首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The retinoblastoma tumor suppressor protein (RB) is a negative regulator of the cell cycle that inhibits both G(1) and S-phase progression. While RB-mediated G(1) inhibition has been extensively studied, the mechanism utilized for S-phase inhibition is unknown. To delineate the mechanism through which RB inhibits DNA replication, we generated cells which inducibly express a constitutively active allele of RB (PSM-RB). We show that RB-mediated S-phase inhibition does not inhibit the chromatin binding function of MCM2 or RPA, suggesting that RB does not regulate the prereplication complex or disrupt early initiation events. However, activation of RB in S-phase cells disrupts the chromatin tethering of PCNA, a requisite component of the DNA replication machinery. The action of RB was S phase specific and did not inhibit the DNA damage-mediated association of PCNA with chromatin. We also show that RB-mediated PCNA inhibition was dependent on downregulation of CDK2 activity, which was achieved through the downregulation of cyclin A. Importantly, restoration of cyclin-dependent kinase 2 (CDK2)-cyclin A and thus PCNA activity partially restored S-phase progression in the presence of active RB. Therefore, the data presented identify RB-mediated regulation of PCNA activity via CDK2 attenuation as a mechanism through which RB regulates S-phase progression. Together, these findings identify a novel pathway of RB-mediated replication inhibition.  相似文献   

2.
Control of proliferation by Bcl-2 family members   总被引:9,自引:0,他引:9  
The anti-proliferative effect of Bcl-2 acts mainly at the level of the G0/G1 phase of the cell cycle. Deletions and point mutations in the bcl-2 gene show that the anti-proliferative activity of Bcl-2, can in some cases, be dissociated from its anti-apoptotic function. This indicates that the effect of Bcl-2 on cell cycle progression can be a direct effect and not only a consequence of its anti-apoptotic activity. Bcl-2 appears to mediate its anti-proliferative effect by acting on both signal transduction pathways (NFAT, ERK) and on specific cell cycle regulators (p27, p130).  相似文献   

3.
The aim of the present study was to investigate bromodeoxyuridine (BrdU) uptake and coordinated distribution of proliferating cell nuclear antigen (PCNA) and p34-cdc2-kinase, two important proteins involved in cell cycle regulation and progression. Flow cytometric analysis of marker proteins in freshly plated mouse T-lymphoma cells (Yac-1 cells), using fluorescein isothiocyanate (FITC)-labeled specific antibodies, showed PCNA distributed throughout the cell cycle with increased intensity in S-phase. PCNA is essential for cells to cycle through S-phase and its synthesis is initiated during late G1-phase before incorporation of BrdU and remains high during active DNA replication. The intensity of PCNA fluorescence increases with the duration of incubation after plating. The cdc2-kinase was detectable in all phases of the cell cycle and the G2-M-phase appears to have the maximum concentrations. The cell cycle analysis of high dose colcemid (2 μg/ml) treated Yac-1 cells showed an aneuploid or hypodiploid population. Although the G2-M-phase seems to be the dominating population in aneuploid cells, the concentrations of cdc2-kinase were variable in this phase of cell cycle. The colcemid treatment at 25 ng/ml arrested 96% of cells in S-phase and G2-M-phase, but PCNA expression was evident in a portion of the cell population in G2-M-phase. Although cells blocked in M-phase seem to have high levels of cdc2-kinase, colcemid renders them inactive. From these data, it appears that the down regulation and/or inactivation of cdc2-kinase could be responsible for the colcemid arrest of cells in M-phase.  相似文献   

4.
5.
DNA damage binding protein 2 (DDB2) is a protein involved in the early step of DNA damage recognition of the nucleotide excision repair (NER) process. Recently, it has been suggested that DDB2 may play a role in DNA replication, based on its ability to promote cell proliferation. We have previously shown that DDB2 binds PCNA during NER, but also in the absence of DNA damage; however, whether and how this interaction influences cell proliferation is not known. In this study, we have addressed this question by using HEK293 cell clones stably expressing DDB2Wt protein, or a mutant form (DDB2Mut) unable to interact with PCNA. We report that overexpression of the DDB2Mut protein provides a proliferative advantage over the wild type form, by influencing cell cycle progression. In particular, an increase in the number of S-phase cells, together with a reduction in p21CDKN1A protein level, and a shorter cell cycle length, has been observed in the DDB2Mut cells. These results suggest that DDB2 influences cell cycle progression thanks to its interaction with PCNA.  相似文献   

6.
7.
The mitotic cell cycle in higher eukaryotes is of pivotal importance for organ growth and development. Here, we report that Elongator, an evolutionarily conserved histone acetyltransferase complex, acts as an important regulator of mitotic cell cycle to promote leaf patterning in Arabidopsis. Mutations in genes encoding Elongator subunits resulted in aberrant cell cycle progression, and the altered cell division affects leaf polarity formation. The defective cell cycle progression is caused by aberrant DNA replication and increased DNA damage, which activate the DNA replication checkpoint to arrest the cell cycle. Elongator interacts with proliferating cell nuclear antigen (PCNA) and is required for efficient histone 3 (H3) and H4 acetylation coupled with DNA replication. Levels of chromatin-bound H3K56Ac and H4K5Ac known to associate with replicons during DNA replication were reduced in the mutants of both Elongator and chromatin assembly factor 1 (CAF-1), another protein complex that physically interacts with PCNA for DNA replication-coupled chromatin assembly. Disruptions of CAF-1 also led to severe leaf polarity defects, which indicated that Elongator and CAF-1 act, at least partially, in the same pathway to promote cell cycle progression. Collectively, our results demonstrate that Elongator is an important regulator of mitotic cell cycle, and the Elongator pathway plays critical roles in promoting leaf polarity formation.  相似文献   

8.
9.
10.
Synthetic peptides corresponding to structural regions of HLA molecules are novel immunosuppressive agents. A peptide corresponding to residues 65-79 of the alpha-chain of HLA-DQA03011 (DQ65-79) blocks cell cycle progression from early G1 to the G1 restriction point, which inhibits cyclin-dependent kinase-2 activity and phosphorylation of the retinoblastoma protein. A yeast two-hybrid screen identified proliferating cell nuclear Ag (PCNA) as a cellular ligand for this peptide, whose interaction with PCNA was further confirmed by in vitro biochemistry. Electron microscopy demonstrates that the DQ65-79 peptide enters the cell and colocalizes with PCNA in the T cell nucleus in vivo. Binding of the DQ65-79 peptide to PCNA did not block polymerase delta (pol delta)-dependent DNA replication in vitro. These findings support a key role for PCNA as a sensor of cell cycle progression and reveal an unanticipated function for conserved regions of HLA molecules.  相似文献   

11.
Although it has been reported that Bcl-2 phosphorylation is associated with certain types of apoptosis, there is much controversy over the functional significance of and the kinases responsible for the phosphorylation. In this study, we examined whether Bcl-2 is phosphorylated by CDC2 kinase, a master regulator of G(2)/M transition in the eukaryotic cell cycle. When CDC2 was activated by okadaic acid in HL-60 cells, Bcl-2 phosphorylation was readily induced. The phosphorylation was correlated with the accumulation of cells in G(2)/M phases, but was not proportional to the level of apoptosis. Furthermore, we found that Bcl-2 was phosphorylated during G(2)/M phases of normal cell cycle. The ability of CDC2 to phosphorylate Bcl-2 was confirmed by in vitro kinase assay with a highly purified CDC2-cyclin B complex. Using synthetic peptides and mutant cell lines, we identified threonine 56, one of two consensus sites for CDC2 within the Bcl-2 sequence, as a residue phosphorylated by CDC2. Mutation at threonine 56 abrogated the cell cycle inhibitory effect of Bcl-2 without affecting anti-apoptotic function. These results suggest that two distinct functions of Bcl-2 (anti-apoptosis and cell cycle inhibition) are differentially regulated by post-translational mechanisms such as phosphorylation. CDC2-mediated phosphorylation of Bcl-2 may play some physiological roles in the negative regulatory events during mitosis.  相似文献   

12.
The Origin Recognition Complex (ORC) is a critical component of replication initiation. We have previously reported generation of an Orc2 hypomorph cell line (Delta/-) that expresses very low levels of Orc2 but is viable. We have shown here that Chk2 is phosphorylated, suggesting that DNA damage checkpoint pathways are activated. p53 was inactivated during the derivation of the Orc2 hypomorphic cell lines, accounting for their survival despite active Chk2. These cells also show a defect in the G1 to S-phase transition. Cdk2 kinase activation in G1 is decreased due to decreased Cyclin E levels, preventing progression into S-phase. Molecular combing of bromodeoxyuridine-labeled DNA revealed that once the Orc2 hypomorphic cells enter S-phase, fork density and fork progression are approximately comparable with wild type cells. Therefore, the low level of Orc2 hinders normal cell cycle progression by delaying the activation of G1 cyclin-dependent kinases. The results suggest that hypomorphic mutations in initiation factor genes may be particularly deleterious in cancers with mutant p53 or increased activity of Cyclin E/Cdk2.  相似文献   

13.
14.
15.
Levels of intracellular calcium, (Ca(2+))(i), from different stages of cell cycle of Dictyostelium discoideum were monitored using the fluorescent Ca(2+)-sensitive dye, Indo 1. Combinations of Ca(2+)-ionophore (A23187) and Ca(2+)-chelator (EGTA) resulted in the inhibition of progression of cell cycle. This delay was caused due to block in G(2)/M-->S phase transition of the cell cycle. Rescue of the cell cycle progression was made with 0.5 m m of exogenous Ca(2+). High (Ca(2+))(i)levels overlapped with the S-phase, of the cell cycle.Results indicate that a high (Ca(2+))(i)level during S-phase is not required for cell cycle progression but for cell-type choice mechanism at the onset of starvation, and these cells tend to follow the prestalk pathway.  相似文献   

16.
A mechanism of apoptotic death of normal rat embryo fibroblasts and of those transformed by E1A + cHa-Ras oncogenes following gamma irradiation has been investigated. The E1A + cHa-Ras transformed cells were shown to express wild type p53 which was able to trans-activate a reporter pG13-luc Plasmid. As a result of trans-activation, an accumulation of universal inhibitor of cyclin-dependent kinases--p21/Waf1 protein and an increase in the proportion of p21/Waf1 expressing cells were observed, The accumulated p21/Waf1 was found to bind with PCNA. The association with PCNA, however, did not lead to suppression of DNA replication according to the data of iododeoxyuridine (IdUr) incorporation. A high proportion of S-phase cells, in combination with cell cycle blocking in G2-phase, promoted polyploidization of E1A + cHa-Ras transformed cells after gamma irradiation. The polyploidic cells with DNA content equal and higher than 8c die 48-72 h following irradiation due to apoptosis. A significant proportion of E1A + cHa-Ras cells with incorporated IdUr contains labeled micronuclei, the fact being a morphological evidence of apoptosis of cells in S-phase of the cell cycle.  相似文献   

17.
Growth factors and cell anchorage are both required for cell cycle G(1)-phase progression, but it is unclear whether their function is mediated through the same set of cell cycle components and whether they are both required during the same periods of time. We separately analyzed the requirements of serum and anchorage during G(1)-phase progression and found that human dermal fibroblasts as well as wild type, pRb(-/-), and p107(-/-) mouse embryonic fibroblasts needed serum (growth factors) until mid-G(1)-phase but required cell anchorage until late G(1)-phase to be competent for S-phase entry. Importantly, however, pRb/p107 double-null mouse embryonic fibroblasts lacked serum requirement in mid-G(1)-phase but still required cell anchorage until late G(1)-phase to enter S-phase. Our results indicate that pRb and p107 do not constitute the last control point for extracellular factors during G(1)-phase progression, and they functionally separate the requirements for serum and cell anchorage in terms of involved cell cycle components.  相似文献   

18.
Xu B  Hua J  Zhang Y  Jiang X  Zhang H  Ma T  Zheng W  Sun R  Shen W  Sha J  Cooke HJ  Shi Q 《PloS one》2011,6(1):e16046
Primordial follicles, providing all the oocytes available to a female throughout her reproductive life, assemble in perinatal ovaries with individual oocytes surrounded by granulosa cells. In mammals including the mouse, most oocytes die by apoptosis during primordial follicle assembly, but factors that regulate oocyte death remain largely unknown. Proliferating cell nuclear antigen (PCNA), a key regulator in many essential cellular processes, was shown to be differentially expressed during these processes in mouse ovaries using 2D-PAGE and MALDI-TOF/TOF methodology. A V-shaped expression pattern of PCNA in both oocytes and somatic cells was observed during the development of fetal and neonatal mouse ovaries, decreasing from 13.5 to 18.5 dpc and increasing from 18.5 dpc to 5 dpp. This was closely correlated with the meiotic prophase I progression from pre-leptotene to pachytene and from pachytene to diplotene when primordial follicles started to assemble. Inhibition of the increase of PCNA expression by RNA interference in cultured 18.5 dpc mouse ovaries strikingly reduced the apoptosis of oocytes, accompanied by down-regulation of known pro-apoptotic genes, e.g. Bax, caspase-3, and TNFα and TNFR2, and up-regulation of Bcl-2, a known anti-apoptotic gene. Moreover, reduced expression of PCNA was observed to significantly increase primordial follicle assembly, but these primordial follicles contained fewer granulosa cells. Similar results were obtained after down-regulation by RNA interference of Ing1b, a PCNA-binding protein in the UV-induced apoptosis regulation. Thus, our results demonstrate that PCNA regulates primordial follicle assembly by promoting apoptosis of oocytes in fetal and neonatal mouse ovaries.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号