首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Influence of dietary vitamin E on prostaglandin biosynthesis in rat blood   总被引:2,自引:0,他引:2  
A vitamin E (-tocopherol) deficient diet stimulated prostaglandin biosynthesis in coagulating rat blood. Prostaglandins were extracted from serum, purified and bioassayed. The identity of prostaglandin E2 was confirmed by gas chromatography-mass spectrometry. Withholding vitamin E from the diet caused a marked increase in PGE2 and a lesser increase in PGF2 production in serum. In rats maintained on diets containing different concentrations of vitamin E, serum concentrations of PGE2 and PGF2 were inversely related to serum concentrations of -tocopherol. These data suggest that in vivo -tocopherol inhibits the endogenous conversion of arachidonic acid into PGE2 and PGF2. The possibility that -tocopherol may inhibit the formation of endoperoxide intermediates of PGE2 and PGF2 biosynthesis and subsequent induction of platelet aggregation is discussed.  相似文献   

2.
The radioimmunological (RIA) determination of prostaglandin (PG) E2 and of PGF2alpha in urine of humans and rats is described in detail. After extraction and chromatography PGE2 was determined by using a PGE specific antibody or by using either PGB or PGF2alpha specific antibodies after the respective conversion procedures. The three different RIA procedures were compared to each other. PGF2alpha was determined by a specific antibody to PGF2alpha. Basal excretion of PGE2 and of PGF2alpha in healthy women on free diet was 9.3 ng/hour+/-0.98 and 18.3 ng/hour +/- 2.5 respectively. Furosemide increased the excretion of PGE2 and of PGF2alpha in humans significantly, while PG-excretion rates decreased on indomethacin. In rat urine PGE2 and PGF2alpha increased markedly from 46.2 pg/min +/- 9.3 and 27+/- 3.4 to 253.8 +/- 43.3 and 108 +/- 12.6 pg/min (per one kidney) in the anesthetized-laparotomized animal. This increase was abolished after giving two different PG synthetase inhibitors.  相似文献   

3.
The influences of sex and acute inflammation on prostaglandin biosynthesis in rabbit gallbladder were examined by radiochromatography. Male rabbit gallbladder microsomes converted small amounts of labelled arachidonate to total prostaglandin synthesis with PGE2, 6-keto PGF1 alpha (stable metabolite of PGI2) and PGF2 alpha as the major products synthesized. Microsomes from the male rabbit gallbladder inflamed by bile duct ligation for 3 days increased total prostaglandin synthesis five-fold with 6-keto PGF1 alpha being the major prostaglandin produced. Female rabbit gallbladder microsomes converted three times more arachidonate to total prostaglandin synthesis than did microsomes from the male rabbit. Bile duct ligation did not alter total prostaglandin biosynthesis in the female rabbit gallbladder, but significantly decreased synthesis of PGE2, thromboxane B2 and PGF2 alpha and increased synthesis of 6-keto PGF1 alpha. These data suggest that although bile duct ligation had different effects on male and female gallbladder total prostaglandin synthesis, 6-keto PGF1 alpha is the major product induced by this stimulus for acute inflammation.  相似文献   

4.
Human plasma has been reported to inhibit the conversion of arachidonic acid into prostaglandin (PG) E2 and PGF2 alpha. In the present study the plasma inhibitory activity was determined in three groups (16 each) of plasma obtained from normal healthy volunteers, treated asthmatics and untreated asthmatic patients. The result showed that plasma from all three groups were equally effective in inhibiting the biosynthesis of PGE2. Plasma of normal volunteers and treated asthmatics also inhibited PGF2 alpha biosynthesis. In contrast the plasma obtained from untreated asthmatics was considerably less active in inhibiting the biosynthesis of PGF2 alpha than plasma from the other two groups.  相似文献   

5.
Two studies tested the hypothesis that eicosapentaenoic (20:5omega3; EPA), docosahexaenoic acids (22:6omega3; DHA) or linoleic acid (C18:2omega6; LIN) reduced bovine endometrial and trophoblast prostaglandin F(2alpha) (PGF(2alpha)) and prostaglandin E(2) (PGE(2)) release during short-term culture. In Study 1, endometrial tissues were collected from non-lactating, non-pregnant cows and endometrial plus trophoblast tissues from pregnant cows 16 days post-insemination. In Study 2, endometrial and trophoblast tissues were collected on day 17 of pregnancy, from cows synchronised using a double prostaglandin (PG) or Ovagentrade mark synchronisation. Tissues were incubated in medium only (M) or media supplemented with fatty acids: eicosapentaenoic (20:5omega3; EPA), docosahexaenoic acids (22:6omega3; DHA) or linoleic acid (C18:2omega6; LIN). In Study 1, PGE(2) release from 'pregnant' endometria was higher (P=0.094) than from 'non-pregnant' endometria, while PGF(2alpha) concentrations were similar. Fatty acids treatment had no effect on PGF(2alpha) or PGE(2) release from either pregnant or non-pregnant endometria. Individual fatty acid treatments had no effect on the ratio of PGF(2alpha) to PGE(2) from trophoblast tissues, but when the data from the 3 fatty acid treatments were combined (EPA, DHA and LIN treatment groups) the ratio of PGF(2alpha) to PGE(2) was reduced (P=0.026) when compared to medium only. In Study 2, PGE(2) concentrations were higher (P=0.013) from the trophoblast collected from Ovagentrade mark cows as compared to that of the PG synchrony group. When the data from the 3-omega fatty acids were combined (DHA and EPA treatment groups), the 3-omega treatments decreased (P<0.05) PGE(2) biosynthesis from both endometrial and trophoblast tissues from animals synchronised following PG synchrony but not Ovagentrade mark synchrony. Short-term culture with low concentrations of 3-omega fatty acids tended to reduce prostaglandin release from trophoblast collected 16 days after insemination, with the type of synchrony modifying PGE(2) production from the trophoblast tissues collected 17 days after insemination. The ability of exogenous fatty acids to modify embryonic prostaglandin release needs to be examined in the context of supplementing dairy cows with different sources of fats. Synchronisation method altered trophoblast PGE(2) release, highlighting the importance of the hormonal environment in modifying embryonic prostaglandin synthesis and release.  相似文献   

6.
We have proposed that two of the endogenously synthesized endometrial prostaglandins, prostaglandin F2 alpha (PGF2 alpha) and prostaglandin E1 (PGE1), play a regulatory role in growth control of the endometrium. PGF2 alpha increases DNA synthesis and PGE1 inhibits that effect. Primary cultures of rabbit endometrial cells were used here to examine the effects of the tumor-promoting, diacylglycerol mimicking, phorbol ester, 12-O-tetradecanoyl phorbol-13-acetate (TPA), on the prostaglandin control of cell proliferation. TPA treatment of these cultures results in: a decrease in control levels of proliferation and complete inhibition by TPA of PGF2 alpha stimulated DNA synthesis; a reduction in [3H]PGF2 alpha binding with short term treatment but an increase to above control binding level with long term treatment; an inhibition of the normal PGF2 alpha stimulated inositol polyphosphate synthesis; and a small increase in accumulation of PGF2 alpha in the culture media. Furthermore, in this culture system, TPA does not down regulate [3H]PGE1 binding; it does not alter the normal PGE1 stimulation of cAMP synthesis; and it has no effect on the normal endogenous PGE1 synthesis by these cultures. The above results are consistent with our previous observations that PGF2 alpha works through the intracellular messengers inositol polyphosphate/diacylglycerol whereas PGE1 works through cAMP.  相似文献   

7.
Corpora lutea collected at 15, 30 and 60 min after prostaglandin F2 alpha (PGF2 alpha) treatment were compared to control corpora lutea at 60 min after saline treatment. There were decreases (P less than 0.05) in the relative percentages of cytoplasm occupied by granules in large luteal cells (LLC) by 30 min and in small luteal cells (SLC) by 60 min. Differences were not observed among the groups for lipid inclusions. Luteal progesterone was decreased at all post-PGF2 alpha treatment times when compared to 60-min controls (P less than 0.05). PGF2 alpha was then compared with prostaglandin F1 alpha (PGF1 alpha), prostaglandin E1 (PGE1), and 17-phenyl-18,19,20-trinor-prostaglandin F2 alpha (17-phenyl-PGF2 alpha) in 60-min trials with plasma progesterone and luteinizing hormone (LH) determined every 5 min. LH was not affected by these treatments. Like PGF2 alpha, 17-phenyl-PGF2 alpha induced a greater loss of granules from LLC then SLC. 17-phenyl-PGF2 alpha also induced an increase in the lipid content of LLC. Treatments with PGF2 alpha and 17-phenyl-PGF2 alpha were associated with decreased concentrations of luteal progesterone but PGF1 alpha and PGE1 were without effect on this variable. In contrast to PGF1 alpha, PGE1 increased both luteal progesterone and the area occupied by cytoplasmic granules. The latter effect was greater in LLC than SLC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
M Osada  T Nomura 《Prostaglandins》1990,40(3):229-239
The present experiment was undertaken to investigate the seasonal variations of levels of prostaglandins (PGs) and regulation of these levels in the ovary and hemolymph of the scallop. The levels of prostaglandin F2 alpha (PGF2 alpha) and prostaglandin E2 (PGE2) in the hemolymph and ovary increased during sexual maturation, and these levels in the ovary showed a marked increase in the spawning season. Consecutive administration of antiestrogen inhibited the increase of the levels of PGF2 alpha and PGE2 during sexual maturation. These results indicate that the seasonal variations of the levels of PGF2 alpha and PGE2 are closely related to the reproductive cycle, suggesting that PGF2 alpha and PGE2 may be involved in the sexual maturation and spawning of the scallop. Furthermore, it was supposed that estrogen likely plays a role in the regulation of PGs production in female, well known in mammals.  相似文献   

9.
The present study has been performed to investigate how PGs would participate the hatching process. Effects of indomethacin, an antagonist to PGs biosynthesis, on the hatching of mouse blastocysts were examined in vitro. Furthermore, it was studied that prostaglandin E2 (PGE2), prostaglandin F2 alpha (PGF2 alpha) or 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha) were added to the culture media with indomethacin. The hatching was inhibited by indomethacin yet the inhibition was reversible. In the groups with indomethacin and PGE2, no improvement was seen in the inhibition of hatching and the inhibition was irreversible. In the groups with indomethacin and PGF2 alpha, inhibition of hatching was improved in comparison with the group with indomethacin. In the groups with indomethacin and 6-keto-PGF1 alpha, no improvement was seen. The above results indicated that PGF2 alpha possibly had an accelerating effect on hatching and a high concentration of PGE2 would exert cytotoxic effect on blastocysts.  相似文献   

10.
In cyclic hamsters, exogenous progesterone (100 micrograms) administered s.c. at 09:00 h on the day of dioestrus II reduced prostaglandin (PG) E and 6-keto PGF-1 alpha but not PGF concentrations in preovulatory follicles measured at 09:00 h of pro-oestrus. The injection of 10 micrograms ovine LH (NIADDK-oLH-25) concurrently with 100 micrograms progesterone on dioestrus II prevented the decline in follicular PGE and 6-keto PGF-1 alpha values. Administration of LH alone did not significantly alter follicular PG concentrations. Inhibition of follicular PGE accumulation by progesterone was due to a decline in granulosa PGE concentration and not thecal PGE. Progesterone administration also reduced follicular oestradiol concentrations. Administration of oestradiol-17-cyclopentanepropionate (ECP) (10 micrograms) with progesterone did not prevent the decline in follicular PGE and 6-keto PGF-1 alpha but did increase follicular PGF concentrations. However, ECP given alone on dioestrus II reduced follicular PGE and increased PGF concentrations in preovulatory follicles on pro-oestrus. It is concluded that exogenous progesterone administered on dioestrus II inhibits granulosa PGE and 6-keto PGF-1 alpha accumulation in preovulatory follicles, probably by reducing serum LH concentrations, and that the granulosa cells, which are LH-dependent, are a major source of follicular PGE.  相似文献   

11.
Prostaglandins as reducing agents: a model of adenylate cyclase activation?   总被引:1,自引:0,他引:1  
It has been suggested that adenylate cyclase activation involves reduction of a disulfide linkage. Prostaglandin E1 (PGE1), prostaglandin E2 (PGE2), prostaglandin I2 (PGI2) and prostaglandin F2 alpha (PGF2 alpha) were tested for their ability to act as reducing agents with either cytochrome c, or the disulfide 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), the latter with a catalytic amount of ferric chloride. PGE1, PGE2, and PGI2 significantly reduced cytochrome c while PGF2 alpha did not. PGE1, PGE2 and PGI2 reduced DTNB while PGF2 alpha did not. The results are consistent with the postulate that prostaglandins which are effective in activating adenylate cyclase can act as reducing agents and might be involved in reductive activation of adenylate cyclase.  相似文献   

12.
Groups of eight weanling female F344/N rats were fed semipurified diets that supplied 0, 50, 500, 5000, or 15,000 mg alpha-tocopherol acetate/kg diet, with and without 0.05% phenobarbital (PB) for 9 weeks. Both plasma and hepatic alpha-tocopherol levels, measured by HPLC, strongly correlated with alpha-tocopherol intake (r greater than 0.73, p less than 0.0001). Phenobarbital both depleted hepatic alpha-tocopherol and increased plasma alpha-tocopherol significantly. Although treatment with PB for 9 weeks significantly increased GST activity, PB did not affect hepatic prostaglandin (PG)F2 alpha status, as determined by radioimmunoassay. PGF2 alpha was significantly greater (by 52%) in rats fed no alpha-tocopherol than in rats fed 15,000 mg alpha-tocopherol acetate/kg diet. Hepatic PGF2 alpha status was correlated inversely but weakly with dietary alpha-tocopherol (r = -0.24, p less than 0.05). Hepatic PGF2 alpha status was not correlated with hepatic or plasma alpha-tocopherol status. This finding suggests either that there is a small depletion-resistant subcellular alpha-tocopherol pool which regulates PGF2 alpha production or that alpha-tocopherol alters PGF2 alpha production in vivo by an indirect mechanism.  相似文献   

13.
The effects of histamine and its antagonists on the release of prostaglandin E and F2alpha (PGE and PGF2alpha) and the 15-keto-13,14-dihydro PGF2alpha/E (metabolites) were examined in minced and whole perfused guinea pig lung. Lung fragments released considerable amounts of prostaglandins into the incubation media with time alone: parenchyma more PGF2alpha than PGE, trachea more PGE than PGF2alpha. The levels of PGF2alpha found in the filtrates of both tissues on per gram basis were about the same, whereas the concentrations of PGE were several fold higher in the media of incubated trachea. In contrast to lung, trachea released only trace amounts of metabolites. These differences in synthesis and turnover are probably of importance for maintenance of the adequate ventilation-perfusion ratios. The process of sensitization caused a significant increase in the outflows of PGF2alpha and metabolites from the lung fragments. The PGE to PGF2alpha ratio was decreased in both parenchymal and tracheal tissues. Increased spontaneous release of prostaglandins was also found in whole perfused sensitized lung. This was consistent with the hypothesis that sensitization with antigen alters the biochemical properties of the organism. Incubation of lung fragments with histamine had only a small additional effect on the liberation of prostaglandins, since the baseline release was high due to the trauma of mincing. However, histamine perfusion of whole lung caused severalfold increase in the outflows of prostaglandins. Pretreatment with pyrilamine (histamine receptor 1 antagonist) decreased the subsequent release of PGF2alpha by histamine. On the other hand, pretreatment with metiamide (histamine receptor 2 antagonist) diminished the subsequent release of PGE. It is suggested that stimulation of histamine receptor 1 is predominantly (but not solely) related to the synthesis of PGF2alpha, and stimulation of the receptor 2 is related to the synthesis of PGE.  相似文献   

14.
Two experiments were conducted to determine the effects of 2-hydroxy-estradiol-17 beta (2-OH-E2; 0, 50 and 100 microM) and estradiol-17 beta (E2; 0, 25 and 50 microM) on prostaglandin (PG) E and PGF2 alpha synthesis by day-10 pig blastocysts (day 0 is first day of estrus). Blastocysts were incubated in a modified Krebs-Ringer bicarbonate medium, supplemented with bovine serum albumin (4 mg/ml) and the vitamins and amino acids (essential and nonessential) in Minimum Essential Medium (without phenol red or antibiotics). The incubations were conducted at 39 degrees C for three 2-h periods; the second and third periods included an E2 or catechol estrogen treatment. Release of PGF2 alpha into the culture medium decreased (p less than 0.001) linearly with increasing concentrations of 2-OH-E2 in both periods. Release of PGE was not affected by 2-OH-E2, therefore 2-OH-E2 increased (p less than 0.06) the PGE:PGF2 alpha. When E2 was added to the medium, release of PGE was decreased (p less than 0.01) during the second and third periods. Release of PGF2 alpha also was decreased (p less than 0.05) by E2 during period 2, but E2 did not alter the PGE:PGF2 alpha. Content of PGs in blastocysts at recovery was less than 10% of the PGs released in vitro. Therefore, these studies demonstrate effects of both the primary and catechol forms of E2 on the synthesis of PGE and PGF2 alpha. Catechol estrogens and E2 may inhibit PG synthesis and modify the PGE:PGF2 alpha during the establishment of pregnancy in pigs.  相似文献   

15.
Microsomal prostaglandin E synthase (mPGES)-1 is one of several prostaglandin E synthases involved in prostaglandin H2 (PGH2) metabolism. In the present report, we characterize the contribution of mPGES-1 to cellular PGH2 metabolism in murine macrophages by studying the synthesis of eicosanoids and expression of eicosanoid metabolism enzymes in wild type and mPGES-1-deficient macrophages. Thioglycollate-elicited macrophages isolated from mPGES-1-/- animals and genetically matched wild type controls were stimulated with diverse pro-inflammatory stimuli. Prostaglandins were released in the following order of decreasing abundance from wild type macrophages stimulated with lipopolysaccharide: prostaglandin E2 (PGE2)>thromboxane B2 (TxB2)>6-keto prostaglandin F1alpha (PGF1alpha), prostaglandin F(2alpha) (PGF2alpha), and prostaglandin D2 (PGD2). In contrast, we detected in mPGES-1-/- macrophages a >95% reduction in PGE2 production resulting in the following altered prostaglandin profile: TxB2>6-keto PGF1alpha and PGF2alpha>PGE2, despite the comparable release of total prostaglandins. No significant change in expression pattern of key prostaglandin-synthesizing enzymes was detected between the genotypes. We then further profiled genotype-related differences in the eicosanoid profile using macrophages pre-stimulated with lipopolysaccharide followed by a 10-min incubation with 10 microm [3H]arachidonic acid. Eicosanoid products were subsequently identified by reverse phase high pressure liquid chromatography. The dramatic reduction in [3H]PGE2 formation from mPGES-1-/- macrophages compared with controls resulted in TxB2 and 6-keto PGF1alpha becoming the two most abundant prostaglandins in these samples. Our results also suggest a 5-fold increase in 12-[3H]hydroxyheptadecatrienoic acid release in mPGES-1-/- samples. Our data support the hypothesis that mPGES-1 induction in response to an inflammatory stimulus is essential for PGE2 synthesis. The redirection of prostaglandin production in mPGES-1-/- cells provides novel insights into how a cell processes the unstable endoperoxide PGH2 during the inactivation of a major metabolic outlet.  相似文献   

16.
Luteinizing hormone (LH) stimulates prostaglandin biosynthesis and steroidogenesis in preovulatory (PO) follicles prior to ovulation. Since the ovulatory process shares many similarities with an inflammatory reaction, mediators of the inflammatory response, such as bradykinin (BK) have been suggested to modulate the effects of LH. In the present study the effect of BK (5 microM) on: 1) prostaglandin biosynthesis (PGE2, PGF2 alpha and 6-keto-PGF1 alpha), 2) the levels of two enzymes in the cyclo-oxygenase pathway, prostaglandin endoperoxide synthase (PGS) and prostacyclin synthase (PCS), and 3) cyclic adenosine 3'5'-monophosphate (cAMP) and progesterone response of PO follicles incubated in vitro were examined. LH (0.1 microgram/ml) stimulated the accumulation of cAMP and progesterone in the medium, while BK had no effect on these parameters. BK exerted a slight stimulatory effect on PGE2, and PGF2 alpha, (p less than or equal to 0.01) but not on 6-keto-PGF1 alpha synthesis, but no changes in PGS or PCS levels could be detected. The effect of LH on prostaglandin biosynthesis was much more pronounced, with an increase of PGE2, PGF2 alpha and 6-keto-PGF1 alpha. LH also induced PGS. The combination of LH and BK did not alter these responses compared to that of LH alone. This study demonstrates that BK stimulates prostaglandin biosynthesis in PO follicles. In contrast to LH, this effect of BK does not seem to involve the adenylate cyclase system, since BK did not stimulate cAMP production. BK did not affect the levels of PGS or PCS, and the stimulatory effect of BK is suggested to involve an increase in the availability of substrate for the cyclo-oxygenase pathway.  相似文献   

17.
We have hypothesized that two of the endogenously synthesized endometrial prostaglandins (PGs), prostaglandin F2 alpha (PGF2 alpha), and prostaglandin E1 (PGE1), play a regulatory role in growth control of the rabbit endometrium. PGF2 alpha increases DNA synthesis and PGE1 inhibits that effect. Primary cultures of rabbit endometrial cells were used to examine the possible role of these PGs in the mechanism of action of 17 beta-estradiol on DNA synthesis. Towards this end, binding, second messenger and DNA synthesis experiments were performed. 17 beta-estradiol stimulation resulted in a time dependent (optimal: approximately 6 h) and 17 beta-estradiol concentration dependent (optimal: approximately 10(-7) M 17 beta-estradiol in phenol red-containing medium) increase in [3H]PGF2 alpha binding. Scatchard type analysis of the binding data revealed an increase in receptor number while the receptor affinity for [3H]PGF2 alpha remained the same as in the control treated cultures. This 17 beta-estradiol stimulated increase in PGF2 alpha receptor allowed a suboptimal concentration of PGF2 alpha (10(-9) M) to increase intracellular levels of inositol polyphosphates, while by itself this concentration of PGF2 alpha caused no significant change in intracellular inositol polyphosphate levels. 17 beta-estradiol, alone among the several studied steroid hormones, could increase [3H]PGF2 alpha binding. Proliferation studies revealed that, in these primary cultures of rabbit endometrium, 17 beta-estradiol could increase DNA synthesis but not in the presence of indomethacin, unless PGF2 alpha was added to the medium at a concentration (10(-10) M) near or above what is normally accumulated in the medium by these cultures. In the absence of 17 beta-estradiol stimulation, addition of these same low concentrations of PGF2 alpha had no effect on DNA synthesis. Apparently, through its effect on the PGF2 alpha receptor, 17 beta-estradiol enhances the PGF2 alpha stimulated DNA synthesis response approximately 100 fold. The DNA synthesis induced by 17 beta-estradiol can be inhibited by PGE1, as can PGF2 alpha-induced DNA synthesis. We propose that 17 beta-estradiol may be mediating its mitogenic effect through an alteration of the prostaglandin agonist:antagonist control of proliferation in rabbit endometrial cultures. In addition we suggest that, if 17 beta-estradiol acts to increase PGF2 alpha, receptors as part of its mode of action, this may be of importance in other tissues possessing both prostaglandin and 17 beta-estradiol receptors.  相似文献   

18.
The present study was carried out to evaluate the in vitro brain release of prostaglandin F2 alpha (PGF2 alpha), prostaglandin E2 (PGE2), androgens, and 17 beta-estradiol in male and female crested newt, Triturus carnifex, during three different periods of the annual sexual cycle; in addition, the effects of mammalian gonadotropin-releasing hormone (mGnRH), PGF2 alpha, and PGE2 on prostaglandins and steroids release by the brain were evaluated during the same periods. In brain incubations of both sexes, PGF2 alpha and estradiol were higher during postreproduction, while PGE2 and androgens were higher during reproduction. In both sexes, mGnRH increased PGF2 alpha and estradiol during postreproduction, and PGE2 during reproduction; PGF2 alpha increased estradiol secretion during postreproduction. Only in the male, did both mGnRH and PGE2 increase androgens during reproduction. It could be suggested that in Triturus carnifex, the regulation of the reproductive activity in the central nervous system (CNS) depends on the relationships among mGnRH, prostaglandins and steroids. In particular, PGF2 alpha and PGE2 seem to play different roles in the CNS of the newt: PGF2 alpha is involved in the postreproductive processes, through estradiol secretion, while PGE2 in the reproductive ones (through androgens secretion?).  相似文献   

19.
The synthesis of prostaglandins by rheumatoid synovial tissue in organ culture was studied utilizing radioimmunoassay, with antisera to PGB1, PGF1alpha and PGF2alpha. It was established that PGE2 and PGF2alpha were the major prostaglandins formed by analyses of culture media with the two antisera to PGF, before and after alkali treatment. Indomethacin at 5 mug/ml suppressed prostaglandin synthesis, usually to less than 1% of control cultures. Colchicine, 0.1 mug/ml resulted in marked stimulation of prostaglandin synthesis, in some cases over 10 fold. It is suggested, because of the colchicine effect, that the state of the microtubules may regulate the rate of prostaglandin biosynthesis. It is possible that prostaglandin E2 produced by rheumatoid synovia may contribute to the pathogenesis of the inflammatory reaction and lead to destruction of juxta-articular bone in rheumatoid arthritis.  相似文献   

20.
Prostaglandin F2 alpha (PGF2 alpha), prostaglandin E2 (PGE2), progesterone, androgens, and 17 beta-estradiol in vitro release by the abdominal gland of the crested newt, Triturus carnifex (Laur.), was studied during the prereproductive, reproductive and postreproductive periods. In addition, the in vitro effects of the PGF2 alpha and/or PGE2 on progesterone, androgens and estradiol release by the abdominal gland were evaluated. PGF2 alpha, PGE2 and progesterone release was higher during the reproductive period, and in the same period, PGE2 treatment induced a progesterone increase. PGF2 alpha induced an increase of abdominal gland estradiol release at the end of the reproductive period. These results seemed to confirm the pheromonal role assigned to progesterone, and suggested a PGE2 stimulatory role in inducing progesterone release, even if pheromonal activity of PGF2 alpha and PGE2 cannot be excluded. In addition, PGF2 alpha-dependent estradiol increase at the end of reproduction could be interpreted as a mechanism for interruption of the abdominal gland activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号