首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
During the efficient genetic transformation of plants with the gene of interest, some selectable marker genes are also used in order to identify the transgenic plant cells or tissues. Usually, antibiotic- or herbicide-selective agents and their corresponding resistance genes are used to introduce economically valuable genes into crop plants. From the biosafety authority and consumer viewpoints, the presence of selectable marker genes in released transgenic crops may be transferred to weeds or pathogenic microorganisms in the gastrointestinal tract or soil, making them resistant to treatment with herbicides or antibiotics, respectively. Sexual crossing also raises the problem of transgene expression because redundancy of transgenes in the genome may trigger homology-dependent gene silencing. The future potential of transgenic technologies for crop improvement depends greatly on our abilities to engineer stable expression of multiple transgenic traits in a predictable fashion and to prevent the transfer of undesirable transgenic material to non-transgenic crops and related species. Therefore, it is now essential to develop an efficient marker-free transgenic system. These considerations underline the development of various approaches designed to facilitate timely elimination of transgenes when their function is no longer needed. Due to the limiting number of available selectable marker genes, in future the stacking of transgenes will be increasingly desirable. The production of marker-free transgenic plants is now a critical requisite for their commercial deployment and also for engineering multiple and complex trait. Here we describe the current technologies to eliminate the selectable marker genes (SMG) in order to develop marker-free transgenic plants and also discuss the regulation and biosafety concern of genetically modified (GM) crops.  相似文献   

2.
Public concerns about the issue of the environmental safety of genetically modified plants have led to a demand for technologies allowing the production of transgenic plants without selectable (antibiotic resistance) markers. We describe the development of an effective transformation system for generating such marker-free transgenic plants, without the need for repeated transformation or sexual crossing. This system combines an inducible site-specific recombinase for the precise elimination of undesired, introduced DNA sequences with a bifunctional selectable marker gene used for the initial positive selection of transgenic tissue and subsequent negative selection for fully marker-free plants. The described system can be generally applied to existing transformation protocols, and was tested in strawberry using a model vector in which site-specific recombination leads to a functional combination of a cauliflower mosaic virus 35S promoter and a GUS encoding sequence, thereby enabling the histochemical monitoring of recombination events. Fully marker-free transgenic strawberry plants were obtained following two different selection/regeneration strategies.  相似文献   

3.
Recombinant genes conferring resistance to antibiotics or herbicides are widely used as selectable markers in plant transformation. Once transgenic material has been selected, the marker gene is dispensable. We report a novel strategy to remove undesirable parts of a transgene after integration into the tobacco genome. This approach is based on the transfer of a vector containing a NPTII gene flanked by two 352 bp attachment P (attP) regions of bacteriophage lambda, and the identification of somatic tissue with deletion events following intrachromosomal recombination between the attP regions. This system was used to delete a 5.9 kb region from a recombinant vector that had been inserted into two different genomic regions. As the attP system does not require the expression of helper proteins to induce deletion events, or a genetic segregation step to remove recombinase genes, it should provide a useful tool to remove undesirable transgene regions, especially in vegetatively propagated species.  相似文献   

4.
Advances in selectable marker genes for plant transformation   总被引:1,自引:0,他引:1  
Plant transformation systems for creating transgenics require separate process for introducing cloned DNA into living plant cells. Identification or selection of those cells that have integrated DNA into appropriate plant genome is a vital step to regenerate fully developed plants from the transformed cells. Selectable marker genes are pivotal for the development of plant transformation technologies because marker genes allow researchers to identify or isolate the cells that are expressing the cloned DNA, to monitor and select the transformed progeny. As only a very small portion of cells are transformed in most experiments, the chances of recovering transgenic lines without selection are usually low. Since the selectable marker gene is expected to function in a range of cell types it is usually constructed as a chimeric gene using regulatory sequences that ensure constitutive expression throughout the plant. Advent of recombinant DNA technology and progress in plant molecular biology had led to a desire to introduce several genes into single transgenic plant line, necessitating the development of various types of selectable markers. This review article describes the developments made in the recent past on plant transformation systems using different selection methods adding a note on their importance as marker genes in transgenic crop plants.  相似文献   

5.
Trait genes are usually introduced into the plant genome together with a marker gene. The last one becomes unnecessary after transgene selection and characterization. One of the strategies to produce transgenic plants free from the selectable marker is based on site-specific recombination. The present study employed the transient Cre-lox system to remove the nptII marker gene from potato. Transient marker gene excision involves introduction of Cre protein in lox-target plants by PVX virus vector followed by plant regeneration. Using optimized experimental conditions, such as particle bombardment infection method and application of P19 silencing suppressor protein, 20-27% of regenerated plants were identified by PCR analysis as marker-free. Based on our comparison of the recombination frequencies observed in this study to the efficiency of other methods to avoid or eliminate marker genes in potato, we suggest that PVX-Cre mediated site-specific excisional recombination is a useful tool to generate potato plants without superfluous transgenic sequences.  相似文献   

6.
Incorporation of a selectable marker gene during transformation is essential to obtain transformed plastids. However, once transformation is accomplished, having the marker gene becomes undesirable. Here we report on adapting the P1 bacteriophage CRE-lox site-specific recombination system for the elimination of marker genes from the plastid genome. The system was tested by the elimination of a negative selectable marker, codA, which is flanked by two directly oriented lox sites (>codA>). Highly efficient elimination of >codA> was triggered by introduction of a nuclear-encoded plastid-targeted CRE by Agrobacterium transformation or via pollen. Excision of >codA> in tissue culture cells was frequently accompanied by a large deletion of a plastid genome segment which includes the tRNA-ValUAC gene. However, the large deletions were absent when cre was introduced by pollination. Thus pollination is our preferred protocol for the introduction of cre. Removal of the >codA> coding region occurred at a dramatic speed, in striking contrast to the slow and gradual build-up of transgenic copies during plastid transformation. The nuclear cre gene could subsequently be removed by segregation in the seed progeny. The modified CRE-lox system described here will be a highly efficient tool to obtain marker-free transplastomic plants.  相似文献   

7.
The demand for crops requiring increasingly complex combinations of transgenes poses unique challenges for transgenic trait deployment. Future value‐adding traits such as those associated with crop performance are expected to involve multiple transgenes. Random integration of transgenes not only results in unpredictable expression and potential unwanted side effects but stacking multiple, randomly integrated, independently segregating transgenes creates breeding challenges during introgression and product development. Designed nucleases enable the creation of targeted DNA double‐strand breaks at specified genomic locations whereby repair can result in targeted transgene integration leading to precise alterations in DNA sequences for plant genome editing, including the targeting of a transgene to a genomic locus that supports high‐level and stable transgene expression without interfering with resident gene function. In addition, targeted DNA integration via designed nucleases allows for the addition of transgenes into previously integrated transgenic loci to create stacked products. The currently reported frequencies of independently generated transgenic events obtained with site‐specific transgene integration without the aid of selection for targeting are very low. A modular, positive selection‐based gene targeting strategy has been developed involving cassette exchange of selectable marker genes which allows for targeted events to be preferentially selected, over multiple cycles of sequential transformation. This, combined with the demonstration of intragenomic recombination following crossing of transgenic events that contain stably integrated donor and target DNA constructs with nuclease‐expressing plants, points towards the future of trait stacking that is less dependent on high‐efficiency transformation.  相似文献   

8.
The development of marker-free transgenic plants has responded to public concerns over the safety of biotechnology crops. It seems that continued work in this area will soon remove the question of unwanted marker genes from the debate concerning the public acceptability of transgenic crop plants. Selectable marker genes are co-introduced with genes of interest to identify those cells that have integrated the DNA into their genome. Despite the large number of different selection systems, marker genes that confer resistance to the antibiotics, hygromycin (hpt) and kanamycin (nptII) or herbicide phosphinothricin (bar), have been used in most transgenic research and crop development techniques. The techniques that remove marker gene are under development and will eventually facilitate more precise and subtle engineering of the plant genome, with widespread applications in both fundamental research and biotechnology. In addition to allaying public concerns, the absence of resistance genes in transgenic plants could reduce the costs of developing biotechnology crops and lessen the need for time-consuming safety evaluations, thereby speeding up the commercial production of biotechnology crops. Many research results and various techniques have been developed to produce marker-free transgenic plants. This review describes the strategies for eliminating selectable marker genes to generate marker-free transgenic plants, focusing on the three significant marker-free technologies, co-transformation, site-specific recombinase-mediated excision, and non-selected transformation.  相似文献   

9.
转基因植物中的标记基因研究新进展   总被引:7,自引:0,他引:7  
杨英军  周鹏 《遗传》2005,27(3):499-504
文章综述了转基因植物中标记基因研究的新进展,主要包括以下3个方面:第一是采用共转化、位点特异性重组和转座子等技术对传统抗性标记基因进行消除,以利于对同一作物进行多次转基因操作;第二是完善各种已应用的以糖类代谢酶基因、耐胁迫酶类基因和绿色荧光蛋白基因等为安全标记基因的转化体系,并大力研究、开发潜在的汞离子还原酶基因、叶绿体合成关键酶基因等作为安全标记基因;第三是着力发展无标记基因、无载体骨架的简单高效转化体系。此外,还展望了安全标记的应用前景。  相似文献   

10.
It is generally thought that transformation of plant cells using Agrobacterium tumefaciens occurs at a very low frequency. Therefore, selection marker genes are used to identify the rare plants that have taken up foreign DNA. Genes encoding antibiotic and herbicide resistance are widely used for this purpose in plant transformation. Over the past several years, consumer and environmental groups have expressed concern about the use of antibiotic- and herbicide-resistance genes from an ecological and food safety perspective. Although no scientific basis has been determined for these concerns, generating marker-free plants would certainly contribute to the public acceptance of transgenic crops. Several methods have been reported to create marker gene-free transformed plants, for example co-transformation, transposable elements, site-specific recombination, or intrachromosomal recombination. Not only are most of these systems time-consuming and inefficient, but they are also employed on the assumption that isolation of transformants without a selective marker gene is not feasible. Here we present a method that permits the identification of transgenic plants without the use of selectable markers. This strategy relies on the transformation of tissue explants or cells with a virulent A. tumefaciens strain and selection of transformed cells or shoots after PCR analysis. Incubation of potato explants with A. tumefaciens strain AGL0 resulted in transformed shoots at an efficiency of 1-5% of the harvested shoots, depending on the potato genotype used. Because this system does not require genetic segregation or site-specific DNA-deletion systems to remove marker genes, it may provide a reliable and efficient tool for generating transgenic plants for commercial use, especially in vegetatively propagated species like potato and cassava.  相似文献   

11.
目前广泛采用的抗菌素或抗除草剂基因作为植物转化筛选标记基因可能带来转基因逃逸,因此寻找能够用于植物转化的来源于植物本身的筛选基因是解决这一问题的方法之一。通过从烟草中克隆的邻氨基苯甲酸合成酶基因(ASA2)作为筛选标记基因,并采用氨基酸的类似物5—甲基色氨酸为筛选剂,进行了农杆菌介导的大豆成熟胚尖转化研究。Southern杂交结果表明ASA2基因成功整合到大豆基因组,Northern杂交也显示该基因在转化大豆叶片中表达。HPLC检测转化大豆叶片游离色氨酸的含量比野生型要高59%~123%。PCR检测转化子1代结果显示转化基因通过孟德尔规律稳定遗传。这些结果表明反馈抑制不敏感ASA2基因可以作为筛选标记基因用于大豆遗传转化。同时也证实来源于一种植物(烟草)编码的邻氨基苯甲酸α—亚基能够与另一种植物(大豆)编码该酶的β—亚基结合形成具有完整活性的邻氨基苯甲酸合成酶。对ASA2基因作为一种新的植物转化筛选标记基因的优缺点进行了讨论。  相似文献   

12.
Biosafety implications of selectable marker genes that are integrated into the transgenic plants are discussed. In the laboratory, selectable marker genes are used at two stages to distinguish transformed cells out of a large population of nontransformed cells: 1) initial assembly of gene cassettes is generally done in E. coli on easily manipulatable plasmid vectors that contain the selectable marker genes which often code for antibiotic inactivating enzymes, and 2) Then the gene cassettes are inserted into the plant genome by various transformation methods. For selection of transformed plant cells, antibiotic and herbicide resistance genes are widely used. Consequently, transgenic plants can end up with DNA sequences of selectable markers that are functional in E. coli and plants. The potential for horizontal gene transfer of selectable markers from transgenic plants to other organisms both in the environment and in the intestine of humans and animals is evaluated. Mechanisms and consequences of the transfer of marker genes from plants to other organisms is examined. Strategies to avoid marker genes in plants are discussed. It is possible to avoid the use of controversial selectable markers in the construction of transgenic plants.  相似文献   

13.
Summary The chloroplast genetic engineering approach offers a number of unique advantages, including high-level transgene expression, multi-gene engineering in a single transformation event, transgene containment via maternal inheritance, lack of gene silencing, position and pleiotropic effects and undesirable foreign DNA. Thus far, more than 40 transgenes have been stably integrated and expressed via the tobacco chloroplast genome to confer several agronomic traits and produce vaccine antigens, industrially valuable enzymes, biomaterials, and amino acids. Functionality of chloroplastderived of vaccine antigens has been facilitated by hyperexpression in transgenic chloroplasts (leaves) or non-green plastids (carrols) and the availability of antibiotic-free selectable markers or the ability to excise selectable marker genes. Additionally, the presence of chaperones and enzymes within the chloroplast help to assemble complex multi-subunit proteins and correctly fold proteins containing disulfide bonds, thereby drastically reducing the costs of in vitro processing. Despite such significant progress in chloroplast transformation, this technology has not been extended to major crops. This obstacle emphasizes the need for plastid genome sequencing to increase the efficiency of transformation and conduct basic research in plastid biogenesis and function. However, highly efficient soybean, carrot, and cotton plastid transformation has been recently accomplished via somatic embryogenesis using species-specific chloroplast vectors. Recent advancements facilitate our understanding of plastid biochemistry and molecular biology. This review focuses on exciting recent developments in this field and offers directions for further research and development.  相似文献   

14.
张勇  杨宝玉  陈士云 《遗传学报》2006,33(12):1105-1111
分析了来源于农杆菌介导的4个独立的大豆转化系的后代遗传特性。分别采用种子切片GUS染色方法和除草剂涂抹以及喷洒方法检测gus报告基因和抗除草剂bar基因在后代的表达。其中3个转化系T1代gus基因和bar基因能够以孟德尔方式3:1连锁遗传,说明这2个基因整合在大豆基因组的同一位点。这3个转化系在T2代获得了纯合的转化系,并能够稳定遗传至T5代。有一个转化系在T1代GUS和抗除草剂检测都为阴性,但通过Southern杂交证明转基因存在于后代基因组,显示发生了转基因沉默。为了证明转基因沉默是转录水平还是转录后水平,T1代植物叶片接种大豆花叶病毒(SMV)并不能抑制转基因沉默,说明该转化系基因沉默可能不是发生在转录后水平。  相似文献   

15.
A major challenge for future genetically modified (GM) crops is to prevent undesired gene flow of transgenes to plant material intended for another use. Recombinase-mediated auto excision of transgenes directed by a tightly controlled microspore-specific promoter allows efficient removal of either the selectable marker gene or of all introduced transgenes during microsporogenesis. This way, transgene removal becomes an integral part of the biology of pollen maturation, not requiring any external stimulus such as chemical induction by spraying. We here show the feasibility of engineering transgenic plants to produce pollen devoid of any transgene. Highly efficient excision of transgenes from tobacco pollen was achieved with a potential failure rate of at most two out of 16 800 seeds (0.024%). No evidence for either premature activation or absence of activation of the recombinase system was observed under stress conditions in the laboratory. This approach can prevent adventitious presence of transgenes in non-GM crops or related wild species by gene flow. Such biological containment may help the deployment and management of coexistence practices to support consumer choice and will promote clean molecular farming for the production of high-value compounds in plants.  相似文献   

16.
目前,几乎所有的植物遗传转化中都要使用选择性标记基因诸如抗生素或除草剂抗性基因等来筛选转化子.为了消除由此而引起的公众的安全性顾虑,一种全新的发展策略即获取无选择标记的转基因植物应运而生.无选择标记的转基因植物具有许多独特的优势,如消除大众对转基因植物中含有选择标记基因而引起的恐惧及可以反复地向已转化的植物中叠加外源基因等,因此,这种新策略(无标记)有着巨大的应用潜力.本文对获得无标记转基因植物的一些途径做一综述.  相似文献   

17.
The proper use of a marker gene in a transformation process is critical for the production of transgenic plants. However, consumer concerns and regulatory requirements raise an objection to the presence of exogenous DNA in transgenic plants, especially antibiotic-resistant genes and promoters derived from viruses. One approach to overcome this problem is the elimination of marker genes from the plant genome by using several site-specific recombination systems. We propose an alternative method to solve this problem using a marker gene exclusively derived from the host plant DNA. We cloned a genomic DNA fragment containing regulatory and coding sequences of acetolactate synthase (ALS) gene from rice, and mutagenized the ALS gene into a herbicide-resistant form. After transfer of this construct to the rice genome, transgenic plants were efficiently selected with a herbicide, bispyribac-sodium salt, which inhibits the activity of wild type ALS. We also analyzed the regulatory feature of the rice ALS gene promoter with the gusA reporter gene and revealed that GUS expression was observed constitutively in aerial parts of rice seedlings and root tips. The marker system consisted exclusively of host plant DNA and enabled efficient selection in a monocot crop plant, rice. The selection system can potentially be applied to generate transgenic plants of other crop species and can be expected to be publicly acceptable.  相似文献   

18.
We describe here a practical system for generating selectable marker-free transgenic woody plants independent of sexual crossing. We previously reported that the GST-MAT vector system could produce marker-free transgenic tobacco plants containing a single-copy transgene at high frequency. The GST-MAT vector system consists of a DNA excision cassette of the R/RS site-specific recombination system from Zygosaccharomyces rouxii into which the isopentenyltransferase gene from Agrobacterium tumefaciens has been inserted. In this study, we applied this new GST-MAT vector to hybrid aspen (Populus Sieboldii X Populus grandidentata), a model of vegetatively propagated plant species, to produce selectable marker-free transgenic woody plants. In the new GST-MAT vector, the chimeric ipt gene fused with a light-inducible rbcS promoter efficiently produced transgenic ipt-shooty with GUS activity from 38.0% of infected stems. Upon excision of the R and ipt genes between RS sites, regulated by the inducible promoter of the maize glutathione-S-transferase (GST-II-27) gene, 3 (21.4%) transgenic hybrid aspen plants with marker-free and normal phenotype were generated from 14 ipt-shooty lines within 2 months after cutting induction. These results suggest that the MAT-vector system might be useful for removing a selectable marker gene independent of sexual crossing in vegetatively propagated species.  相似文献   

19.
The use of recombinases for genomic engineering is no longer a new technology. In fact, this technology has entered its third decade since the initial discovery that recombinases function in heterologous systems (Sauer in Mol Cell Biol 7(6):2087–2096, 1987). The random insertion of a transgene into a plant genome by traditional methods generates unpredictable expression patterns. This feature of transgenesis makes screening for functional lines with predictable expression labor intensive and time consuming. Furthermore, an antibiotic resistance gene is often left in the final product and the potential escape of such resistance markers into the environment and their potential consumption raises consumer concern. The use of site-specific recombination technology in plant genome manipulation has been demonstrated to effectively resolve complex transgene insertions to single copy, remove unwanted DNA, and precisely insert DNA into known genomic target sites. Recombinases have also been demonstrated capable of site-specific recombination within non-nuclear targets, such as the plastid genome of tobacco. Here, we review multiple uses of site-specific recombination and their application toward plant genomic engineering. We also provide alternative strategies for the combined use of multiple site-specific recombinase systems for genome engineering to precisely insert transgenes into a pre-determined locus, and removal of unwanted selectable marker genes.  相似文献   

20.
无标记(Marker—Free):转基因植物研究的新趋势   总被引:13,自引:0,他引:13  
目前 ,几乎所有的植物遗传转化中都要使用选择性标记基因诸如抗生素或除草剂抗性基因等来筛选转化子。为了消除由此而引起的公众的安全性顾虑 ,一种全新的发展策略即获取无选择标记的转基因植物应运而生。无选择标记的转基因植物具有许多独特的优势 ,如消除大众对转基因植物中含有选择标记基因而引起的恐惧及可以反复地向已转化的植物中叠加外源基因等 ,因此 ,这种新策略 (无标记 )有着巨大的应用潜力。本文对获得无标记转基因植物的一些途径做一综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号