold drop in the external Ca2+ concentration (to 0.1 mM) resulted in considerable decrease of the [Ca2+]cyt shift. Rice root protoplasts reacted upon anoxia with higher amplitude. Addition of plasma membrane (verapamil, La3+ and EGTA) and intracellular membrane Ca2+-channel antagonists (Li+, ruthenium red and cyclosporine A) reduced the anoxic Ca2+-accumulation in rice. Wheat protoplasts responded to anoxia by smaller changes of [Ca2+]cyt. In wheat leaf protoplasts, the amplitude of the Ca2+-shift little depended on the external level of Ca2+. Wheat root protoplasts were characterized by a small shift of [Ca2+]cyt under anoxia. Plasmalemma Ca2+-channel blockers had little effect on the elevation of cytosolic Ca2+ in wheat protoplasts. Intact rice seedlings absorbed Ca2+ from the external medium under anoxic treatment. On the contrary, wheat seedlings were characterized by leakage of Ca2+. Verapamil abolished the Ca2+ influx in rice roots and Ca2+ efflux from wheat roots. Anoxia-induced [Ca2+]cyt elevation was high particularly in rice, a hypoxia-tolerant species. In conclusion, both external and internal Ca2+ stores are important for anoxic [Ca2+]cyt elevation in rice, whereas the hypoxia-intolerant wheat does not require external sources for [Ca2+]cyt rise. Leaf and root protoplasts similarly responded to anoxia, independent of their organ origin.  相似文献   

14.
In the absence of exogenous Ca2+ and Mg2+ and in the presence of EGTA, which favours the release of endogenous Ca2+, the polyamine spermine is able to stimulate the activity of pyruvate dehydrogenase complex (PDC) of energized rat liver mitochondria (RLM). This stimulation exhibits a gradual concentration-dependent trend, which is maximum, about 140%, at 0.5 mM concentration, after 30 min of incubation. At concentrations higher than 0.5 mM, spermine still stimulates PDC, when compared with the control, but shows a slight dose-dependent decrease. Changes in PDC stimulation are very close to the phosphorylation level of the E subunit of PDC, which regulates the activity of the complex, but it is also the target of spermine. In other words, progressive dephosphorylation gradually enhances the stimulation of RLM and progressive phosphorylation slightly decreases it. These results provide the first evidence that, when transported in RLM, spermine can interact in various ways with PDC, showing dose-dependent behaviour. The interaction most probably takes place directly on a specific site for spermine on one of the regulatory enzymes of PDC, i.e. pyruvate dehydrogenase phosphatase (PDP). The interaction of spermine with PDC may also involve activation of another regulatory enzyme, pyruvate dehydrogenase kinase (PDK), resulting in an increase in E phosphorylation and consequently reduced stimulation of PDC at high polyamine concentrations. The different effects of spermine in RLM are discussed, considering the different activities of PDP and PDK isoenzymes. It is suggested that the polyamine at low concentrations stimulates the isoenzyme PDP2 and at high concentrations it stimulates PDK2.  相似文献   

15.
The development of the CNS in vertebrate embryos involves the generation of different sub-types of neurons and glia in a complex but highly-ordered spatio-temporal manner. Zebrafish are commonly used for exploring the development, plasticity and regeneration of the CNS, and the recent development of reliable protocols for isolating and culturing neural stem/progenitor cells (NSCs/NPCs) from the brain of adult fish now enables the exploration of mechanisms underlying the induction/specification/differentiation of these cells. Here, we refined a protocol to generate proliferating and differentiating neurospheres from the entire brain of adult zebrafish. We demonstrated via RT-qPCR that some isoforms of ip3r, ryr and stim are upregulated/downregulated significantly in differentiating neurospheres, and via immunolabelling that 1,4,5-inositol trisphosphate receptor (IP3R) type-1 and ryanodine receptor (RyR) type-2 are differentially expressed in cells with neuron- or radial glial-like properties. Furthermore, ATP but not caffeine (IP3R and RyR agonists, respectively), induced the generation of Ca2+ transients in cells exhibiting neuron- or glial-like morphology. These results indicate the differential expression of components of the Ca2+-signaling toolkit in proliferating and differentiating cells. Thus, given the complexity of the intact vertebrate brain, neurospheres might be a useful system for exploring neurodegenerative disease diagnosis protocols and drug development using Ca2+ signaling as a read-out.  相似文献   

16.
Exposing bovine chromaffin cells to a single 5 ns, high-voltage (5 MV/m) electric pulse stimulates Ca2+ entry into the cells via L-type voltage-gated Ca2+ channels (VGCC), resulting in the release of catecholamine. In this study, fluorescence imaging was used to monitor nanosecond pulse-induced effects on intracellular Ca2+ level ([Ca2+]i) to investigate the contribution of other types of VGCCs expressed in these cells in mediating Ca2+ entry. ω-Conotoxin GVIA and ω-agatoxin IVA, antagonists of N-type and P/Q-type VGCCs, respectively, reduced the magnitude of the rise in [Ca2+]i elicited by a 5 ns pulse. ω-conotoxin MVIIC, which blocks N- and P/Q-type VGCCs, had a similar effect. Blocking L-, N-, and P\Q-type channels simultaneously with a cocktail of VGCC inhibitors abolished the pulse-induced [Ca2+]i response of the cells, suggesting Ca2+ influx occurs only via VGCCs. Lowering extracellular K+ concentration from 5 to 2 mM or pulsing cells in Na+-free medium suppressed the pulse-induced rise in [Ca2+]i in the majority of cells. Thus, both membrane potential and Na+ entry appear to play a role in the mechanism by which nanoelectropulses evoke Ca2+ influx. However, activation of voltage-gated Na+ channels (VGSC) is not involved since tetrodotoxin (TTX) failed to block the pulse-induced rise in [Ca2+]i. These findings demonstrate that a single electric pulse of only 5 ns duration serves as a novel stimulus to open multiple types of VGCCs in chromaffin cells in a manner involving Na+ transport across the plasma membrane. Whether Na+ transport occurs via non-selective cation channels and/or through lipid nanopores remains to be determined.  相似文献   

17.
In order to elucidate the function of inositol 1,4,5-trisphosphate (IP3)-activated reticular Ca2+ channel (IP3R) in autooscillatory contractile activity of Physarum polycephalum plasmodium, we applied 2-aminoethoxydiphenyl borate (2-APB), a membrane-permeable inhibitor of IP3-induced Ca2+ release. Taking into account that for the type 1 IP3 R the inhibitory efficacy of 2-APB decreases with the rise of the IP3 level [Bilmen, J.G. and Michelangeli, F., Cell Signal., 2002, vol. 14, no. 11, pp. 955–960], 2-APB was applied to plasmodium in normal conditions and after the treatment with glucose or 3-O-methylglucose, the attractants capable to induce an elevation of the IP3 production. We found that 20–50 μM 2-APB induced a reversible cessation of contractile autooscillations, which occurred in two different modes: as a fast stop and a gradual damping. The damping of oscillations was accompanied by an increase in their period, a prolongation of the contraction phase, and, often, by an increase in the mean level of the contraction force. The number of species responding by the fast stop at a 2-APB concentration of 50 μM was two times greater than at 20 μM 2-APB. In the presence of the attractants in concentrations of 10 and 50 mM, the fast stop was never observed at 20 μM of 2-APB. Moreover, the damping of oscillations was preceded by a period of varying duration, when the regular oscillatory mode was maintained. We conclude that the fast stop results from the direct inter-action of 2-APB with IP3R of Physarum polycephalum plasmodium and that IP3R is indispensable for the plasmodial oscillator.  相似文献   

18.
Store-operated Ca2+ influx, suggested to be mediated via store-operated cation channel (SOC), is present in all cells. The molecular basis of SOC, and possible heterogeneity of these channels, are still a matter of controversy. Here we have compared the properties of SOC currents (I SOC) in human submandibular glands cells (HSG) and human parotid gland cells (HSY) with I CRAC (Ca2+ release-activated Ca2+ current) in RBL cells. Internal Ca2+ store-depletion with IP3 or thapsigargin activated cation channels in all three cell types. 1 μM Gd3+ blocked channel activity in all cells. Washout of Gd3+ induced partial recovery in HSY and HSG but not RBL cells. 2-APB reversibly inhibited the channels in all cells. I CRAC in RBL cells displayed strong inward rectification with E rev(Ca) = >+90 mV and E rev (Na) = +60 mV. I SOC in HSG cells showed weaker rectification with E rev(Ca) = +25 mV and E rev(Na) = +10 mV. HSY cells displayed a linear current with E rev = +5 mV, which was similar in Ca2+- or Na+-containing medium. pCa/pNa was >500, 40, and 4.6 while pCs /pNa was 0.1,1, and 1.3, for RBL, HSG, and HSY cells, respectively. Evidence for anomalous mole fraction behavior of Ca2+/Na+ permeation was obtained with RBL and HSG cells but not HSY cells. Additionally, channel inactivation with Ca2+ + Na+ or Na+ in the bath was different in the three cell types. In aggregate, these data demonstrate that distinct store-dependent cation currents are stimulated in RBL, HSG, and HSY cells. Importantly, these data suggest a molecular heterogeneity, and possibly cell-specific differences in the function, of these channels.This revised version was published online in June 2005 with a corrected cover date.  相似文献   

19.
Preload-induced changes of active tension and [Ca2+]i are “dissociated” in mammalian myocardium. This study aimed to describe the distinct effects of preload at low and physiological [Ca2+]o. Rat RV papillary muscles were studied in isometric conditions at 25‡C and 0.33 Hz at 1 mM (hypo-Ca group) and 2.5 mM [Ca2+]o (normal-Ca group). [Ca2+]i was monitored with fura-2/AM. Increase of preload caused a rise of active tension in hypo-Ca and normal-Ca groups whereas peak fluorescence rose significantly only at low [Ca2+]o. End-diastolic tension, end-diastolic level of fluorescence, time-to-peak tension, but not time-to-peak of Ca2+ transient, progressively increased with preload. Mechanical relaxation decelerated with preload while Ca2+ transient decay time decreased in the initial phase and increased in the late phase, resulting in a prominent “bump” configuration. The “bump” was assessed as a ratio of its area to the fluorescence trace area. It was a new finding that the preload-induced rise of this ratio was twice as large in hypo-Ca. Our results indicate that preload-induced changes in active tension and [Ca2+]i are “dissociated” in rat myocardium, with relatively higher expression at low [Ca2+]o. Ca-dependence of Ca-TnC association/dissociation kinetics is thought to be a main contributor to these preload-induced effects.  相似文献   

20.
Annexin A5 (AnxA5) binds to negatively charged phospholipid membranes in a Ca2+ dependent manner. Several studies already demonstrate that Mg2+ ions cannot induce the binding. In this paper, quartz crystal microbalance with dissipation monitoring (QCM-D), Brewster angle microscopy (BAM), polarization modulation infrared reflection absorption spectroscopy (PMIRRAS) and molecular dynamics (MD) were performed to elucidate the high specificity of Ca2+ versus Mg2+ on AnxA5 binding to membrane models. In the presence of Ca2+, AnxA5 showed a strong interaction with lipids, the protein is adsorbed mainly in α-helix under the DMPS monolayer, with an orientation of the α-helices axes slightly tilted with respect to the normal of the phospholipid monolayer as revealed by PMIRRAS. The Ca2+ ions interact strongly with the phosphate group of the phospholipid monolayer. In the presence of Mg2+, instead of Ca2+, no interaction of AnxA5 with lipids was detected. Molecular dynamics simulations allow us to explain the high specificity of calcium. Ca2+ ions are well exposed and surrounded by labile water molecules at the surface of the protein, which then favour their binding to the phosphate group of the membrane, explaining their specificity. To the contrary, Mg2+ ions are embedded in the protein structure, with a smaller number of water molecules strongly bound. We conclude that the embedded Mg2+ ions inside the AnxA5 structure are not able to link the protein to the phosphate group of the phospholipids for this reason.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号