首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Functional activities of the IL-2 receptor (IL-2R) beta chain exogenously expressed on lymphoid and non-lymphoid cells were examined in terms of phosphorylation of IL-2R beta and cell growth. Lymphoid MOLT-4 and its transfectants expressing IL-2R beta either alone or with IL-2R alpha chain were found to be rapidly phosphorylated predominantly at tyrosine residues of IL-2R beta and to be affected in their growth in an IL-2-dependent manner. In contrast, IL-2 induced neither phosphorylation of IL-2R beta nor cell growth in non-lymphoid transfectants derived from COS7, HeLa and L929, even though they acquired the IL-2 binding ability when coexpressed as IL-2R beta and IL-2R alpha. These results suggest that IL-2 induces activation of a tyrosine kinase possibly associated with IL-2R beta in a cell type-specific manner.  相似文献   

2.
We previously reported a molecule, p64, which was tentatively named the gamma chain, coprecipitable with the beta chain of human interleukin-2 receptor (IL-2R). The present study demonstrated that the gamma chain, as well as the beta chain expressed on IL-2-responsive cells, is phosphorylated on tyrosine residues in an IL-2-dependent manner in vivo and in vitro. The in vivo tyrosine phosphorylation of both chains was similarly induced within 1 min after IL-2 stimulation, and their in vitro tyrosine phosphorylation with the anti-IL-2R beta antibody-directed immunocomplex was also increased by treatment of cells with IL-2. These results suggest that a tyrosine kinase is associated with the beta gamma subunit complex, of which activation by IL-2 may result in transduction of intracellular signals.  相似文献   

3.
The regulation of kinase activity associated with insulin receptor by phosphorylation and dephosphorylation has been examined using partially purified receptor immobilized on insulin-agarose. The immobilized receptor preparation exhibits predominately tyrosine but also serine and threonine kinase activities toward insulin receptor beta subunit and exogenous histone. Phosphorylation of the insulin receptor preparation with increasing concentrations of unlabeled ATP, followed by washing to remove the unreacted ATP, results in a progressive activation of the receptor kinase activity when assayed in the presence of histone and [gamma-32P]ATP. A maximal 4-fold activation is achieved by prior incubation of receptor with concentrations of ATP approaching 1 mM. High pressure liquid chromatographic analysis of tryptic hydrolysates of the 32P-labeled insulin receptor beta subunit reveals three domains of phosphorylation (designated peaks 1, 2, and 3). Phosphotyrosine and phosphoserine residues are present in these three domains while peak 2 contains phosphothreonine as well. Thus, at least seven sites are available for phosphorylation on the beta subunit of the insulin receptor. Incubation of the phosphorylated insulin receptor with alkaline phosphatase at 15 degrees C results in the selective dephosphorylation of the phosphotyrosine residues on the beta subunit of the receptor while the phosphoserine and phosphothreonine contents are not affected. The dephosphorylation of the receptor is accompanied by a marked 65% inhibition of the receptor kinase activity. Almost 90% of the decrease in [32P]phosphate content of the receptor after alkaline phosphatase treatment is accounted for by a decrease in phosphotyrosine content in peak 2, while very small decreases are observed in peaks 1 and 3, respectively. These results demonstrate that the extent of phosphorylation of tyrosine residues in receptor domain 2 closely parallels the receptor kinase activity state, suggesting phosphorylation of this domain may play a key role in regulating the insulin receptor tyrosine kinase.  相似文献   

4.
Interaction of interleukin 2 (IL2) with its high affinity membrane receptor complex (IL2R) is sufficient to induce proliferation of T lymphocytes. However, the biochemical mechanisms by which IL2 induces this process remain unresolved. The IL2R complex consists of at least two distinct polypeptides that bind IL2, a 75-kDa intermediate affinity subunit (IL2R beta) and a 55-kDa low affinity subunit (IL2R alpha). As indicated by Western blotting with anti-phosphotyrosine-specific antibodies and confirmed by phosphoamino acid analysis, we now demonstrate that interaction of the T cell growth factor interleukin 2 (IL2) with its high affinity receptor on IL2-sensitive human peripheral blood lymphoblasts induces tyrosine phosphorylation of proteins of 92, 80, 78, 70-75, and 57 kDa. IL2 induced tyrosine phosphorylation in YT 2C2 cells which express only the 75-kDa intermediate affinity IL2 binding molecule (IL2R beta) but not in cells which either express only the 55-kDa low affinity IL2 receptor molecule (IL2R alpha) or no IL2-binding sites. Therefore, IL2R beta, in the absence of IL2R alpha, appears sufficient to transduce the transmembrane signal leading to tyrosine phosphorylation. Two different antibodies reactive with phosphotyrosine specifically immunoprecipitated IL2R beta cross-linked to radiolabeled IL2. These findings suggest that IL2R beta is a substrate for the tyrosine kinase which is activated by IL2 binding to its receptor. Thus, like several other growth factor receptors, activation of the IL2R results in an increase in tyrosine phosphorylation with the receptor itself serving as one substrate.  相似文献   

5.
The molecular mechanism of erythroid differentiation has been still ill-defined. In this study, we introduced a human interleukin-2 receptor (IL-2R) beta chain cDNA into ELM-I-1 cells which differentiated into hemoglobin-positive cells in the presence of erythropoietin (Epo), and established the transformant which expressed IL-2R beta chain. In this transformant, we revealed that IL-2 induced erythroid differentiation and the same pattern of tyrosine phosphorylation as Epo. These data suggest that tyrosine phosphorylation is involved in signal transduction pathway of erythroid differentiation. It is also implicated that the Epo and IL-2 receptor system share a common signal transduction pathway.  相似文献   

6.
Hematopoietic cell phosphatase (HCP) is a tyrosine phosphatase with two Src homology 2 (SH2) domains that is predominantly expressed in hematopoietic cells, including cells whose growth is regulated by interleukin-3 (IL-3). The potential effects of HCP on IL-3-induced protein tyrosine phosphorylation and growth regulation were examined to assess the role of HCP in hematopoiesis. Our studies demonstrate that, following ligand binding, HCP specifically associates with the beta chain of the IL-3 receptor through the amino-terminal SH2 domain of HCP, both in vivo and in vitro, and can dephosphorylate the receptor chain in vitro. The effects of increasing or decreasing HCP levels in IL-3-dependent cells were assessed with dexamethasone-inducible constructs containing an HCP cDNA in sense and antisense orientations. Increased HCP levels were found to reduce the levels of IL-3-induced tyrosine phosphorylation of the receptor and to dramatically suppress cell growth. Conversely, decreasing the levels of HCP increased IL-3-induced tyrosine phosphorylation of the receptor and marginally increased growth rate. These results support a role for HCP in the regulation of hematopoietic cell growth and begin to provide a mechanistic explanation for the dramatic effects that the genetic loss of HCP, which occurs in motheaten (me) and viable motheaten (mev) mice, has on hematopoiesis.  相似文献   

7.
IL-7 induction of protein tyrosine phosphorylation was examined in an IL-7-dependent thymocyte cell line, D1, which was generated from a p53-/- mouse. Anti-phosphotyrosine antibody was used both to immunoprecipitate and Western blot, and showed that IL-7 induced tyrosine phosphorylation of a protein with a molecular weight of approximately 200 kDa. The P200 band was purified by reversed-phase high-performance liquid chromatography. Amino acid sequencing by mass spectrometry revealed three peptides identical to rat clathrin heavy chain (CHC) 1 (192 kDa), and this was confirmed by blotting with an anti-clathrin antibody. Stimulation of normal pro-T cells by IL-7 showed an increased tyrosine phosphorylation of clathrin heavy chain. Tyrosine phosphorylation of clathrin heavy chain was strongly induced by IL-7 and to a lesser extent by IL-4, while no effect could be observed with the cytokines IL-2, IL-9 and IL-15, whose receptors share the gammac chain. Phosphorylation of clathrin heavy chain was found to be sensitive to Jak3 inhibitors but not to Src inhibitors. Clathrin is involved in internalization of many receptors, and its phosphorylation by IL-7 stimulation may affect the internalization of the IL-7 receptor.  相似文献   

8.
9.
Two tyrosine phosphorylation sites in the human platelet-derived growth factor receptor (PDGFR) beta subunit have been mapped previously to tyrosine (Y)751, in the kinase insert, and Y857, in the kinase domain. Y857 is the major site of tyrosine phosphorylation in PDGF-stimulated cells. To evaluate the importance of these phosphorylations, we have characterized the wild-type (WT) and mutant human PDGF receptor beta subunits in dog kidney epithelial cells. Replacement of either Y751 or Y857 with phenylalanine (F) reduced PDGF-stimulated DNA synthesis to approximately 50% of the WT level. A mutant receptor with both tyrosines mutated was unable to initiate DNA synthesis, as was a kinase-inactive mutant receptor. Transmodulation of the epidermal growth factor receptor required Y857 but not Y751. We also tested the effects of phosphorylation site mutations on PDGF-stimulated receptor kinase activity. PDGF-induced tyrosine phosphorylation of two cellular proteins, phospholipase C gamma 1 (PLC gamma 1) and the GTPase activating protein of Ras (GAP), was assayed in epithelial cells expressing each of the mutant receptors. Tyrosine phosphorylation of GAP and PLC gamma 1 was reduced markedly by the F857 mutation but not significantly by the F751 mutation. Reduced kinase activity of F857 receptors was also evident in vitro. Immunoprecipitated WT receptors showed a two- to fourfold increase in specific kinase activity if immunoprecipitated from PDGF-stimulated cells. The F751 receptors showed a similar increase in activity, but F857 receptors did not. Our data suggest that phosphorylation of Y857 may be important for stimulation of kinase activity of the receptors and for downstream actions such as epidermal growth factor receptor transmodulation and mitogenesis.  相似文献   

10.
Interleukin-12(IL-12) promotes cell-mediated Th1 responses and production of IFN-gamma that downregulates IgE production. The signal of IL-12 is transduced through the IL-12 receptor (IL-12R) and Stat4. Twenty-four of 75 atopic individuals with high levels of IgE showed insufficient IFN-gamma production by peripheral blood mononuclear cells (PBMCs) following stimulation with IL-12 but not that with phytohemagglutinin (PHA). Interestingly, 10 of the above 24 subjects were found to be heterozygous for truncated (2496 del 91) or missense (1577 A to G and 2799 A to G) mutations of IL-12R beta2 chain gene (IL-12R beta2). Insufficient phosphorylation of Stat4 was also demonstrated in these 10 individuals. This is the first report showing that reduced IFN-gamma production following IL-12 stimulation is associated with the heterozygous IL-12R beta2 mutations in atopic subjects.  相似文献   

11.
The ability of insulin to promote phosphorylation of the human beta 2-adrenergic receptor (beta 2AR) was assessed in Chinese hamster fibroblasts transfected with beta 2AR cDNA. Phosphotyrosine residues were detected in purified beta 2AR using a polyclonal anti-phosphotyrosine antibody and by phosphoamino acid analysis following metabolic labelling with inorganic 32P. Treatment of the cells with insulin induced a 2.4-fold increase in the phosphotyrosine content of the receptor. The insulin-promoted phosphorylation of the beta 2AR was accompanied by an increase in the beta-adrenergic-stimulated adenyl cyclase activity. Substitution of a phenylalanine residue for tyrosine-141 completely prevented both the increased tyrosine phosphorylation and the enhanced responsiveness of the beta 2AR promoted by insulin treatment. Mutation of three other tyrosines located in the cytoplasmic domain of the receptor, tyrosine-366, tyrosine-350 and tyrosine-354, did not abolish the insulin-promoted tyrosine phosphorylation. Taken together, these results suggest that insulin promotes phosphorylation of the beta 2AR on tyrosine-141 and that such phosphorylation leads to a supersensitization of the receptor.  相似文献   

12.
Occupancy of the T cell antigen receptor triggers a complex set of events that culminate in cellular activation. It is clear that tyrosine kinases play important roles in this process. The zeta subunit of the T cell antigen receptor is a 16-kDa transmembrane structure that exists primarily as a disulfide-linked homodimer. On receptor activation, a subset of zeta molecules undergo tyrosine phosphorylation. To evaluate this process and the role of zeta phosphorylation in T cell activation, site-specific mutagenesis of the intracytoplasmic tyrosines of zeta has been carried out. Analysis of cells expressing these mutant zeta subunits demonstrated that multiple tyrosines underwent phosphorylation in response to receptor engagement, and that the four most carboxyl tyrosines were most crucial to this process. Despite abnormalities in phosphorylation induced by the mutations, lymphokine production in these transfectants was unaffected. Hence, although zeta is a prominent substrate for a receptor-activated tyrosine kinase, neither the mutation of individual tyrosines nor the alteration of the phosphorylation state of the molecule substantively affected the coupling of T cell receptor activation to lymphokine production. These findings raise questions regarding the role of zeta phosphorylation in T cell activation.  相似文献   

13.
The addition of interleukin 2 (IL2) to the IL2-dependent murine cytotoxic T cell line CTTL-2 induced increased tyrosine phosphorylation of a protein with a molecular weight of 80,000 and, to a lesser extent, proteins with molecular weights of 130,000, 100,000, and 69,000. To correlate the stimulation of tyrosine phosphorylation with increased tyrosine kinase activity, cell-free phosphorylation assays were performed. Phosphotyrosine-containing proteins were purified from detergent-solubilized cell lysates by immunoprecipitation with anti-phosphotyrosine antibodies. The level of tyrosine kinase activity was determined by incorporation of [gamma-32P]ATP into the exogenous substrate histone H2B. IL2 treatment of cells increased H2B phosphorylation 10-fold when compared with nonstimulated cells. Phosphorylation was first detected after 2.5 min of incubation with physiologically relevant (100 pM) IL2 doses. To examine if tyrosine kinase activity was resident within the IL2 receptor complex, cell-free phosphorylation assays were performed with ligand-receptor complexes following cross-linking with IL2 and purification by immunoabsorption with an anti-IL2 antibody. Tyrosine kinase activity was found specifically associated with the IL2 receptor complex. These results indicate that the IL2 receptor complex contains a tyrosine kinase activity that is induced by IL2 binding and suggest that components of the complex may be a substrate of this activity.  相似文献   

14.
We identified previously a membrane molecule, p64, which co-precipitates with the IL-2R beta-chain in human T cells. We have now investigated the biologic significance of p64 in the formation of the functional IL-2R complex with cell lines transfected with cDNA of IL-2R alpha- and/or beta-chains. Two functional parameters associated with IL-2R, IL-2 binding ability and association of p64 with the beta-chain, were examined. Two subclones, MOLT beta-11 and MOLT beta-12, of an IL-2R beta cDNA-transfected MOLT4 clone expressed similar numbers of IL-2R beta molecules on cell surfaces and bound to IL-2 with intermediate affinity. However, the numbers of IL-2 binding sites were significantly lower than those of IL-2R beta molecules and considerably different between the two subclones. The amount of p64 co-precipitated with IL-2R beta was proportional to numbers of the IL-2 binding sites in the two subclones. In addition, neither p64 co-precipitation nor IL-2 binding was detected in HeLa and COS7 cells transfected with IL-2R beta, and no p64 precipitation was seen even in those transfectants with both IL-2R alpha and beta cDNAs, which bind to IL-2 with high affinity but are not able to transduce intracellular signals. These results suggest the possibility that p64 associates with IL-2R beta and has an important role in formation of the functional IL-2R complex.  相似文献   

15.
We report experiments to investigate the role of the physiologically relevant protein tyrosine kinase Lck in the ordered phosphorylation of the T-cell receptor zeta chain. Six synthetic peptides were designed based on the sequences of the immunoreceptor tyrosine-based activation motifs (ITAMs) of the zeta chain. Preliminary 1H-NMR studies of recombinant zeta chain suggested that it is essentially unstructured and therefore that peptide mimics would serve as useful models for investigating individual ITAM tyrosines. Phosphorylation kinetics were determined for each tyrosine by assaying the transfer of 32P by recombinant Lck on to each of the peptides. The rates of phosphorylation were found to depend on the location of the tyrosine, leading to the proposal that Lck phosphorylates the six zeta chain ITAM tyrosines in the order 1N (first) > 3N > 3C > 2N > 1C > 2C (last) as a result of differences in the amino-acid sequence surrounding each tyrosine. This proposal was then tested on cytosolic, recombinant T-cell receptor zeta chain. After in vitro phosphorylation by Lck, the partially phosphorylated zeta chain was digested with trypsin. Separation and identification of the zeta chain fragments using LC-MS showed, as predicted by the peptide phosphorylation studies, that tyrosine 1N is indeed the first to be phosphorylated by Lck. We conclude that differences in the amino-acid context of the six zeta chain ITAM tyrosines affect the efficiency of their phosphorylation by the kinase Lck, which probably contributes to the distinct patterns of phosphorylation observed in vivo.  相似文献   

16.
The platelet-derived growth factor (PDGF) beta receptor mediates mitogenic and chemotactic signals. Like other tyrosine kinase receptors, the PDGF beta receptor is negatively regulated by protein tyrosine phosphatases (PTPs). To explore whether T-cell PTP (TC-PTP) negatively regulates the PDGF beta receptor, we compared PDGF beta receptor tyrosine phosphorylation in wild-type and TC-PTP knockout (ko) mouse embryos. PDGF beta receptors were hyperphosphorylated in TC-PTP ko embryos. Fivefold-higher ligand-induced receptor phosphorylation was observed in TC-PTP ko mouse embryo fibroblasts (MEFs) as well. Reexpression of TC-PTP partly abolished this difference. As determined with site-specific phosphotyrosine antibodies, the extent of hyperphosphorylation varied among different autophosphorylation sites. The phospholipase Cgamma1 binding site Y1021, previously implicated in chemotaxis, displayed the largest increase in phosphorylation. The increase in Y1021 phosphorylation was accompanied by increased phospholipase Cgamma1 activity and migratory hyperresponsiveness to PDGF. PDGF beta receptor tyrosine phosphorylation in PTP-1B ko MEFs but not in PTPepsilon ko MEFs was also higher than that in control cells. This increase occurred with a site distribution different from that seen after TC-PTP depletion. PDGF-induced migration was not increased in PTP-1B ko cells. In summary, our findings identify TC-PTP as a previously unrecognized negative regulator of PDGF beta receptor signaling and support the general notion that PTPs display site selectivity in their action on tyrosine kinase receptors.  相似文献   

17.
Insulin counterregulates catecholamine action at several levels, primarily in liver, fat, and adipose tissue. Herein we observe that expression of increased levels of beta(2)-adrenergic receptor increasingly inhibits insulin-stimulated phosphorylation of its primary downstream substrates (IRS-1,2). In Chinese hamster ovary cells, the insulin receptor phosphorylates dominantly Tyr(364) in the C-terminal cytoplasmic domain of the beta-receptor. A Y364A mutant form of the beta(2)-adrenergic, in contrast, loses it ability to inhibit insulin-stimulated phosphorylation of IRS-1,2. Upon phosphorylation, the C-terminal cytoplasmic domain of the beta(2)-adrenergic receptor demonstrates a potent inhibitory feedback action that can block both insulin-stimulated autophosphorylation of the insulin receptor and phosphorylation of IRS-1,2 in NIH mouse 3T3-L1 adipocyte membranes. Studies in vitro with purified insulin receptor and the C-terminal cytoplasmic domain of the beta(2)-adrenergic receptor demonstrate that the tyrosine-phosphorylated beta-receptor domain is a potent counterregulatory inhibitor of the insulin receptor tyrosine kinase.  相似文献   

18.
19.
IL-7 is a glycoprotein involved in the regulation of lymphocyte precursor growth. In addition, it has a comitogenic effect on mature T cells but not on mature B cells. The exact mechanism whereby IL-7R mediates these cell growth properties remains unknown. Because many growth factor receptor systems on various cell types transduce signals by activating a tyrosine kinase, we have studied here the effect of IL-7R ligation on protein tyrosine phosphorylation. We found that human rIL-7 consistently induced tyrosine phosphorylation of five major proteins, of 175, 155, 135, 110, and 85 kDa, and five minor proteins. The effect of human rIL-7 on tyrosine phosphorylation of these substrates was concentration and time dependent. One of the known substrates that is phosphorylated on tyrosine residues after binding of growth factors to their receptors is the phosphoinositide-specific phospholipase C. Several phospholipase C isozymes have been recently recognized; one isozyme, phospholipase C-gamma 1, was demonstrated to be phosphorylated rapidly after ligand binding to the platelet-derived growth factor receptor and the T cell Ag receptor. We show here that, in contrast to Ag receptor ligation, activation of IL-7R does not induce tyrosine phosphorylation on phospholipase C-gamma 1. Consistent with these results, human rIL-7 failed to increase phosphatidylinositol turnover and did not induce a rise in cytosolic free Ca2+ in the thymocytes, mature T cells, or pre-pre-B cells. The results indicate that the IL-7R mediates the activation of the tyrosine phosphorylation pathway but does not induce the phosphatidylinositol-phospholipase C pathway.  相似文献   

20.
The zeta subunit of the T cell receptor (TCR) is a prominent substrate for a TCR-activated tyrosine kinase. Tyrosine phosphorylation of the zeta subunit in response to antibody-mediated receptor cross-linking was synergized in permeabilized T cells by either of two non-hydrolyzable GTP analogues, guanosine 5'-[gamma-thio]triphosphate (GTP gamma S) or guanosine 5'-[beta, gamma-imido]triphosphate Gpp(NH)p. ATP analogues did not significantly affect antibody-induced tyrosine phosphorylation. Unlike the GTP analogues, the GDP analogue guanosine 5'-[beta-thio]diphosphate (GDP beta S) did not enhance phosphorylation of zeta. The effect induced by the GTP analogues required TCR occupancy and was independent of protein kinase C. Taken together these observations implicate a GTP-binding protein in the modulation of TCR-induced tyrosine phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号