首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sensory projection pattern of homoeotic antennal or leg tissue in the proboscis of the mutant proboscipedia in Drosophila melanogaster was studied using orthograde diffusion of cobalt chloride. Both kinds of ectopic nerve fibers terminate in the normal center of the proboscis and in the antennal glomerulus of the brain. These centers are attained by axons which may pass via four different peripheral nerves. In contrast, wild-type proboscis fibers use only one pathway. Depending on the site of entrance into the brain, homoeotic axons may project into the proboscis center first, and then into the antennal glomerulus, or vice versa. Consequently, the tract between these two brain regions may be followed in opposite directions. Ectopic leg axons extending into normal leg centers in the thoracic ganglion have not been found. Projection patterns in proboscipedia are discussed together with those of the leg-like antenna in spineless-aristapedia (R. F. Stocker and P. A. Lawrene, 1981, Dev. Biol.82, 224–237). The fact that displaced antennal and leg neurons project specifically into normal proboscis and antennal centers may reflect the serial homology of antennal, leg, and proboscis neurons, and similar homology of the corresponding centers.  相似文献   

2.
The sensory projection of homoeotic tarsal neurons in the antennal mutant spineless-aristapedia (ssa) is compared with the projections of wild-type antennae and tarsi. The projection pattern was identified by diffusion of cobalt into the cut peripheral nerves followed by Timm's silver intensification. No sensory fibers of the homoeotic tarsus extend into the thoracic leg centers; instead they project into normal antennal centers of the brain. In the posterior antennal center and the posterior part of the suboesophageal ganglion (SOG) they show precisely the same pattern as do those from the wild-type antenna. In other regions this is not the case: in the antennal glomeruli homoeotic terminals are randomly distributed, and in the anterior SOG fibers form a tract which is not present in antennal cobalt fills. We have not found any correspondence between thoracic and homoeotic tarsal projections. The projection of homoeotic tarsi in mosaic flies exhibiting an ssa antenna and a wild-type brain is similar to the “normal” homoeotic pattern. This suggests that the central nervous system (cns) is not transformed by the ssa gene. The behavior of normal and ectopic sensory fibers in the cns is explained in terms of both intrinsic properties of the sensory axons and extrinsic factors in the surrounding nervous tissue.  相似文献   

3.
Summary Receptor cell axons from the antennal flagellum terminate in the glomeruli of the ipsilateral deutocerebrum in Periplaneta americana and Locusta migratoria. Processes from several groups of deutocerebral neurons also enter the glomeruli and terminate in characteristic branching patterns. There, they contact the antennal axons. Connections are both convergent and divergent. Not only do single central neurons collect the inputs from many receptor cells, but receptor axons were often observed to branch and terminate at more than one deutocerebral neuron. The axons from a portion of the neurons go to form the deutocerebral bundle of the tractus olfactorioglobularis. These axons of the bundle terminate in the ipsilateral calyx of the corpus pedunculatum and in the lateral lobus protocerebri. The processes of the majority of the deutocerebral neurons stay within the deutocerebrum itself and may serve as local interneurons. Part of some antennal fibers terminate in the lobus dorsalis. The lobus glomeratus receives inputs from the maxillary palps and also from processes of deutocerebral neurons.Electron microscopy of synaptic connections and anatomical experiments reveal a complicated pattern of connections between receptor axons and higher order neurons as well as between higher order neurons themselves within the glomeruli.The ratio of the number of antennal fibers to that of relay fibers could easily lead to the interpretation, that the deutocerebrum merely serves as a device for reducing the number of transmission channels. However, coupled with physiological data, anatomical details such as conand divergence of input and interconnections between input channels suggest rather a filtering system and a highly complicated integrative network.  相似文献   

4.
In Diptera and in other insects sensory organ patterns play an important role in the construction of phylogenies based on morphological characters. In this paper I explore the developmental basis for sensory organ pattern transformations between and within species. Knowledge of the properties of sensory organ development provides a foundation to judge the correspondence relationships between sensory organs. This is used to explore what components of notum bristle patterns are equivalent across the Schizophora. By investigating patterning processes in leg development, and their conservation across holometabolous insects, I show ways of relating specialised leg vestiture between species. Sensory organ patterns on the legs are diversified under homeotic gene control, potentially adding patterns of homeotic variation between legs to the list of informative traits for phylogenetic analysis. Correspondence relationships between wing and haltere sensory organ fields are resolved by exploring homeotic gene action in detail.  相似文献   

5.
Summary The antennae of the rock lobster,Palinurus vulgaris, show systematic responses to movements of the legs on a tilting footboard. Myographic recordings in muscles of the first antennal segment have been used in an analysis of the sensory basis of these reactions. Antennal posture is modified in the experimental apparatus, although its relation to the change in loading conditions of the legs is uncertain. The motor control of the antennal equilibrium responses involves a complete reciprocation between both excitatory and inhibitory motoneurones to the antagonist muscle groups in the two antennae. Sensory inputs from single legs produce movements of both antennae, but a stronger drive ipsilaterally. Leg receptor inputs also modulate antennal resistance reflexes in a systematic manner, providing a sensitive test for the involvement of particular receptor organs in the leg. Movement at the coxo-basal leg joint is a major source of sensory input, and ablation/ stimulation experiments have established that stimulation of the CB chordotonal organ is a necessary but not sufficient condition to produce the antennal equilibrium reactions. The possibility is discussed that other receptors at the coxo-basal joint are also involved.D.M.N. was supported by a grant from The Max-Planck Institut to Professor H. Schöne.  相似文献   

6.
In D. melanogaster the cross-sectioned nerve of the leg-like antenna in the homeotic mutant Antennapedia was ultrastructurally compared with the nerves of the morphologically related second leg and the wild-type antenna. The nerves of the normal antenna and the second leg differ from one another in both the numbers and arrangement of axons. According to these criteria the nerve of the homeotic appendage was structurally identified as a leg nerve. Most of the antennal nerves studied showed a consistent grouping of axons in the profile. This suggests that the assemblage of the axons does not occur randomly, but in an ordered fashion.  相似文献   

7.
《Developmental biology》1986,113(1):160-173
The ability of sensory neurons to establish specific synaptic contacts in the central nervous system (CNS) can be studied by changing the spatial relationship between the periphery and the CNS. In contrast to the genetic displacement of appendages by homoeotic mutations, the surgical approach used in this study allows one to place homologous as well as heterologous appendages to the same site on the body surface. Using an improved technique of “surface transplantation,” we generated supernumerary appendages of any desired type in a particular abdominal position. The sensory axons originating from these grafts enter the CNS through the main abdominal nerve and arborize in the fused abdominal ganglia; many fibers extend also into thoracic centers. In the abdominal ganglia, terminals from dorsal transplants (wings and halteres) stay on the ipsilateral side, whereas terminals from ventral transplants (legs and antennae) distribute ipsi- and contralaterally. The same preference holds true for dorsal and ventral abdominal bristles, respectively, whose projection patterns served as a reference. In thoracic ganglia, axons from dorsal and ventral grafts yield completely different terminal patterns. Dorsal grafts project into the ipsilateral wing center, even in the mutant wingless, in which normal wing afferents are suppressed. In contrast, fibers from ventral grafts often extend along the thoracic midline. These data indicate that sensory axons of homologous appendages on the one hand, and their central targets on the other, share serially repeated surface markers. This may enable sensory fibers to recognize centers of homologous appendages.  相似文献   

8.
The development of the sensory neuron pattern in the antennal disc of Drosophila melanogaster was studied with a neuron-specific monoclonal antibody (22C10). In the wild type, the earliest neurons become visible 3 h after pupariation, much later than in other imaginal discs. They lie in the center of the disc and correspond to the neurons of the adult aristal sensillum. Their axons join the larval antennal nerve and seem to establish the first connection towards the brain. Later on, three clusters of neurons appear in the periphery of the disc. Two of them most likely give rise to the Johnston's organ in the second antennal segment. Neurons of the olfactory third antennal segment are formed only after eversion of the antennal disc (clusters t1-t3). The adult pattern of antennal neurons is established at about 27% of metamorphosis. In the mutant lozenge3 (lz3), which lacks basiconic antennal sensilla, cluster t3 fails to develop. This indicates that, in the wild type, a homogeneous group of basiconic sensilla is formed by cluster t3. The possible role of the lozenge gene in sensillar determination is discussed. The homeotic mutant spineless-aristapedia (ssa) transforms the arista into a leg-like tarsus. Unlike leg discs, neurons are missing in the larval antennal disc of ssa. However, the first neurons differentiate earlier than in normal antennal discs. Despite these changes, the pattern of afferents in the ectopic tarsus appears leg specific, whereas in the non-transformed antennal segments a normal antennal pattern is formed. This suggests that neither larval leg neurons nor early aristal neurons are essential for the outgrowth of subsequent afferents.  相似文献   

9.
The third antennal segment (= funiculus) of wild-type Drosophila melanogaster shows a sexually dimorphic distribution of sensilla: Males possess about 20% less of large basiconic sensilla, but approx 30% more trichoid sensilla than the female. The funiculus of the mutant lozenge3 is much reduced in size. Moreover, basiconic sensilla are completely lacking, and the number and density of trichoid sensilla are reduced. In contrast, the number and density of coeloconic sensilla are increased. The loss of sensilla in lozenge3 leads to a corresponding loss of sensory fibers in the antennal nerve. The antennal commissure of the wild type consists essentially of afferents from the funiculus which extend into the contralateral half of the brain. In the antennal commissure of lozenge3, more than twice the number of fibers lacking in the antennal nerve have disappeared which suggests that most afferents establish purely ipsilateral terminals. A highly specific change in the brain of lozenge3 is the loss of a particular subunit of the antennal center, the glomerulus V. This has previously been shown to be a major target of fibers from basiconic sensilla. Mosaic flies exhibiting a lozenge3 antenna demonstrate that the elimination of glomerulus V is causally related to the change in the sensilla pattern. This implies that the development and/or survival of particular target regions in the antennal center depends on sensory input. Furthermore, it shows that glomerulus V is specifically involved in the processing of information from basiconic sensilla.  相似文献   

10.
Summary In spiders the bulk of the central nervous system (CNS) consists of fused segmental ganglia traversed by longitudinal tracts, which have precise relationships with sensory neuropils and which contain the fibers of large plurisegmental interneurons. The responses of these interneurons to various mechanical stimuli were studied electrophysiologically, and their unilateral or bilateral structure was revealed by intracellular staining. Unilateral interneurons visit all the neuromeres on one side of the CNS. They receive mechanosensory input either from a single leg or from all ipsilateral legs via sensory neurons that invade leg neuromeres and project into specific longitudinal tracts. The anatomical organization of unilateral interneurons suggests that their axons impart their information to all ipsilateral leg neuromeres. Bilateral interneurons are of two kinds, symmetric and asymmetric neurons. The latter respond to stimulation of all legs on one side of the body, having their dendrites amongst sensory tracts of the same side of the CNS. Anatomical evidence suggests that their terminals invade all four contralateral leg neuromeres. Bilaterally symmetrical plurisegmental interneurons have dendritic arborizations in both halves of the fused ventral ganglia. They respond to the stimulation of any of the 8 legs. A third class of cells, the ascending neurons have unilateral or bilateral dendritic arborizations in the fused ventral ganglia and show blebbed axons in postero-ventral regions of the brain. Their response characteristics are similar to those of other plurisegmental interneurons. Descending neurons have opposite structural polarity, arising in the brain and terminating in segmental regions of the fused ventral ganglia. Descending neurons show strong responses to visual stimulation. Approximately 50% of all the recorded neurons respond exclusively to stimulation of a single type of mechanoreceptor (either tactile hairs, or trichobothria, or slit sensilla), while the rest respond to stimulation of a variety of sensilla. However, these functional differences are not obviously reflected by the anatomy. The functional significance of plurisegmental interneurons is discussed with respect to sensory convergence and the coordination of motor output to the legs. A comparison between the response properties of certain plurisegmental interneurons and their parent longitudinal tracts suggests that the tracts themselves do not reflect a modality-specific organization.Abbreviations BPI bilateral plurisegmental interneuron - CNS central nervous system - FVG fused ventral ganglia - LT longitudinal tract - PI plurisegmental interneuron - PSTH peristimulus timehistogram - UPI unilateral plurisegmental interneuron  相似文献   

11.
Ueda  S.  Kawata  M.  Sano  Y. 《Cell and tissue research》1983,234(2):237-248
Summary Cobalt fills from small, defined regions of the antenna in D. melanogaster show that the three types of sensilla on the third segment, the flagellum, and a fourth sensillum located in the arista, project into the glomeruli of the antennal lobe. We have identified 19 glomeruli in each lobe, according to their location, shape, and size. At least ten of these represent major projection areas of flagellar or aristal sensilla. The large majority of glomeruli is innervated from both antennae, but a small group of five receive exclusively ipsilateral input. A particular sensory fiber appears to terminate only in one specific glomerulus, either in the ipsilateral or in both lobes. Fills from flagellar regions bearing a single type of sensillum, yield a specific pattern of glomeruli containing stained terminals. Aristal projections remain strictly ipsilateral, whereas those from the other sensilla consist of an ipsilateral and a bilateral component. When filling from different points in an area bearing one type of sensillum, similar projections are produced, suggesting that projection patterns observed reflect predominantly the type of sensillum rather than its location on the flagellum. Accordingly, individual glomeruli might represent functional units, each receiving antennal input in a characteristic combination.We are indebted to Dr. H. Tobler for critical comments. R.F.S. was supported by the Swiss National Foundation (Grant No. 3.541-0.79) as well as a Travel Aid by the Swiss Academy of Sciences  相似文献   

12.
Octopod (Octo) is a mutation of the moth Manduca sexta, which transforms the first abdominal segment (A1) in the anterior direction. Mutant animals are characterized by the appearance of homeotic thoracic-like legs on A1. We exploited this mutation to determine what rules might be used in specifying the fates of sensory neurons located on the body surface of larval Manduca. Mechanical stimulation of homeotic leg sensilla did not cause reflexive movements of the homeotic legs, but elicited responses similar to those observed following stimulation of ventral A1 body wall hairs. Intracellular recordings demonstrated that several of the motoneurons in the A1 ganglion received inputs from the homeotic sensory hairs. The responses of these motoneurons to stimulation of homeotic sensilla resembled their responses to stimulation of ventral body wall sensilla. Cobalt fills revealed that the mutation transformed the segmental projection pattern of only the sensory neurons located on the ventral surface of A1, resulting in a greater number with intersegmental projection patterns typical of sensory neurons found on the thoracic body wall. Many of the sensory neurons on the homeotic legs had intersegmental projection patterns typical of abdominal sensory neurons: an anteriorly directed projection terminating in the third thoracic ganglion (T3). Once this projection reached T3, however, it mimicked the projections of the thoracic leg sensory neurons. These results demonstrate that the same rules are not used in the establishment of the intersegmental and leg-specific projection patterns. Segmental identity influences the intersegmental projection pattern of the sensory neurons of Manduca, whereas the leg-specific projections are consistent with a role for positional information in determining their pattern. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
Homoeotic appendages provide a system for the analysis of neural path-finding in which the appendage is mismatched with its segmented ganglion. Central projections of sensory neurons from homoeotic antennapedia regenerates induced by antennal amputation in the stick insect, Carausius morosus, are described. The majority of afferent axons project to the olfactory lobe as in the normal antennal nerve, but they do not give rise to compact glomeruli. Nor does the form of the projection resemble that of leg sensory nerves in thoracic ganglia. The projection of antennapedia regenerate neurons in Carausius resembles the antennapedia mutant of Drosophila except that some primary afferents bypass the olfactory lobe and take several courses through the brain, sometimes reaching distant contralateral areas. It appears that these wandering fibers, having bypassed the olfactory lobe, tend to follow established tracts and to arborize or to deviate at circumscribed synaptic areas. The behavioral evidence for sensory input from antennapedia regenerates is equivocal.  相似文献   

14.
The effects of the venoms of the spiders Latrodectus mactans tredecimguttatus (black widow) and Latrodectus mactans hasselti (red back) on sensory nerve terminals in muscle spindles were studied in the mouse. A sublethal dose of venom was injected into tibialis anterior and extensor digitorum longus muscles of one leg. After survival from 30 minutes to 6 weeks muscles were examined in serial paraffin sections impregnated with silver or by electron microscopy. Sensory endings became swollen, some within 30 minutes, while over the next few hours there was progressive degeneration of annulospiral endings. By 24 hours every spindle identified by light or electron microscopy was devoid of sensory terminals. Degenerated nerve endings were taken up into the sarcoplasm of intrafusal muscle fibres. Regeneration of sensory axons began within 24 hours, new incomplete spirals were formed by 5 days and by 1 week annulospiral endings were almost all normal in appearance. Intrafusal motor terminals underwent similar acute degenerative and regenerative changes. These experiments show that intrafusal sensory and motor terminals are equally affected by Latrodectus venoms. Sensory nerve fibres possess a capacity for regeneration equal to that of motor fibres and reinnervate intrafusal muscle fibres close to their original sites of innervation.  相似文献   

15.
The central projection patterns of sensory cells from the wing and haltere of Drosophila, as revealed by filling their axons with cobalt, consist of dorsal components arising from small campaniform sensilla and ventral components arising from large campaniform sensilla and from bristles. All of the bristles of the wing are innervated, some singly and some multiply. All three classes of sensilla are strongly represented on the wing, but the haltere carries primarily small campaniform sensilla and has a correspondingly minute ventral projection. In bithorax mutants in which the haltere is transformed into wing, ventral components are added to the projection pattern, while the dorsal components appear as if haltere tissue were still present. Thus, the three classes of receptors not only produce different projection patterns when they develop in their native mesothoracic segment, but also behave differently in the homeotic situation. Consequently, different developmental programs are inferred for each class. When somatic recombination clones of bithorax tissue are generated in phenotypically wild-type flies, they also produce ventral projections. However, these projections of mutant fibers into wild-type ganglia differ in certain details from the projections of mutant fibers into mutant ganglia. Thus, homeotic changes are inferred to occur in the CNS of mutant flies, but these are not required for the execution of those developmental instructions carried in the genome of large campaniform and bristle sensory cells which specify that their axons should grow ventrad in the CNS.  相似文献   

16.
The horseradish peroxidase (HRP) histochemical technique was used to examine the peripheral distribution and afferent projections of the trigeminal nerve in the goldfish, Carassius auratus. Sensory fibers of the trigeminal nerve distribute over the head via four branches. The ophthalmic branch distributes fibers to the region above the eye and naris. The maxillary and mandibular branches innervate the regions of the upper and lower lip, respectively. A fourth branch of the trigeminal nerve was demonstrated to be present in the hyomandibular trunk. Upon entering the medulla the trigeminal afferent fibers divide into a rostromedially directed bundle and a caudally directed bundle. The rostromedially directed bundle terminates in the sensory trigeminal nucleus (STN) located within the rostral medulla. The majority of fibers turn caudally, forming the descending trigeminal tract. Fibers of the descending trigeminal tract terminate within three medullary nuclei: the nucleus of the descending trigeminal tract (NDTV), the spinal trigeminal nucleus (Spv), and the medial funicular nucleus (MFn). All projections, except for those to the MFn, are ipsilateral. Contralateral projections were observed at the level of the MFn following the labeling of the ophthalmic and maxillomandibular branches. All branches of the trigeminal nerve project to all four of the trigeminal medullary nuclei. Projections to the STN and MFn were found to be topographically organized such that the afferents of the ophthalmic branch project onto the ventral portion of these nuclei, while the afferents of the maxillo- and hyomandibular branches project to the dorsal portion of these nuclei. Cells of the mesencephalic trigeminal nucleus were retrogradely labeled following HRP application to the ophthalmic, maxillary, and mandibular branches of the trigeminal nerve. In addition to demonstrating the ascending mesencephalic trigeminal root fibers, HRP application to the above-mentioned branches also revealed descending mesencephalic trigeminal fibers. The descending mesencephalic trigeminal fibers course caudally medial to the branchiomeric motor column and terminate in the ventromedial portion of the MFn.  相似文献   

17.
Loss-of-function mutations in the spineless-aristapedia gene of Drosophila (ssa mutants) cause transformations of the distal antenna to distal second leg, deletions or fusions of the tarsi from all three legs, a general reduction in bristle size, and sterility. Because ssa mutants are pleiotropic, it has been suggested that ss+ has some rather general function and that the ssa antennal transformation is an indirect consequence of perturbations in the expression of other genes that more directly control antennal or second leg identity. Here we test whether the ssa transformation results from aberrant expression of Antennapedia (Antp), a homeotic gene thought to specify directly the identity of the second thoracic segment. We find that Antp-ssa mitotic recombination clones in the distal antenna behave identically to Antp+ ssa clones, and are transformed to second leg. This demonstrates that the ssa antennal transformation is independent of Antp+, and suggests that ss+ may itself directly define distal antennal identity. The results also reveal that Antp+ is not required for the development of distal second leg structures, as these develop apparently normally in Antp- ssa antennal clones. Because Antp- mutations cause deletions or transformations that are restricted to proximal structures, whereas ssa alleles cause similar defects that are distally restricted, we suggest that ss+ and Antp+ may play similar, but complementary, roles in the distal and proximal portions of appendages, respectively.  相似文献   

18.
In specific genetic backgrounds, a mutation in the tuh-3 gene results in the homeotic transformation of head structures to either leg disc derivatives or structures normally found in the extreme posterior end of wild-type animals. The origins of the homeotic structures were mapped to defined positions in the eye-antennal imaginal disc by transplanting abnormal regions of discs isolated from tuh-3 mutants into host mwh;e4 larvae. These metamorphosed implants were removed and differentiated structures were identified. Of 211 successfully recovered implants, 157 gave rise to homeotic tissue: abdominal tergite, male or female external genitalia and/or leg tissue. Transformations to abdominal tergite occurred primarily in cells taken from the eye region of the compound disc. Male and female genitalia arose most often in implants taken from the antennal portion of the disc, although some tissue taken from the lateral region of the eye disc also gave rise to external genitalia. Leg structures came exclusively from implants from the antennal region of the imaginal disc. These results suggest that cells from within specific regions of the eye-antennal compound disc are constrained in their developmental potential. An obvious constraint observed with this mutation is a dorsal/ventral one: Cells from the eye disc, a dorsal structure, primarily gave rise to other dorsal structures, abdominal tergite tissue. Cells from the antennal disc, a ventrally derived structure, primarily gave rise to other ventral structures including genital tissue and distal leg.  相似文献   

19.
Primary sensory neurons project to motor neurons directly or through interneurons and affect their activity. In our previous paper we showed that intramuscular sprouting can be affected by changing the sensory synaptic input to motor neurons. In this work, motor axon sprouting within a peripheral nerve (extramuscular sprouting) was induced by nerve injury at such a distance from muscle so as not to allow nerve-muscle trophic interactions. Two different procedures were carried out: (1) sciatic nerve crush and (2) sciatic nerve crush with homosegmental ipsilateral L3-L5 dorsal rhizotomy. The number of regenerating motor axons innervating extensor digitorum longus muscle was determined by in vivo muscle tension recordings and an index of their individual conduction rate was obtained by in vitro intracellular recordings of excitatory postsynaptic end-plate potentials in muscle fibers. The main findings were: (1) there are more regenerated axons distally from the lesion than parent axons proximally to the lesion (sprouting at the lesion); (2) sprouting at the lesion was negatively affected by homosegmental ipsilateral dorsal rhizotomy; (3) the number of motor axons innervating extensor digitorum longus muscle extrafusal fibers counted proximally to the lesion increased following nerve injury and regeneration but this did not occur when sensory input was lost. A transient innervation of extrafusal fibers by &#110 motor neurons may explain the increase of motor axons counted proximally to the lesion.  相似文献   

20.
The fine structure and primary sensory projections of sensilla located in the labial-palp pit organ of the cotton bollworm Helicoverpa armigera (Insecta, Lepidoptera) are investigated by scanning electron and transmission electron microscopy combined with confocal laser scanning microscopy. The pit organ located on the third segment of the labial palp is about 300 μm deep with a 60-μm-wide opening, each structure containing about 1200 sensilla. Two sensillum types have been found, namely hair-shaped and club-shaped sensilla, located on the upper and lower half of the pit, respectively. Most sensilla possess a single dendrite. The dendrite housed by the club-shaped sensilla is often split into several branches or becomes lamellated in the outer segment. As reported previously, the sensory axons of the sensilla in the labial pit organ form a bundle entering the ipsilateral side of the subesophageal ganglion via the labial palp nerve and project to three distinct areas: the labial pit organ glomerulus in each antennal lobe, the subesophageal ganglion and the ventral nerve cord. In the antennal lobe, the labial pit organ glomerulus is innervated by sensory axons from the labial pit organ only; no antennal afferents target this unit. One neuron has been found extending fine processes into the subesophageal ganglion and innervating the labial palp via one branch passing at the base of the labial palp nerve. The soma of this assumed motor neuron is located in the ipsilateral cell body layer of the subesophageal ganglion. Our results provide valuable knowledge concerning the neural circuit encoding information about carbon dioxide and should stimulate further investigations directed at controlling pest species such as H. armigera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号