首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper examines the structural and mechanical properties of composite materials based on chitosan and micro- and nanoparticles of Na-montmorillonite and possibility of application for cultivation and targeted delivery of mesenchymal stem cells and regenerative cells. It's have been shown by addition of Na-montmorillonite biomaterial acquires stability of structural and mechanical properties in the sterilization process the handling of liquid media in cell culture. In vitro studies using dermal fibroblasts and adipose tissue mesenchymal stem cells demonstrated that this material has a set of properties to ensure matrix biocompatibility.  相似文献   

2.
The mechanical properties of single cells play important roles in regulating cell-matrix interactions, potentially influencing the process of mechanotransduction. Recent studies also suggest that cellular mechanical properties may provide novel biological markers, or "biomarkers," of cell phenotype, reflecting specific changes that occur with disease, differentiation, or cellular transformation. Of particular interest in recent years has been the identification of such biomarkers that can be used to determine specific phenotypic characteristics of stem cells that separate them from primary, differentiated cells. The goal of this study was to determine the elastic and viscoelastic properties of three primary cell types of mesenchymal lineage (chondrocytes, osteoblasts, and adipocytes) and to test the hypothesis that primary differentiated cells exhibit distinct mechanical properties compared to adult stem cells (adipose-derived or bone marrow-derived mesenchymal stem cells). In an adherent, spread configuration, chondrocytes, osteoblasts, and adipocytes all exhibited significantly different mechanical properties, with osteoblasts being stiffer than chondrocytes and both being stiffer than adipocytes. Adipose-derived and mesenchymal stem cells exhibited similar properties to each other, but were mechanically distinct from primary cells, particularly when comparing a ratio of elastic to relaxed moduli. These findings will help more accurately model the cellular mechanical environment in mesenchymal tissues, which could assist in describing injury thresholds and disease progression or even determining the influence of mechanical loading for tissue engineering efforts. Furthermore, the identification of mechanical properties distinct to stem cells could result in more successful sorting procedures to enrich multipotent progenitor cell populations.  相似文献   

3.
The capacity of mesenchymal stem cells for neural differentiation in vitro   总被引:4,自引:0,他引:4  
It has been shown that mesenchymal stem cells (MSCs) of bone marrow from newborn rabbits can be induced for neuronal differentiation. The epidermal growth factor (EGF) introduced in the culture at the rate of 2 ng/ml is able to promote differentiation of neurons from bone marrow mesenchymal stem cells in 27 days of cultivation. Differentiated cells were marked by monoclonal antibodies to 70 kDa neurofilaments. The data obtained show a possibility of using bone marrow stem cells in therapy of neurodegenerative diseases.  相似文献   

4.
Tissue damages or loss of organs often result in structural and metabolic changes that can cause serious complications. The therapeutic objective of tissue engineering (TE) is to recreate, regenerate or restore function of damaged tissue. TE is based on the coalescence of three components: a scaffold or matrix from natural or synthetic origin biodegradable or not, reparative cells and signals (hypoxia, mechanical stress, morphogens…). Articular cartilage, bone and blood vessels are tissues for which TE has progressed significantly, from basic research to clinical trials. If biomaterials must exhibit different properties depending on the tissue to regenerate, the cellular component of TE is mostly represented by stem cells notably adult mesenchymal stem cells harvested from bone marrow or adipose tissue. In recent years, progress has been made in our understanding of the biological mechanisms that govern stem cell differentiation and in the development of materials with controlled physicochemical and biological properties. However, many technological barriers and regulations concerns have to be overcome before tissue engineering enters into the therapeutic arsenal of regenerative medicine. This review aims at highlighting the progress in the use of stem cells for engineering osteoarticular and vascular tissues.  相似文献   

5.
6.
Therapies using adult stem cells often require mechanical manipulation such as injection or incorporation into scaffolds. However, force-induced rupture and mechanosensitivity of cells during manipulation is largely ignored. Here, we image cell mechanical structures and perform a biophysical characterization of three different types of human adult stem cells: bone marrow CD34+ hematopoietic, bone marrow mesenchymal and perivascular mesenchymal stem cells. We use micropipette aspiration to characterize cell mechanics and quantify deformation of subcellular structures under force and its contribution to global cell deformation. Our results suggest that CD34+ cells are mechanically suitable for injection systems since cells transition from solid- to fluid-like at constant aspiration pressure, probably due to a poorly developed actin cytoskeleton. Conversely, mesenchymal stem cells from the bone marrow and perivascular niches are more suitable for seeding into biomaterial scaffolds since they are mechanically robust and have developed cytoskeletal structures that may allow cellular stable attachment and motility through solid porous environments. Among these, perivascular stem cells cultured in 6% oxygen show a developed cytoskeleton but a more compliant nucleus, which can facilitate the penetration into pores of tissues or scaffolds. We confirm the relevance of our measurements using cell motility and migration assays and measure survival of injected cells. Since different types of adult stem cells can be used for similar applications, we suggest considering mechanical properties of stem cells to match optimal mechanical characteristics of therapies.  相似文献   

7.
Substances that enhance the migration of mesenchymal stem cells to damaged sites have the potential to improve the effectiveness of tissue repair. We previously found that ethanol extracts of Mallotus philippinensis bark promoted migration of mesenchymal stem cells and improved wound healing in a mouse model. We also demonstrated that bark extracts contain cinnamtannin B-1, a flavonoid with in vitro migratory activity against mesenchymal stem cells. However, the in vivo effects of cinnamtannin B-1 on the migration of mesenchymal stem cells and underlying mechanism of this action remain unknown. Therefore, we examined the effects of cinnamtannin B-1 on in vivo migration of mesenchymal stem cells and wound healing in mice. In addition, we characterized cinnamtannin B-1-induced migration of mesenchymal stem cells pharmacologically and structurally. The mobilization of endogenous mesenchymal stem cells into the blood circulation was enhanced in cinnamtannin B-1-treated mice as shown by flow cytometric analysis of peripheral blood cells. Whole animal imaging analysis using luciferase-expressing mesenchymal stem cells as a tracer revealed that cinnamtannin B-1 increased the homing of mesenchymal stem cells to wounds and accelerated healing in a diabetic mouse model. Additionally, the cinnamtannin B-1-induced migration of mesenchymal stem cells was pharmacologically susceptible to inhibitors of phosphatidylinositol 3-kinase, phospholipase C, lipoxygenase, and purines. Furthermore, biflavonoids with similar structural features to cinnamtannin B-1 also augmented the migration of mesenchymal stem cells by similar pharmacological mechanisms. These results demonstrate that cinnamtannin B-1 promoted mesenchymal stem cell migration in vivo and improved wound healing in mice. Furthermore, the results reveal that cinnamtannin B-1-induced migration of mesenchymal stem cells may be mediated by specific signaling pathways, and the flavonoid skeleton may be relevant to its effects on mesenchymal stem cell migration.  相似文献   

8.
Mesenchymal stem cells: a promising candidate in regenerative medicine   总被引:7,自引:0,他引:7  
Mesenchymal stem cells were initially characterized as plastic adherent, fibroblastoid cells. In recent years, there has been an increasing focus on mesenchymal stem cells since they have great plasticity and are potential for therapeutic applications. Mesenchymal stem cells or mesenchymal stem cell-like cells have been shown to reside within the connective tissues of most organs. These cells can differentiate into osteogenic, adipogenic and chondrogenic lineages under appropriate conditions. A number of reports have also indicated that these cells possess the capacity to trans-differentiate into epithelial cells and lineages derived from the neuro-ectoderm, and in addition, mesenchymal stem cells can migrate to the sites of injury, inflammation, and to tumors. These properties of mesenchymal stem cells make them promising candidates for use in regenerative medicine and may also serve as efficient delivery vehicles in site-specific therapy.  相似文献   

9.
Mesenchymal stem cells have shown regenerative properties in many tissues. This feature had originally been ascribed to their multipotency and thus their ability to differentiate into tissue-specific cells. However, many researchers consider the secretome of mesenchymal stem cells the most important player in the observed reparative effects of these cells. In this review, we specifically focus on the potential neuroregenerative effect of mesenchymal stem cells, summarize several possible mechanisms of neuroregeneration and list key factors mediating this effect. We illustrate examples of mesenchymal stem cell treatment in central nervous system disorders including stroke, neurodegenerative disorders (such as Parkinson's disease, Huntington's disease, multiple system atrophy and cerebellar ataxia) and inflammatory disease (such as multiple sclerosis). We specifically highlight studies where mesenchymal stem cells have entered clinical trials.  相似文献   

10.
Koh BI  Kang Y 《EMBO reports》2012,13(5):412-422
Several bone marrow-derived cells have been shown to promote tumour growth and progression. These cells can home to the primary tumour and become active components of the tumour microenvironment. Recent studies have also identified bone marrow-derived cells—such as mesenchymal stem cells and regulatory T cells—as contributors to cancer metastasis. The innate versatility of these cells provides diverse functional aid to promote malignancy, ranging from structural support to signal-mediated suppression of the host immune response. Here, we review the role of mesenchymal stem cells and regulatory T cells in cancer metastasis. A better understanding of the bipolar nature of these bone marrow-derived cells in physiological and malignant contexts could pave the way for new therapeutics against metastatic disease.  相似文献   

11.
The management of osteochondral defects of articular cartilage, whether from trauma or degenerative disease, continues to be a significant challenge for Orthopaedic surgeons. Current treatment options such as abrasion arthroplasty procedures, osteochondral transplantation and autologous chondrocyte implantation fail to produce repair tissue exhibiting the same mechanical and functional properties of native articular cartilage. This results in repair tissue that inevitably fails as it is unable to deal with the mechanical demands of articular cartilage, and does not prevent further degeneration of the native cartilage. Mesenchymal stem cells have been proposed as a potential source of cells for cell-based cartilage repair due to their ability to self-renew and undergo multi-lineage differentiation. This proposed procedure has the advantage of not requiring harvesting of cells from the joint surface, and its associated donor site morbidity, as well as having multiple possible adult donor tissues such as bone marrow, adipose tissue and synovium. Mesenchymal stem cells have multi-lineage potential, but can be stimulated to undergo chondrogenesis in the appropriate culture medium. As the majority of work with mesenchymal stem cell-derived articular cartilage repair has been carried out in vitro and in animal studies, more work still has to be done before this technique can be used for clinical purposes. This includes realizing the ideal method of harvesting mesenchymal stem cells, the culture medium to stimulate proliferation and differentiation, appropriate choice of scaffold incorporating growth factors directly or with gene therapy and integration of repair tissue with native tissue.  相似文献   

12.
Mesenchymal stem cells, due to their characteristics are ideal candidates for cellular therapy. Currently, in culture these cells are defined by their adherence to plastic, specific surface antigen expression and multipotent differentiation potential. However, the in vivo identification of mesenchymal stem cells, before culture, is not so well established. Pre-culture identification markers would ensure higher purity than that obtained with selection based on adherence to plastic. Up until now, CD271 has been described as the most specific marker for the characterization andpurification of human bone marrow mesenchymal stem cells. This marker has been shown to be specifically expressed by these cells. Thus, CD271 has been proposed as a versatile marker to selectively isolated and expand multipotent mesenchymal stem cells with both immunosuppressive and lymphohematopoietic engraftment-promoting properties. This review focuses on this marker, specifically on identification of mesenchymal stem cells from different tissues. Literature revision suggests that CD271 should not be defined as a universal marker to identify mesenchymal stem cells before culture from different sources. In the case of bone marrow or adipose tissue, CD271 could be considered a quite suitable marker; however this marker seems to be inadequate for the isolation of mesenchymal stem cells from other tissues such as umbilical cord blood or wharton’s jelly among others.  相似文献   

13.
There is significant potential for the use of adult mesenchymal stem cells in regenerating musckuloskeletal tissues. The sources of these stem cells discussed in this review are bone marrow, blood, adipose tissue, synovium, periosteum & cartilage. Adult mesenchymal stem cells of bone marrow origin are the cells which are heavily investigated in many studies and have been shown capable of producing a variety of connective tissues especially cartilage and bone. It has recently been suggested that bone marrow derived mesenchymal stem cells originate from microvascular pericytes, and, indeed, many of the tissues from which stem cells have been isolated have good vascularisation and they may give a varied source of cells for future treatments. Clinical trials have shown that these cells are able to be successfully used to regenerate tissues with good clinical outcome. Other sources are showing promise, however, is yet to be brought to the clinical level in humans.  相似文献   

14.
Mesenchymal stem cells were isolated from the bone marrow of rats and differentiated to provide a functional substitute for slow growing Schwann cells for peripheral nerve regeneration. To assess the properties of the differentiated mesenchymal stem cell, the cells were co-cultured with dorsal root ganglia and the secretion of the neurotrophic factors and the neurite outgrowth was evaluated. The neurite outgrowth of the dorsal root ganglia neurons was enhanced in co-culture with the differentiated stem cells compared to the undifferentiated stem cells. Differentiated stem cells like Schwann cells were responsible for the stimulation of longer and branched neurites. Using enzyme-linked immunosorbant assays and blocking antibodies, we have shown that this effect is due to the release of brain derived neurotrophic factor and nerve growth factor, which were up-regulated in differentiated mesenchymal stem cells following co-culture. The relevance of the tyrosine kinase receptors was confirmed by the selective tyrosine kinase inhibitor, K252a which abolished the neurite outgrowth of the dorsal root ganglia neurons when co-cultured with the differentiated mesenchymal stem cells similar to Schwann cells. The results of the study further support the notion that mesenchymal stem cells can be differentiated and display trophic influences as those of Schwann cells.  相似文献   

15.
Most of the researchers attribute amniotic fluid stem cells (AF SCs) to mesenchymal stem cells (MSCs). However, AF SCs express both mesenchymal and epithelial markers, which distinguishes them from postnatal MSCs. Cultivation in the three-dimensional (3D) matrix provides a different look at the nature of the cells. We showed that in 3D collagen gel AF SCs form epithelial structures (tubules and cysts). The active contraction of the gel during the first days of cultivation, which is characteristic of mesenchymal cells, does not occur. Electron microscopic study showed that adherent junctions typical to epithelial cells are formed between AF SCs. On the other hand, during culturing in the gel AF SCs continue to express MSCs markers. Thus, AF SCs may be not true mesenchymal cells because they can display properties of epithelial cells. Perhaps these cells undergo epithelial-mesenchymal transition, a process which actively takes place during embryogenesis.  相似文献   

16.
It has been previously established that living cells, including mesenchymal stem cells, stiffen in response to elevation of substrate stiffness. This stiffening is largely attributed to the elevation of the tractions at the cell base that is associated with increases in cell spreading on more-rigid substrates. We show here, surprisingly, that mouse embryonic stem cells (ESCs) do not stiffen when substrate stiffness increases. As shown recently, these cells do not increase spreading on more-rigid substrates either. However, these ESCs do increase their basal tractions as substrate stiffness increases. We conclude that these ESCs exhibit mechanical behaviors distinct from those of mesenchymal stem cells and of terminally differentiated cells, and decouple its apical cell stiffness from its basal tractional stresses during the substrate rigidity response.  相似文献   

17.
A novel mathematical model to simulate mesenchymal stem cells differentiation into specialized cells is proposed. The model is based upon material balances for extracellular matrix compounds, growth factors and nutrients coupled with a mass-structured population balance describing cell growth, proliferation and differentiation. The proposed model is written in a general form and it may be used to simulate a generic cell differentiation pathway occurring in vivo or during in vitro cultivation when specific growth factors are used. Literature experimental data concerning the differentiation of mesenchymal stem cells into chondrocytes in terms of total DNA and glycosaminoglycan content are successfully compared with model results, thus demonstrating the validity of the proposed model as well as its predictive capability. A further test of the model capability is performed for the case of in vivo fracture healing during which mesenchymal stem cells differentiate into chondrocytes and osteoblasts. Considerations about the extension of the proposed model to different pathologies beside fracture healing are reported. Finally, sensitivity analysis of model parameters is also performed in order to clarify what mechanisms most strongly influence differentiation and the distribution of cell types.  相似文献   

18.
The plastic-adherent cells isolated from BM and other sources have come to be widely known as mesenchymal stem cells (MSC). However, the recognized biologic properties of the unfractionated population of cells do not seem to meet generally accepted criteria for stem cell activity, rendering the name scientifically inaccurate and potentially misleading to the lay public. Nonetheless, a bona fide MSC most certainly exists. To address this inconsistency between nomenclature and biologic properties, and to clarify the terminology, we suggest that the fibroblast-like plastic-adherent cells, regardless of the tissue from which they are isolated, be termed multipotent mesenchymal stromal cells, while the term mesenchymal stem cells is used only for cells that meet specified stem cell criteria. The widely recognized acronym, MSC, may be used for both cell populations, as is the current practice; thus, investigators must clearly define the more scientifically correct designation in their reports. The International Society for Cellular Therapy (ISCT) encourages the scientific community to adopt this uniform nomenclature in all written and oral communications.  相似文献   

19.
Biomimetic mineralization of collagen is an advantageous method to obtain resorbable collagen/hydroxy-apatite composites for application in bone regeneration. In this report, established procedures for mineralization of bovine collagen were adapted to a new promising source of collagen from salmon skin challenged by the low denaturation temperature. Therefore, in the first instance, variation of temperature, collagen concentration, and ionic strength was performed to reveal optimized parameters for fibrillation and simultaneous mineralization of salmon collagen. Porous scaffolds from mineralized salmon collagen were prepared by controlled freeze-drying and chemical cross-linking. FT-IR analysis demonstrated the mineral phase formed during the preparation process to be hydroxyapatite. The scaffolds exhibited interconnecting porosity, were sufficiently stable under cyclic compression, and showed elastic mechanical properties. Human mesenchymal stem cells were able to adhere to the scaffolds, cell number increased during cultivation, and osteogenic differentiation was demonstrated in terms of alkaline phosphatase activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号