首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The endogenous level of cyclic AMP in incubated synaptosomes from cerebral cortex of guinea pigs was investigated after the addition of various agents to the incubation medium. It appeared that the synaptosomal suspension already contained exogenous adenosine. Preincubation with theophylline or with adenosine deaminase (ADase) decreased both the exogenous level of adenosine and the intrasynaptosomal level of cyclic AMP. The level of cyclic AMP was reincreased by the addition of adenosine agonists, especially 2-chloroadenosine. This increase was antagonized by deoxyadenosine and was not inhibited by dipyridamole. These results suggest that the adenosine derivatives in the synaptic cleft regulate the level of cyclic AMP in nerve terminals through adenosine receptor on the presynaptic membrane. ADP, ATP, dopamine, and histamine also stimulate the formation of cyclic AMP in the ADase-treated synaptosomes.  相似文献   

2.
We compared the response of rat PC12 cells and a derivative PC18 cell line to the effects of adenosine receptor agonists, antagonists, and adenine nucleotide metabolizing enzymes. We found that theophylline (an adenosine receptor antagonist), adenosine deaminase, and AMP deaminase all decreased basal cyclic AMP content and tyrosine hydroxylase activity in the PC12 cells, but not in PC18 cells. Both cell lines responded to the addition of 2-chloroadenosine and 5'-N-ethylcarboxamidoadenosine, adenosine receptor agonists, by exhibiting an increase in tyrosine hydroxylase activity and cyclic AMP content. The latter finding indicates that both cell lines contained an adenosine receptor linked to adenylate cyclase. We found that the addition of dipyridamole, an inhibitor of adenosine uptake, produced an elevation of cyclic AMP and tyrosine hydroxylase activity in both cell lines. Deoxycoformycin, an inhibitor of adenosine deaminase, failed to alter the levels of cyclic AMP or tyrosine hydroxylase activity. This suggests that uptake was the primary inactivating mechanism of adenosine action in these cells. We conclude that both cell types generated adenine nucleotides which activate the adenosine receptor in an autocrine or paracrine fashion. We found that PC12 cells released ATP in a calcium-dependent process in response to activation of the nicotinic receptor. We also measured the rates of degradation of exogenous ATP, ADP, and AMP by PC12 cells. We found that the rates of metabolism of the former two were at least an order of magnitude greater than that of AMP. Any released ATP would be rapidly metabolized to AMP and then more slowly degraded to adenosine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Glucagon can stimulate gluconeogenesis from 2 mM lactate nearly 4-fold in isolated liver cells from fed rats; exogenous cyclic adenosine 3':5'-monophosphate (cyclic AMP) is equally effective, but epinephrine can stimulate only 1.5-fold. Half-maximal effects are obtained with glucagon at 0.3 nM, cyclic AMP at 30 muM and epinephrine at 0.2 muM. Insulin reduces by 50% the stimulation by suboptimal concentrations of glucagon (0.5 nM). A half-maximal effect is obtained with 0.3 nM insulin (45 microunits/ml). Glucagon in the presence of theophylline (1 mM) causes a rapid rise and subsequent fall in intracellular cyclic AMP with a peak between 3 and 6 min. Some of the fall can be accounted for by loss of nucleotide into the medium. This efflux is suppressed by probenecid, suggesting the presence of a membrane transport mechanism for the cyclic nucleotide. Glucagon can raise intracellular cyclic AMP about 30-fold; a half-maximal effect is obtained with 1.5 nM hormone. Epinephrine (plus theophylline, 1 mM) can raise intracellular cyclic AMP about 2-fold; the peak elevation is reached in less than 1 min and declines during the next 15 min to near the basal level. Insulin (10 nM) does not lower the basal level of cyclic AMP within the hepatocyte, but suppresses by about 50% the rise in intracellular and total cyclic AMP caused by exposure to an intermediate concentration of glucagon. No inhibition of adenylate cyclase by insulin can be shown. Basal gluconeogenesis is not significantly depressed by calcium deficiency but stimulation by glucagon is reduced by 50%. Calcium deficiency does not reduce accumulation of cyclic AMP in response to glucagon but diminishes stimulation of gluconeogenesis by exogenous cyclic AMP. Glucagon has a rapid stimulatory effect on the flux of 45Ca2+ from medium to tissue.  相似文献   

4.
The metabolism and turnover of adenosine 3':5'-monophosphate (cyclic AMP) have been studied in intact thyroid cells incubated in vitro. Thyroid slices have been stimulated by 1 mU thyrotropin/ml, then washed with buffer, or with buffer containing thyrotropin antibody, or trypsin so as to cut off the stimulation. The decline of cyclic AMP levels has been followed and the time required to decrease this level to half of the initial value estimated. Computer simulation taking into account the penetration of trypsin in the slices, the kinetics of thyrotropin inactivation and the relation between thyrotropin concentration and cyclic AMP concentration at the steady state has made it possible to estimate the true cellular half-life of cyclic AMP in the stimulated cell to 1 min 50 s. The method provides an experimental approach to the demonstration in intact cells of effective on cyclic AMP disappearance. The methodology of the calculation of half-life and turnover from such data is discussed.  相似文献   

5.
Certain epithelial cell lines have morphologic, physiologic, biochemical and pharmacologic characteristics of transporting epithelia from intact organs. In this paper we show that dibutyryl cyclic AMP, 5' AMP, adenosine and cyclic AMP phosphodiesterase inhibitors stimulate hemicyst formation by the dog kidney cell line MDCK. It is suggested that this effect is explained by elevation of intracellular cyclic AMP levels by means of an exogenous non-metabolizable source of cyclic AMP, phosphodiesterase inhibition or adenyl cyclase stimulation. Since hemicyst formation is in part due to transepithelial fluid transport, these findings raise the possibility that this fraction might be modulated by cAMP in an established cell line. We believe that cultured epithelial cells may provide an exploitable model system to investigate at the cellular and subcellular levels, the mechanism by which cyclic AMP modifies water and solute movements across epithelia.  相似文献   

6.
Adenosine, AMP, ADP and ATP activated adenylate cyclase in pig skin (epidermis) slices resulting in the accumulation of cyclic AMP. This effect was highly potentiated by the addition of the cyclic AMP-phosphodiesterase inhibitor, papaverine. But another inhibitor, theophylline, strongly blocked the activation of adenylate cyclase by adenosine and adenine nucleotides. Theophylline apparently competed with adenosine for the cell surface receptor. Like theophylline, the addition of adenine alone caused no accumulation of cyclic AMP, but it significantly inhibited the stimulatory effect of adenosine. Guanosine, or guanine, cytidine, uridine, or thymidine nucleotides had no effect on the accumulation of cyclic AMP. Among other adenine nucleotides we tested, adenosine 5'-monophosphoramidate, but not adenosine 5'-monosulfate significantly increased cyclic AMP especially with the addition of papaverine. Neither 2'- nor 3'-adenylic acid were effective. Our data indicate that pig epidermis has four specific and independent adenylate cyclase systems for adenosine (and adenine nucleotides), histamine, epinephrine and prostaglandin E.  相似文献   

7.
Adenosie, AMP, ADP and ATP activated adenylate cyclase in pig skin (epidermis) slices resulting in the accumulation of cyclic AMP. This effect was highly potentiated by the addition of the cyclic AMP-phophodiesterase inhibitor, papaverine. But another inhibitor, theophylline, strongly blocked the activation of adenylate cyclase by adenosine and adenine nucleotides. Theophylline apparently competed with adenosine for the cell suface receptor. Like theophylline, the addition of adenine alone caused no accumulation of cyclic AMP, but it significantly inhibited the stimulatory effect of adenosine. Guanosine, or guanine, cytidine, uridine, or thymidine nucleotides has no effect on the accumulation of cyclic AMP. Among other adenine nucleotides was tested, adenosine 5′-monophosphoramidate, but not adenosine 5′-monosulfate, significantly increased cyclic AMP especially with the addition of papaverine. Neither 2′- nor 3′-adenylic acid were effective. Our data indicate that pig epidermis has four specific and independent adenylate cyclase systems for adenosine (and adenine nucleotides), histamine, epinephrine and prostaglandin E.  相似文献   

8.
Cyclic AMP levels in primary monolayer cultures of epithelial cells prepared from mid-pregnant mice are stimulated by prostaglandin E1 and E2. Prostaglandin F1alpha and F2alpha have only a slight effect upon cyclic AMP levels. In the absence of phosphodiesterase inhibitors the rise in cyclic AMP produced by PGE1 is only transient and the levels return to normal within 30 minutes. High concentrations (16 mM) of theophylline are needed to prevent this decline, suggesting that the phosphodiesterase activity of epithelial cells in culture is high. However, theophylline alone produced only a small increase in basal cyclic AMP levels even over a 2-hour period indicating that basal cyclic AMP is turned over more slowly than cyclic AMP produced in response to stimulation with PGE1. Both PGE and PGF synthesis were monitored using radioimmunoassay procedures previously reported. The observed levels were found to decrease as cell density increased and were sensitive to the addition of agents such as collagen and naproxen.  相似文献   

9.
The adenyl cyclase and phosphodiesterase metabolizing adenosine 3',5'-cyclic monophosphate (cyclic AMP) were detected in mycelia of strains of Coprinus macrorhizus which form fruiting bodies, but not in those of strains which do not form fruiting bodies. The adenyl cyclase synthesized cyclic AMP from adenosine triphosphate. The phosphodiesterase degr[UNK]ded cyclic AMP to adenosine-5'-monophosphate and was inhibited by adenosine-3'-monophosphate, theophylline, and caffeine. The strains which form fruiting bodies incorporated and metabolized cyclic AMP, but strains which do not form fruiting bodies did not. The possible participation of cyclic AMP in the induction of fruiting bodies is discussed.  相似文献   

10.
Phosphodiesterase activities of horse (and dog) thyroid soluble fraction were compared with either cyclic AMP (adenosine 3':3'-monophosphate) or cyclic GMP (guanosine 3':5'-monophosphate) as substrate. Optimal activity for cyclic AMP hydrolysis was observed at pH 8, and at pH 7.6 for cyclic GMP. Increasing concentrations of ethyleneglycol bis(2-aminoethyl)-N,N'-tetraacetic acid inhibited both phosphodiesterase activities; in the presence of exogenous Ca2+, this effect was shifted to higher concentrations of the chelator. In a dialysed supernatant preparation, Ca2+ had no significant stimulatory effect, but both Mg2+ and Mn2+ increased cyclic nucleotides breakdown. Mn2+ promoted the hydrolysis of cyclic AMP more effectively than that of cyclic GMP. For both substrates, substrate velocity curves exhibited a two-slope pattern in a Hofstee plot. Cyclic GMP stimulated cyclic AMP hydrolysis, both nucleotides being at micromolar concentrations. Conversely, at no concentration had cyclic AMP any stimulatory effect on cyclic GMP hydrolysis. 1-Methyl-3-isobutylxanthine and theophylline blocked the activation by cyclic GMP of cyclic GMP of cyclic AMP hydrolysis, whereas Ro 20-1724 (4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone), a non-methylxanthine inhibitor of phosphodiesterases, did not alter this effect. In dog thyroid slices, carbamoylcholine, which promotes an accumulation of cyclic GMP, inhibits the thyrotropin-induced increase in cyclic AMP. This inhibitory effect of carbamoylcholine was blocked by theophylline and 1-methyl-3-isobutylxanthine, but not by Ro 20-1724. It is suggested that the cholinergic inhibitory effect on cyclic AMP accumulation is mediated by cyclic GMP, through a direct activation of phosphodiesterase activity.  相似文献   

11.
J C Redshaw 《In vitro》1980,16(5):377-383
The effects of glucagon and dexamethasone on the activities of the enzymes involved in cyclic adenosine 3':5'-monophosphate (cyclic AMP) metabolism in primary monolayer cell cultures of adult rat hepatocytes were examined. Short-term experiments indicated that the magnitude of the cultured cells' response to glucagon, as measured by production of cyclic AMP, was essentially the same as that for freshly isolated hepatocytes. However, the time course of this response was markedly different. Although the activity of adenylate cyclase is maintained throughout the culture period at a level similar to that of the freshly isolated hepatocytes, the activity of both low and high Km forms of phosphodiesterase decreases rapidly with length of time in vitro. This is reflected by an increase in cyclic AMP produced in response to glucagon and theophylline by cells of different ages. Dexamethasone caused an increased loss of phosphodiesterase activity, as well as increased cyclic AMP accumulation in the presence or absence of theophylline. Various agents failed to restore the lost phosphodiesterase activity. These results may indicate that phosphodiesterase activity is more sensitive to the inevitable inadequacies of the in vitro environment of cultured hepatocytes than adenylate cyclase. It was also found that a modification of the method of Seglen (1) for the preparation of isolated hepatocytes yielded cells that had less phosphodiesterase activity than those prepared by the method of Berry and Friend (2).  相似文献   

12.
The brief rise in the cellular cyclic AMP content which occurs late in the prereplicative phases of rat hepatocytes in vivo and T51B rat liver epitheloid cells in vitro seems to be necessary for the initiation of DNA synthesis. Thus, the extracellular calcium-deprivation in T51B rat liver cells in culture which induces a late G-1 block is rapidly reversible (cells surge into S phase within one hour) either by creating a cyclic AMP surge by the addition of calcium or 3-isobutyl-1-methyl xanthine (a cyclic 3',5'-nucleotide phosphodiesterase inhibitor) or by the exogenous addition of low concentrations of cyclic AMP itself (i.e., 10(-8)-10(-5) M). On the other hand, prevention of the calcium-induced cyclic AMP surge by imidazole (a cyclic 3',5'-nucleotide phosphodiesterase activator) blocked the initiation of DNA synthesis by the calcium-deprived T51B cells.  相似文献   

13.
14.
Glucose transport into adipocytes of the rat was measured by monitoring the conversion of [1-(14)C]glucose into (14)CO(2). Glucose transport was made rate-limiting by increasing the flux through the pentose phosphate pathway with phenazine methosulphate, an agent that rapidly reoxidizes NADPH. Under these conditions, the observed rate of glucose disappearance from the incubation medium was about 20% higher than the rate of conversion of the C-1 of glucose into (14)CO(2). Apparent rates of glucose transport were significantly increased by insulin, H(2)O(2), adenosine and nicotinic acid. Stimulation of the apparent rate of glucose transport by insulin was dependent on adipocyte concentration, the hormone being most effective at relatively high cell concentrations. Adenosine and nicotinic acid further enhanced the maximum stimulation of glucose transport by insulin. Potentiation of insulin action by adenosine was more pronounced at lower cell concentrations. At relatively high cell concentrations the stimulatory action of insulin was markedly decreased by adenosine deaminase. Stimulation of apparent rates of glucose transport by the compounds noted above were antagonized by agents that increased intracellular cyclic AMP concentrations (theophylline and isoprenaline) and by dibutyryl cyclic AMP. Intracellular concentrations of cyclic AMP were significantly lowered when adipocytes were incubated with insulin, H(2)O(2), adenosine or nicotinic acid. These effects were observed under basal conditions or when intracellular cyclic AMP concentrations were elevated by theophylline or isoprenaline. On the basis of the above data, we suggest that insulin, H(2)O(2), adenosine and nicotinic acid may all stimulate glucose transport in rat adipocytes by lowering the intracellular cyclic AMP concentration. These data therefore support the hypothesis that cyclic AMP inhibits glucose transport in rat adipocytes.  相似文献   

15.
Dopamine and 2-chloroadenosine independently promoted the accumulation of cyclic AMP in retinas from 16-day-old chick embryos. The two compounds added together either in saturating or subsaturating concentrations were not additive for the accumulation of the cyclic nucleotide in the tissue. This fact was shown to be due to the existence of an adenosine receptor that mediates the inhibition of the dopamine-dependent cyclic AMP accumulation in the retina. Adenosine inhibited, in a dose-dependent fashion, the accumulation of cyclic AMP induced by dopamine in 12-day-old chick embryo retinas, with an IC50 of approximately 1 microM. This effect was not blocked by dipyridamole. N6-(l-Phenylisopropyl)adenosine, (l-PIA) was the most potent adenosine analog tested, showing an IC50 of 0.1 microM which was two orders of magnitude lower than its stereoisomer d-PIA (10 microM). The maximal inhibition of the dopamine-elicited cyclic AMP accumulation by adenosine and related analogs was 70%. The inhibitory effect promoted by adenosine was blocked by 3-isobutyl-1-methylxanthine (IBMX) or by adenosine deaminase. Adenine was not effective; whereas ATP and AMP promoted the inhibition of the dopamine effect only at very high concentrations. Apomorphine was only 30% as effective as dopamine in promoting the cyclic AMP accumulation in retinas from 11- to 12-day-old embryos and 2-chloroadenosine did not interfere with the apomorphine-mediated shift in cyclic AMP levels. In the retinas from 5-day-old posthatched chickens dopamine and apomorphine were equally effective in eliciting the accumulation of cyclic AMP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Cyclic AMP levels in primary monolayer cultures of epithelial cells prepared from mid-pregnant mice are stimulated by prostaglandin E1 and E2. Prostaglandin F and F have only a slight effect upon cyclic AMP levels. In the absence of phosphodiesterase inhibitors the rise in cyclic AMP produced by PGE1 is only transient and the levels return to normal within 30 minutes. High concentrations (16 mM) of theophylline are needed to prevent this decline, suggesting that the phosphodiesterase activity of epithelial cells in culture is high. However, theophylline alone produced only a small increase in basal cyclic AMP levels even over a 2-hour period indicating that basal cyclic AMP is turned over more slowly than cyclic AMP produced in response to stimulation with PGE1.Both PGE and PGF synthesis were monitored using radioimmunoassay procedures previously reported. The observed levels were found to decrease as cell density increased and were sensitive to the addition of agents such as collagen and naproxen.  相似文献   

17.
The present study has investigated the influence of agents which elevate intracellular levels of endogenous platelet adenosine 3'5'-cyclic monophosphate (cyclic AMP), and the effect of the exogenous cyclic AMP analog, dibutyryl cyclic AMP, on the conversion of 14C-arachidonic acid by washed platelets. Prostaglandin E1 (PGE1), PGE1 with theophylline, or dibutyryl cyclic AMP incubated with washed platelets prevented arachidonic acid induced platelet aggregation, but had no effect on the conversion of arachidonic acid to 12L-hydroxy-5,8,10, 14-eicosatetraenoic acid (HETE), 12L-hydroxy-5,8,10 heptadecatrienoic acid (HHT), or thromboxane B2. Ultrastructural studies of the platelet response revealed that agents acting directly or indirectly to increase the level of cyclic AMP inhibited the action of arachidonic acid on washed platelets and prevented internal platelet contraction as well as aggregation. The influence of PGE1 with theophylline, and dibutyryl cyclic AMP on the thrombin induced release of 14C-arachidonic acid from platelet membrane phospholipids was also investigated. These agents were found to be potent inhibitors of the thrombin stimulated release of arachidonic acid from platelet phospholipids, due most likely to an inhibition of platelet phospholipase A activity. The results show that dibutyryl cyclic AMP and agents which elevate intracellular cyclic AMP levels act to inhibit platelet activation at two steps 1) internal contraction and 2) release of arachidonic acid from platelet phospholipids.  相似文献   

18.
The ability of various adenosine analogs to inhibit cholera toxin activation of the intestinal epithelial cell adenylate cyclase-cyclic AMP system was investigated. After incubation of cells with cholera toxin for 6 hr, large increases in cellular cyclic AMP content were observed. Addition of 2', 5'-dideoxyadenosine during the last 30 min of this 6-hr incubation resulted in 70% reduction in elevated cyclic AMP content. Other analogs were not effective inhibitors. 2', 5'-Dideoxyadenosine was also a potent inhibitor of cholera toxin-activated intestinal cell adenylate cyclase activity with half-maximal inhibition occuring at 16 muM. NaF-stimulated cyclase was less susceptible to inhibition. The data suggest that inhibition by 2', 5'-dideoxyadenosine is due at least in part to direct inhibition of the cholera toxin-activated intestinal adenylate cyclase activity.  相似文献   

19.
Rat glioma cells grown in culture secrete cyclic adenosine 3':5'-monophosphate (cyclic AMP) into the culture medium following stimulation by beta-agonistic catecholamines. Agents which reduced cellular ATP levels such as valinomycin, oligomycin, and uncouplers of oxidative phosphorylation, inhibited cyclic AMP efflux. Secretion of cyclic AMP was also prevented by prostaglandin A-1 and pharmacological agents including probenecid and papaverine. Of the latter agents, only papaverine reduced ATP levels. These results suggest that the transport of cyclic AMP across animal cell membranes is energy-dependent and subject to regulation.  相似文献   

20.
The phosphohydrolase activity of the membrane-associated (Ca2+ + Mg2+)-dependent adenosine triphosphatase (ATPase) of the human erythrocyte can be inhibited by micromolar of nanomolar concentrations of cyclic AMP. Millimolar concentrations of cyclic AMP are less effective. The inhibitory effect of cyclic AMP is potentiated in the presence of the phosphodiesterase inhibitor, theophylline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号