首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Endobiotic bacteria colonize the tentacles of cnidaria. This paper provides first insight into the bacterial spectrum and its potential of pathogenic activities inside four cnidarian species. Sample material originating from Scottish waters comprises the jellyfish species Cyanea capillata and C. lamarckii, hydrozoa Tubularia indivisa and sea anemone Sagartia elegans. Mixed cultures of endobiotic bacteria, pure cultures selected on basis of haemolysis, but also lyophilized samples were prepared from tentacles and used for DGGE-profiling with subsequent phylogenetic analysis of 16S rDNA fragments. Bacteria were detected in each of the cnidarian species tested. Twenty-one bacterial species including four groups of closely related organisms were found in culture material. The species within these groups could not be differentiated from each other (one group of Pseudoalteromonas spp., two groups of Shewanella spp., one group of Vibrio spp.). Each of the hosts exhibits a specific endobacterial spectrum. Solely Cyanea lamarckii harboured Moritella viscosa. Only in Cyanea capillata, members of the Shewanella group #2 and the species Pseudoalteromonas arctica, Shewanella violacea, Sulfitobacter pontiacus and Arcobacter butzleri were detected. Hydrozoa Tubularia indivisa provided an amazingly wide spectrum of nine bacterial species. Exclusively, in the sea anemone Sagartia elegans, the bacterial species P. aliena was found. Overall eleven bacterial species detected were described recently as novel species. Four 16S rDNA fragments generated from lyophilized material displayed extremely low relationship to their next neighbours. These organisms are regarded as members of the endobiotic “terra incognita”. Since the origin of cnidarian toxins is unclear, the possible pathogenic activity of endobiotic bacteria has to be taken into account. Literature data show that their next neighbours display an interesting diversity of haemolytic, septicaemic and necrotic actions including the production of cytotoxins, tetrodotoxin and R-toxin. Findings of haemolysis tests support the literature data. The potential producers are Endozoicimonas elysicola, Moritella viscosa, Photobacterium profundum, P. aliena, P. tetraodonis, Shewanella waksmanii, Vibrio splendidus, V. aestuarius, Arcobacter butzleri.  相似文献   

2.
The SEM investigation of nudibranch cerata material exhibits endobacterial morphotypes found in 12 out of 13 species tested: Aeolidia papillosa, Berghia caerulescens, Coryphella brownii, Coryphella lineata, Coryphella verrucosa, Cuthona amoena, Facelina coronata, Flabellina pedata, Dendronotus frondosus, Doto coronata, Tritonia plebeia and Janolus cristatus. Endobacteria could not be detected inside Tritonia hombergi. Endobacterial morphology found inside nudibranch species was compared to bacterial morphotypes detected earlier in tentacles of cnidarian species. SEM micrographs show endobacterial analogy among nudibranch species, but also similarity to cnidarian endobacteria investigated earlier. Of course, morphological data of microbes do not allow their identification. However, since most of these nudibranch species prey on cnidaria, it cannot be excluded that many of the endobacteria detected inside nudibranch species may originate from their cnidarian prey. Our previous data describing genetic affiliation of endobacteria from nudibranchian and cnidarian species support this assumption. Dominant coccoid endobacteria mostly exhibit smooth surface and are tightly packed as aggregates and/or wrapped in envelopes. Such bacterial aggregate type has been described previously in tentacles of the cnidarian species Sagartia elegans. Similar coccoid bacteria, lacking envelopes were also found in other nudibranch species. A different type of coccoid bacteria, characterized by a rough surface, was detected inside cerata of the nudibranch species Berghia caerulescens, and surprisingly, inside tentacles of the cnidarian species Tubularia indivisa. In contrast to cnidarian endobacteria, rod-shaped microorganisms are largely absent in nudibranch cerata.  相似文献   

3.
4.
Abstract. Ceratal autotomy by the aeolid nudibranch Phidinna crassicornis is common in the field and was induced in the laboratory by mechanical and predatory stimuli. The ceras detaches from the body wall along an autotomy plane located at its basal constriction. Cerata released copious amounts of mucus during autotomy and exhibited a prolonged writhing response that continued for several hours after detachment. Regeneration of cerata autotomized in the field and in the laboratory was documented. Four days after autotomy, regenerating cerata appeared as small protuberances. By day 24 the regenerates acquired their mature structural organisation and vivid colour. The cerata subsequently increased in length and diameter and were indistin‐guishable from surrounding cerata by 41 to 43 days after autotomy. Regeneration rates of cerata induced to autotomize in the laboratory and regeneration of cerata autotomized in the field were similar, averaging 0.08 and 0.067 mdday, respectively. The sequence of morphological events involved with regeneration following experimental and natural induction of autotomy was identical. The kelp crab Pugettia productn induced autotomy by holding cerata with its chelae. This crab also fed on autotomized cerata and consumed locomotory and ceratal mucus. Ceratal autotomy may be an important mechanism of escape from this predatory crustacean. Other potential predators including hermit crabs and tidepool sculpins did not elicit defensive behaviour in P. crussicornis. Nematocysts were present in the enidosacs and their role in defense was investigated. Fired nematocysts were observed in podia of the asteroid Crossaster papposus following ceratal contact but were not seen in the podia of Pycnopodia helianthoides in a similar trial. For P. crassicornis, the cnidosacs may function primarily as a storage device for safe sequestering of nematoeysts that could pose a threat to the digestive system. They did not play a major defensive role against the predators tested, but may be important in the field against other predators.  相似文献   

5.
Animals have evolved diverse mechanisms to protect themselves from predators. Although such defenses are typically generated endogenously, some species have evolved the ability to acquire defenses by sequestering defensive chemicals or structures from other species. Chemical sequestration is widespread among animals, but the ability to sequester entire structures, such as organelles, appears to be rare. Here, we review information on the sequestration of functional nematocysts, the stinging organelles produced by Cnidaria, by divergent predators. Nematocyst sequestration has evolved multiple times, having been documented in Ctenophora, Acoelomorpha, Platyhelminthes, and Mollusca. For each of these phyla, we review the phylogenetic distribution, mechanisms, and possible functions of nematocyst sequestration. We estimate that nematocyst sequestration has evolved 9–17 times across these four phyla. Although data on the mechanism of sequestration remain limited, similarities across several groups are evident. For example, in multiple groups, nematocysts are transported within cells from the gut to peripheral tissues, and certain types of nematocysts are selectively sequestered over others, suggesting convergent evolution in some aspects of the sequestration process across phyla. Similarly, although the function of nematocyst sequestration has not been well documented, several studies do suggest that the nematocysts sequestered by these groups are effective for defense. We highlight several traits that are common to Ctenophora, Acoelomorpha, Platyhelminthes, and Mollusca and suggest hypotheses for how these traits could have played a role in the evolution of nematocyst sequestration. Finally, we propose a generalized working model for the steps that may lead to the evolution of nematocyst sequestration and discuss important areas for future research.  相似文献   

6.
S Nemec 《Plant and Soil》1985,84(1):133-137
Summary Four sterol inhibiting fungicides, two general biocides, and three nonfumigant nematicides were tested for their activity against the mycorrhizal fungi,Glomus intraradicas orG. mosseae. Of the four fungicides, propiconazole was the most inhibitory and triforine the least. These fungicides act systemically, and directly on the fungus in soil. One of the biocides, methylenebis-thiocyanate was toxic toG. mosseae, the other Bis-bromoacetoxy-2-Butene was not. All nematicides, aldicarb, fenamiphos and fensulfothion, had little or no inhibitory effect on the fungi.This paper reports the results of research only. Mention of a pesticide in this paper does not constitute a recommendation by the U.S. Department of Agriculture nor does it imply registration under FIFRA.  相似文献   

7.
The diet of four species of Antarctic cnidarians, two hydroids and two anthozoans, was investigated. One hydroid, Tubularia ralphii, and one anthozoan, Anthomastus bathyproctus, seem to basically consume zooplankton whereas the other hydroid species, Oswaldella antarctica, has a diet mainly based on the fine fraction of seston. The last cnidarian investigated, the stoloniferan alcyonacean, Clavularia cf. frankliniana, feeds mainly on resuspended material. The wide range of diets of these Antarctic cnidarians indicates opportunistic behaviour by feeding on different sources and taking advantage of the available food sources. Data related to low C/N ratios in the sediment and high NO2 concentrations in areas with dense communities of benthic suspension feeders, along with data on capture rates, lead us to hypothesize that these organisms play an important role in the recycling processes of organic matter in Antarctic benthic ecosystems.  相似文献   

8.
Polyp mimicry in a new species of aeolid nudibranch mollusc   总被引:1,自引:0,他引:1  
A new species of aeolid mollusc of the genus Cuthona (Tergipedidae) is described from New South Wales, Australia. It feeds on the tubulariid hydroid Zyzzyzus spongicola , and its cerata have developed two circlets of epithelial "tentacles" making the cerata remarkable mimics of the hydroid polyp on which they feed.  相似文献   

9.
It has been determined catalytic activity of cholinesterases for several insect species (Apanteles glomeratus L., Coccinella septempunctata L, Rhopalosiphumpadi L. and Pieris brassicae L.) that varies in norm from 57 to 199 mmol/hour per 1 gr. It has been calculated the constants of bimolecular interaction (Kii) for insecticides Aztek, Mavric and Bi‐58 new with cholinesterase of the insects. It occurred to be the most sensitivity to Bi‐58 new is peculiar to this ferment in Coccinella 7‐punctata L. Kii (4.54 ± 0.23) 104; whereas cholinesterase of Rhopalosiphum padi L. is the least sensitive to Aztek ‐ Kii (2.9 ± 0.14) 105. Determination of anticholinesterase action coefficient has revealed the value of this indice 118.9 for the preparation Aztek in the system "Rhopalosiphum padi ‐Coccinella 7‐punctata”;. Supposedly, anticholinesterase activity of Aztek is the base of its mechanism action on above‐mentioned species of insects.  相似文献   

10.
Aeolid nudibranchs maintain nematocysts sequestered from their cnidarian prey for protection against predators. Selection for nematocyst incorporation is a function of diet and prey choice, but ratios vary among nudibranchs feeding on a given diet, indicating that other factors may be involved. It is proposed that the presence of predators influences nematocyst incorporation. Nematocyst uptake in the nudibranch Flabellina verrucosa collected from the southern Gulf of Maine was examined in response to various potential predators, including Crossaster papposus, Tautogolabrus adspersus, and Carcinus maenas. Nudibranchs in individual flow-through containers feeding on a diet of the hydroids Tubularia spp. and Obelia geniculata were subjected to tanks containing a predator, then their nematocyst distribution was examined. Although most of the changes over the experimental period were attributable to diet, F. verrucosa responded to both T. adspersus and C. papposus by significantly increasing microbasic mastigophore incorporation. No differential uptake was seen with C. maenas. Response was evident in the nudibranchs both for predators present in the collection area and for those with which they had no previous exposure, indicating that F. verrucosa modulates nematocyst incorporation in response to the presence of predators as well as to diet. A coevolution of nudibranchs and potential predators may govern changes in nematocyst uptake.  相似文献   

11.
Abstract

Traps were set for rodents and mustelids on five islands (Motukiekie, Moturua, Okahu, Urupukapuka, and Waewaetorea) in the eastern Bay of Islands in March 1984. Kiore (Rattus exulans) were caught on Moturua Island and Norway rats (R. norvegicus) on all five islands, but no mustelids were caught or seen. Kiore on Moturua Island were very scarce compared with other northern offshore islands, perhaps because of competition from Norway rats and the presence of stoats and cats. Kiore were breeding and young matured in the season of their birth. Norway rats were scarce and found mainly near the shoreline on four of the islands. On Waewaetorea Island they were plentiful and widespread despite the possible presence of stoats. About a third of the mature females were visibly pregnant. Average litter size was 6.9 embryos, and 44% of the parous females had borne two or three litters. Females first ovulated at 180 ± 5 g weight and 356 ± 5 mm total length on average. Males first produced sperm at 189 ± 7 g weight and 364 ± 4 mm total length. Most rats matured before reaching a tooth-wear age index of 5.  相似文献   

12.
Progress in understanding sensory and locomotory systems in Tritonia diomedea has created the potential for the neuroethological study of animal navigation in this species. Our goal is to describe the navigational behaviors to guide further work on how the nervous system integrates information from multiple senses to produce oriented locomotion. Observation of T. diomedea in its habitat has suggested that it uses water flow to navigate relative to prey, predators, and conspecifics. We test these hypotheses in the field by comparing slug orientation in time-lapse videos to flow direction in circumstances with and without prey, predators, or conspecifics upstream. T. diomedea oriented upstream both while crawling and after turning. This trend was strongest before feeding or mating; after feeding or mating, the slugs did not orient significantly to flow. Slugs turned downstream away from an upstream predator but did not react in control situations without an upstream predator. These data support the hypothesis that T. diomedea uses a combination of odors (or some other cue transported downstream) and water flow to navigate relative to prey, predators, and conspecifics. Understanding the context-dependent choice between upstream and downstream crawling in T. diomedea provides an opportunity for further work on the sensory integration underlying navigation behavior.  相似文献   

13.
Altogether 26 species of phloemophagous and xylophagous insects, 47 species of parasitoids, 14 species of predators and 7 species of inquilines were identified on the branches of Quercus cerris, Q. frainetto, Q. petraea and Q. robur, diameter 3–15 cm, at 24 sites in Serbia over the period 1992–1996. The greatest number of the identified species were taken from Q. petraea branches (66), followed by Q. cerris (49), Q. frainetto (48) and Q. robur (43). Among the identified phloemophagous and xylophagous insects, the most frequent and the most abundant species were Scolytus intricatus, Agrilus angustulus and Xylotrechus antilope. The most frequent and the most abundant parasitoid was Ecphylus silesiacus. In some samples, the species Entedon ergias, Cheiropachus quadrum and Dendrosoter protuberans were also among the more abundant parasitoids. The most significant predator was the species Tilloidea unifasciata, and the most significant inquilines were the species Poecilothrips albopictus and Asynapta pectoralis.  相似文献   

14.
The aim of this paper was to understand whether the endobacterium identified as Candidatus Glomeribacter gigasporarum has an effect on the biology of its host, the arbuscular mycorrhizal fungus Gigaspora margarita, through the study of the modifications induced on the fungal proteome and lipid profile. The availability of G. margarita cured spores (i.e. spores that do not contain bacteria), represented a crucial tool to enable the comparison between two fungal homogeneous populations in the presence and the absence of the bacterial components. Our results demonstrate that the endobacterial presence leads to a modulation of fungal protein expression in all the different conditions we tested (quiescent, germinating and strigolactone-elicited germinating spores), and in particular after treatment with a strigolactone analogue. The fungal fatty acid profile resulted to be modified both quantitatively and qualitatively in the absence of endobacteria, being fatty acids less abundant in the cured spores. The results offer one of the first comparative metabolic studies of an AM fungus investigated under different physiological conditions, reveal that endobacteria have an important impact on the host fungal activity, influencing both protein expression and lipid profile, and suggest that the bacterial absence is perceived by G. margarita as a stimulus which activates stress-responsive proteins.  相似文献   

15.
16.
TEM observations of catch tentacles revealed that the tentacle tip epidermis is filled with two size classes of mature holotrich nematocysts and a gland cell filled with electron-dense vesicles. Vesicle production is restricted to upper-middle and tentacle tip regions, whereas holotrich development occurs in the lower-middle and tentacle base regions. Thus, catch tentacles have a maturity gradient along their length, with mature tissues concentrated at the tentacle tip. Occasional feeding tentacle cnidae (microbasic p-mastigophores and basitrichs) and mucus gland cells occur in proximal portions of catch tentacles, but are phagocytized by amoeboid granulocytes and transported to the gastrodermis for further degradation. No feeding tentacle cnidae or mucus cells occur distally in catch tentacles. Unlike catch tentacles, feeding tentacles are homogeneous in structure along their length with enidocytes containing mature spirocysts, microbasic p-mastigophore or basitrich nematocysts distributed along the epithelial surface. Cnidoblasts are recessed beneath cnidocytes, occurring along the nerve plexus. Mucus gland cells and gland cells filled with electron-dense vesicles are present in feeding tentacles, distributed at the epithelial surface. Granular phagocytes are rare in the feeding tentacle tip, but common in the tentacle base.  相似文献   

17.
Assessing diet variability is of main importance to better understand the biology of bats and design conservation strategies. Although the advent of metabarcoding has facilitated such analyses, this approach does not come without challenges. Biases may occur throughout the whole experiment, from fieldwork to biostatistics, resulting in the detection of false negatives, false positives or low taxonomic resolution. We detail a rigorous metabarcoding approach based on a short COI minibarcode and two‐step PCR protocol enabling the “all at once” taxonomic identification of bats and their arthropod prey for several hundreds of samples. Our study includes faecal pellets collected in France from 357 bats representing 16 species, as well as insect mock communities that mimic bat meals of known composition, negative and positive controls. All samples were analysed using three replicates. We compare the efficiency of DNA extraction methods, and we evaluate the effectiveness of our protocol using identification success, taxonomic resolution, sensitivity and amplification biases. Our parallel identification strategy of predators and prey reduces the risk of mis‐assigning prey to wrong predators and decreases the number of molecular steps. Controls and replicates enable to filter the data and limit the risk of false positives, hence guaranteeing high confidence results for both prey occurrence and bat species identification. We validate 551 COI variants from arthropod including 18 orders, 117 family, 282 genus and 290 species. Our method therefore provides a rapid, resolutive and cost‐effective screening tool for addressing evolutionary ecological issues or developing “chirosurveillance” and conservation strategies.  相似文献   

18.
Interspecific competition is assumed to generate negative effects on coexisting species, possibly including slower population growth and lower survival. The field vole ( Microtus agrestis ) and the sibling vole ( M. rossiaemeridionalis ) are sympatric close relatives which compete for similar resources. Previous non-experimental studies suggest that the smaller sibling vole is a superior competitor, yet more vulnerable to predation than the larger field vole. We studied the effects of coexistence on population densities, reproductive parameters, and survival in these two species by means of experimentation in large, predator-free outdoor enclosures. While populations of both species reached higher densities in the absence of the other, field voles appeared to suffer more from interspecific competition than sibling voles. The proportion of young individuals in the population was higher in the sibling vole than in the field vole at the end of the experiment. The presence of a coexisting species reduced the survival of field voles. Sibling voles, on the other hand, appeared to suffer more from intraspecific competition than interspecific competition. On a population level, the sibling vole seems to be a superior competitor in the absence of predators due to better survival and possibly a higher reproductive capacity. However, predation probably has a profound influence on the interspecific dynamics of these two species indicating that in natural surroundings apparent competition (i.e. competition via shared predators) is stronger than direct competition.  相似文献   

19.
1. The ingestion rates of planktonic, mixotrophic cryptophytes in two perennially ice-covered Antarctic lakes in the McMurdo Dry Valleys, were investigated during the summer of 1997–1998.
2. In Lake Fryxell, which is meromictic, ingestion rates increased with depth in November and were highest in a cryptophyte maximum close to the chemocline. In Lake Hoare, which is unstratified and freshwater, there was no significant difference in ingestion rates with depth. In both lakes, the highest ingestion rates occurred in early summer, decreasing in December and January. Ingestion rates varied between 0.2 bacteria cell−1 h−1 and 3.6 bacteria cell−1 h−1.
3. During November, mixotrophic cryptophytes removed up to 13% of bacterial biomass day−1 and had a greater grazing impact than heterotrophic nanoflagellates (HNAN). As summer progressed, the grazing impact of cryptophytes and HNAN became similar.
4. The maximum depth of cryptophytes in Lake Fryxell was predated by a population of the ciliate Plagiocampa. Plagiocampa had an ingestion rate of 0.13–0.19 cryptophytes cell−1 h−1. The grazing impact on the cryptophyte community was insignificant. However, the ciliate appeared to be indulging in temporary mixotrophy, sequestering the cryptophytes for a number of weeks before digesting them.
5. It is suggested that mixotrophy is an important survival strategy in the extreme lake ecosystems of the McMurdo Dry Valleys.  相似文献   

20.
The prediction that single spider species (as exemplary generalist predators) limit associated prey populations to the same extent that species assemblages do was tested in a well controlled and replicated old field experiment involving the following treatments: (1) the natural spider assemblage (2) a numerically prominent web building spider, (3) a numerically prominent wandering spider, (4) a biomass prominent web-builder, and (5) a biomass prominent wandering spider. Pest insect numbers were significantly higher in spider removal controls than in any spider treament over the four month period of the study, both in terms of total numbers and per spider effects. The individual spider species, in general, showed reduced prey limitation effects relative to that of the spider assemblage, though the magnitudes of these differences were small when compared to those exhibited between the various treatments and the spider removal control. When insect numbers were partitioned according to taxa, no treatment was found to have limited the predaceous insects nor the phytophagous hemipterans. All treatments, however, showed significant limiting effects on the phytophagous homopterans, coleopterans, and dipterans in the old field system, and other taxa were significantly reduced in at least one treatment in addition to the spider assemblage as a whole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号