首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To improve the current knowledge about the digestive system in opisthobranchs, light and electron microscopy methods were used to characterize the epithelial cells in the mid‐intestine of Aplysia depilans. This epithelium is mainly formed by columnar cells intermingled with two types of secretory cells, named mucous cells and granular cells. Columnar cells bear microvilli on their apical surface and most of them are ciliated. Mitochondria, multivesicular bodies, lysosomes and lipid droplets are the main components of the cytoplasm in the region above the nucleus of these cells. Peroxisomes are mainly found in middle and basal regions, usually close to mitochondria. Mucous cells are filled with large secretory vesicles containing thin electron‐dense filaments surrounded by electron‐lucent material in which acidic mucopolysaccharides were detected. The basal region includes the nucleus, several Golgi stacks and many dilated rough endoplasmic reticulum cisternae containing tubular structures. The granular cells are characterized by very high amounts of flat rough endoplasmic reticulum cisternae and electron‐dense spherical secretory granules containing glycoproteins. Enteroendocrine cells containing small electron‐dense granules are occasionally present in the basal region of the epithelium. Intraepithelial nerve fibres are abundant and seem to establish contacts with secretory and enteroendocrine cells.  相似文献   

2.
The organization of the stomach in the compound styelid ascidian, Polyandrocarpa misakiensis, is described, and the morphology and cell types of the stomach is discussed from the phylogenetic viewpoint. The stomach is a sac-like organ whose wall is formed into longitudinal folds. The stomach consists of external and internal epithelium. The internal epithelium is simple columnar, except for the bottom of the folds. There are five cell types: absorptive cells, zymogenic cells, endocrine cells, ciliated mucous cells, and undifferentiated cells. The absorptive cells have numerous microvilli. The apical region of these cells is occupied by coated vesicles. The zymogenic cells have a conical outline and a few microvilli on their apical surfaces. There are secretory granules in the apical region of zymogenic cells. The endocrine cells have low cell height and electron-dense granules around the nucleus. Endocrine cells have one or two cilia and a few microvilli on the apical surfaces. The basolateral part of these cells often bulges into the adjoining cells. Immunoelectron microscopy revealed that some endocrine cells have serotonin-like immunoreactivity. The ciliated mucous cells are restricted to a single ventral groove. They have numerous microvilli and a few cilia on their apical surfaces. Moderately electron-dense granules are accumulated in the apical part of the ciliated mucous cells. Undifferentiated cells, filled with free ribosomes, form a pseudostratified epithelium in the base of each fold. The nucleus of undifferentiated cells has a prominent nucleolus. The pseudostratified epithelium of the pyloric caecum consists of electron-dense and electron-light cells.  相似文献   

3.
Three different types of lingual papilla were observed by scanning electron microscopy on the dorsal lingual epithelium of the lizard Gekko japonicus. Dome-shaped lingual papillae were located at the apex. Flat, fan-shaped lingual papillae were seen in the widest area of the lingual body. Long, scale-like lingual papillae were arranged on the latero-posterior dorsal surface. At higher magnification, microvilli and microridges were seen to be widely distributed over the surface of the papillae. By light microscopy, the epithelium of the dome-shaped papillae was composed of single, columnar epithelial cells filled with secretory granules. The tip of the epithelium of the fan-shaped and scale-like papillae was composed of stratified squamous epithelial cells without granules. The major part of the epithelium of these two types of papilla, except the tip area, was also composed of single, columnar epithelial cells with secretory granules. By transmission electron microscopy, a nucleus without a defined shape was seen to be located in the basal part of each of the single, columnar epithelial cells. Rough-surfaced endoplasmic reticulum and Golgi apparatus were well developed around the nucleus. The other, major part of the cytoplasm was filled with the spherical secretory granules, a large number of which had very electron-dense cores and moderately electron-dense peripheral regions. In the stratified squamous epithelium, a nucleus, which tended to be condensed on the free-surface side, was located in the center of each cell. Mitochondria, endoplasmic reticulum, and vesicles were observed in the cytoplasm.  相似文献   

4.
(1) alpha-amylase was extracted and purified from the stomach/digestive gland complex of the scallop Pecten maximus and an anti-serum was induced against the purified amylase by rabbit immunization. (2) The anti scallop amylase was used to localize the amylase-secreting cells in the stomach of Pecten maximus by immunofluorescence and immunogold labelling. The amylase-secreting cells are glandular cells particularly numerous in the main sorting area of the stomach. Their secretory granules were found strongly positive for anti-amylase. Three types of glandular cells were observed, actually corresponding to the three stages of the glandular-cell activity, synthesis, secretion and excretion. (3) The synthesizing cell shows the characteristic features of a protein-synthesizing cell: a conspicuous nucleolus and abundant granular endoplasmic reticulum. In the secretory cell, the secretory granules are formed by the Golgi apparatus and accumulate in the apical part of the cell. The secretory cell is filled with two types of secretory granules which are released in the stomach lumen by apocrine excretion. (4) The present study brings the first demonstration of the synthesis and extracellular release of amylase by glandular cells of the stomach epithelium of a bivalve.  相似文献   

5.
Cephalaspideans are a group of opisthobranch gastropods that comprises carnivorous and herbivorous species, allowing an investigation of the relationship between these diets and the morphofunctional features of the salivary glands. In this study, the salivary glands of the carnivorous cephalaspidean Philinopsis depicta were observed by light and electron microscopy. The secretory epithelium of these ribbon-shaped glands is formed by ciliated cells, granular cells and cells with apical vacuole. In ciliated cells the nucleus and most cytoplasmic organelles are located in the wider apical region and a very thin stalk reaches the base of the epithelium. These cells possess significant amounts of glycogen. Granular cells are packed with electron-dense secretory granules and also contain several cisternae of rough endoplasmic reticulum and Golgi stacks. The other type of secretory cell is mainly characterized by the presence of a large apical vacuole containing secretion. These cells possess high amounts of rough endoplasmic reticulum cisternae and several Golgi stacks. Vesicles with peripheral electron-dense material are also abundant, and seem to fuse to form the apical vacuole. The available data point out to a significant difference between the salivary glands of carnivorous and herbivorous cephalaspidean opisthobranchs, with an intensification of protein secretion in carnivorous species.  相似文献   

6.
Membranous organelles, acid glycoconjugates and lipids were characterized in the digestive tract mucosa of Hemisorubim platyrhynchos by cytochemistry techniques. Two types of mucous‐secreting cells were observed in the digestive tract epithelium: goblet cells in the oesophagus and intestine and epithelial cells in the stomach. These cells had a Golgi apparatus more developed than the other cell types. The cytochemical analysis revealed that secretory granules are reactive to acid glycoconjugates, varying in reaction intensity according to the region of the digestive tract. Acid glycoconjugate reactions were also observed in oesophageal epithelial cell microridges and in enterocyte microvilli. In the digestive tract, acid glycoconjugates act to protect the epithelial surface, increasing mucous viscosity, which facilitates the passage of food, prevents the binding of parasites and facilitates their removal. Through lipid staining, a coated membrane was observed around each secretory granule of the oesophageal and intestinal goblet cells, while gastric epithelial cells granules were fully reactive. Oxynticopeptic cells of the gastric glands showed lipid droplets in the cytoplasm and also in the mitochondrial matrix, which act as an energy reserve for these cells that have a high energy demand. Enterocytes showed a well‐developed smooth endoplasmic reticulum, especially in the apical region of the cell, being related to absorption and resynthesis of lipids.  相似文献   

7.
Droplets which stain like colloid occur in the cytoplasm of the thyroid follicular epithelium of the rat following stimulation of the gland by thyroid-stimulating hormone (TSH). The occurrence of droplets was remarkably reduced when the lumen became depleted of colloid. Acid phosphatase and esterase were localized in the thyroid droplets and, in addition, in granules largely around the nucleus. Stimulation by TSH resulted in an increase in the number of droplets containing enzyme. Twenty-four hours after hypophysectomy, enzyme-associated granules were localized at the basal end of the cell and droplets were absent. Intravenous injection of TSH resulted in formation of droplets at the apical end of the cell and migration of enzyme-associated granules toward the apical end of the cell. The droplets were first observed approximately 10 minutes after TSH administration and at this time did not appear to contain enzyme. Within 15 minutes many droplets contained enzyme. The granules were largely localized near the nucleus on its apical side 30 minutes after a dose of 25 milliunits of TSH, but were less well localized following one-tenth this dose. These results indicate that the epithelial cell of the thyroid gland contains preformed hydrolytic enzymes associated with granules (lysosomes). When the gland is stimulated by TSH, droplets are formed from colloid derived from the lumen (phagosomes), and hydrolytic enzymes are transferred from granules to the droplets. The droplets may be intracellular organelles for hydrolysis of colloid and liberation of thyroxine prior to the release of thyroxine into the blood.  相似文献   

8.
The oesophagus and crop epithelium of Aplysia depilans consist in a single layer of columnar cells with apical microvilli, and some of them also possess cilia. Cell membrane invaginations, small vesicles, multivesicular bodies and many dense lysosomes were observed in the apical region of the cytoplasm. In most cells, a very large lipid droplet was observed above the nucleus and a smaller one was frequently found below the nucleus; glycogen granules are also present. Considering these ultrastructural features, it seems that these cells collect nutritive substances from the lumen by endocytosis, digest them in the apical lysosomes and store the resulting products. The cell bodies of mucus secreting flask-shaped cells are subepithelial in the oesophagus and intraepithelial in the crop. Histochemistry methods showed that the secretion stored in these cells contains acidic polysaccharides. Secretory vesicles with thin electron-dense filaments scattered in an electron-lucent background fill most of these cells, and the basal nucleus is surrounded by dilated rough endoplasmic reticulum cisternae containing small tubular structures. Considering the relatively low number of secretory cells, mucus production cannot be high. Moreover, since protein secreting cells were not observed in either oesophagus or crop, extracellular digestion in the lumen of these anterior segments of the digestive tract most probably depend on the enzymes secreted by the salivary and digestive glands.  相似文献   

9.
The ventriculus and the midgut caeca of the fed females of Anystis baccarum (L.) were investigated by using light and electron microscopy. In addition to the main type of polyfunctional digestive cells, special secretory cells were detected in the anterior region of the ventriculus. The shape and the ultrastructure of the digestive cells vary depending on their physiological state. Intracellular digestion, absorption or excretion processes prevail at different stages of the cell cycle. The secretory cells are characterized by the presence of extensive rough endoplasmic reticulum, filling whole space of the cell. These cells do not contain the apical network of pinocytotic canals, which are typical for the digestive cells. Three types of secretory granules were found in the cytoplasm of the secretory cells that probably correspond to three sequential stages of granulogenesis. The primary secretory granules are formed by the fusion of Golgi vesicles. The primary granules fuse to form complex vesicles with heterogeneous contents. These secondary granules aggregate to form very large inclusions of high electron density (tertiary secretory granules), which probably represent the storage of the secretory product. All types of secretory granules were observed close to the apical plasmalemma.  相似文献   

10.
The organization of the oesophagus in the budding styelid ascidian, Polyandrocarpa misakiensis, is described. The oesophagus consists of external and internal epithelium, and there are loose connective tissue, blood sinuses, and a muscular layer between them. The internal epithelium is simple columnar, except for the bottom of three folds. The external epithelium is simple squamous. The internal epithelium contains four cell types, i.e., ciliated mucous cells, band cells, endocrine cells, and undifferentiated cells. The ciliated mucous cells have apical cilia and microvilli, and two types of mucous vesicle. The band cells also have apical cilia and electron-dense granules in the apical cytoplasm. The endocrine cells are bottle-shaped, and have electron-dense granules both above and below the nucleus. The undifferentiated cells form pseudostratified epithelium at the bottom of each fold, and they have nuclei with prominent nucleoli. One type of coelomic cell, which has retractile cytoplasm, often migrates in the internal epithelium. Near the stomach, there are many darkly stained round cells clustered around the posterior end of the oesophagus. These two types of coelomic cells may be involved in the defense mechanism against the invasion of foreign organisms. The basic organization of the oesophagus of P. misakiensis is similar to those of other ascidians. However, the presence of three folds is a characteristic of a solitary species, rather than of a colonial species. Although ascidians are chordate invertebrates, the organization of their oesophagus is not very complex, which might reflect their life style.  相似文献   

11.
The gross morphology and fine structure of the newly excysted juvenile fluke are described. The tegument is organized as in the adult, with a spine-containing surface syncytium connected to a perinuclear region lying below the muscle layers. It differs from the adult, however, in having only one type of perinuclear region and one type of secretory body. The digestive system has all the morphological characteristics of a secretory epithelium, rather than an absorptive one. It has numerous dense secretory bodies, ribosomes, and GER, an irregular apical surface due to eccrine secretion, and a lumen filled with a moderately dense material derived from the dispersed secretory granules.The excretory system closely resembles that of the adult, but has, in addition, part of its ascending ducts ciliated and concretions as well as lipid droplets as visible excretory products. The muscle is identical with that of the adult and the parenchyma is also very similar to the adult, although it has more lipid droplets and is associated in a less complex way with cells of other organ systems. Groups of embryonic cells are present and are characterized by a dense, invaginated nucleus surrounded by a very thin layer of cytoplasm.  相似文献   

12.
The ultrastructure of prostate gland of Lampito mauritii revealed two types of secretory cells. Type 1 cells with a broad basal region and a long apical region contain electron dense oval secretory granules with an increased density at the core region. Numerous electron lucent granules with fine filamentous and electron dense amorphous materials also occur at the basal region of these cells. Type 2 cells contain electron lucent mucous-like secretory granules. This cell type contains exceptionally large Golgi complexes having 20-23 stacked cisternae. Both cell types open into a common lumen and numerous microtubules are visible at the apical end. Junctional complexes, such as desmosomes and septate junctions, are observed in this glandular tissue.  相似文献   

13.
Morphometric, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) investigations have displayed regional differences in the mare oviductal epithelium. The entire mucosa of the oviduct was lined with a pseudostratified epithelium, which consisted of two distinct cell types, ciliated and non-ciliated. Ciliated cells were predominant in the three different segments of the oviduct and their percentage increased from fimbriae to ampulla and significantly decreased in the isthmus. SEM revealed in the infundibulum finger-like mucosal folds, some of them interconnected, in the ampulla numerous and elaborated branched folds of the mucosa, whereas the isthmus displayed a narrow lumen, short and non-branched mucosal folds. In the ampulla and isthmus the majority of non-ciliated cells showed apical blebs provided or not of short microvilli. TEM displayed different ultrastructural features of ciliated and non-ciliated cells along the oviduct. Isthmus ciliated cells presented a more electron-dense cytoplasm than in infundibulum and ampulla cells and its cilia were enclosed in an amorphous matrix. The non-ciliated cells of infundibulum did not contain secretory granules but some apical endocytic vesicles and microvilli coated by a well developed glycocalyx. Non-ciliated cells of ampulla and isthmus contained secretory granules. Apical protrusions of ampulla displayed two types of secretory granules as well as occasional electron-lucent vesicles. Isthmus non-ciliated cells showed either electron-lucent or electron-dense cytoplasm and not all contained apical protrusions. The electron-dense non-ciliated cells displayed microvilli coated with a well developed glycocalyx. Three types of granules were observed in the isthmus non-ciliated cells. The regional differences observed along the epithelium lining the mare oviduct suggest that the epithelium of the each segment is involved in the production of a distinctive microenvironment with a unique biochemical milieu related to its functional role.  相似文献   

14.
Morphology of the bovine epididymis   总被引:1,自引:0,他引:1  
The epididymis of the bull was divided into six regions, and morphological differences between regions were studied. The epithelium of all regions contained four cell types: principal and basal epithelial cells, and intraepithelial lymphocytes and macrophages. The epithelium of regions II-V also contained a few apical cells. Principal cells of all regions possessed an endocytotic apparatus including stereocilia underlain by canaliculi, coated vesicles, and subapical vacuoles (up to 1 micron in diameter); however, large vacuoles with a flocculent content and multivesicular bodies (up to 5 microns in diameter) were most numerous in regions II, III, and IV. The unique features of principal cells of region I were the presence of well-developed Golgi bodies, few lipid droplets, and whorls of smooth endoplasmic reticulum in the supranuclear cytoplasm. Numerous mitochondria, distended cisternae of rough endoplasmic reticulum, and dense granules characterized the infranuclear cytoplasm of the principal cells of regions II-VI; however, these features were more developed in region V. Apical cells were characterized by the apical location of the nucleus, many mitochondria in the apical cytoplasm, and few microvilli at the luminal border. Basal cells with few cytoplasmic lipid droplets were present throughout the length of the epididymis but appeared more numerous in region V. Intraepithelial lymphocytes were present at all levels of the epithelium but were never seen in the lumen. Intraepithelial macrophages containing heterogeneous granules, eccentric nuclei, and pseudopods were invariably seen near the basal area of the epithelium in all regions. These observations are discussed in an effort to define the role of each cell type in the epididymal epithelium.  相似文献   

15.
The foregut, stomach, caecum, midgut, and rectum of the digestive tract of Nautilus pompilius L.were investigated with ultrastructural and enzyme-cytological methods. Three different cell types were identified within the lamina epithelialis mucosae: main cells, goblet cells, and cells with secretory granules. The main cell type is the epithelial cell with microvilli, a basal nucleus surrounded by dictyosomes, rough endoplasmic reticulum, mitochondria, and electron-dense granules identified as lysosomes in the apical part of the cell. In the caecum this cell type contains endosymbiotic bacteria. The presence of endocytotic vesicles and the storage of lipids in the caecum indicate that this organ is involved in the process of absorption. In the caecum and the longitudinal groove of the rectum the main cells are, in addition, ciliated, facilitating the transport of food particles and faeces. Two types of goblet cells are found in all organs except in the stomach, forming a gliding path for food particles and protecting the epithelium. In the foregut and rectum, cells with electron-dense granules were recognized as the third type. The conspicuous secretory cells of the rectum represent a delimited rectal gland; its possible biological function is discussed. The tunica muscularis in all organs of the digestive tract consists of obliquely striated muscle cells innervated by axons containing transparent, osmiophilic and dense-cored vesicles. Positive reactions for acid and alkaline phosphatase, monoamine oxidase, β-glucuronidase, and trypsin- and chymotrypsin-like enzymes are localized in the lamina epithelialis mucosae.  相似文献   

16.
Summary The epithelium of the fundic region mucosa of the hind stomach in the Llama guanacoe has been studied using morphological and histochemical methods. Morphology suggests that solute and water absorption may occur in the epithelium of the surface and of the foveolae, although this absorption can not be estimated because of the extensive secretion of the gastric glands. The same cells of the surface and foveolar epithelium show numerous secretory granules. The glands reveal neck cells, chief cells, a large number of oxyntic cells, four types of endocrine cells (A-like, ECL, D and EC), brush cells and wandering cells. PAS and Alcian blue reactions for light microscopy suggest a secretion of neutral and acidic mucosubstances in the surface and foveolar epithelium, of neutral mucosubstances only in the neck cells. Periodic acid-thiocarbohydrazide silver proteinate (PA-TCH-SP) reaction for electron microscopy confirms the presence of neutral mucosubstances within the secretory granules of the surface, foveolar and neck epithelial cells. In all these cells, the reaction product is also evident within sacculi and vesicles of the maturing surface of the Golgi apparatus. A positive PA-TCH-SP reaction also occurs on the membrane (and not on the contents) of the Golgi apparatus (maturing surface) and of the secretory granules of the chief cells as well as on the membrane of the Golgi apparatus and of apical vesicles and tubules of the oxyntic cells. In addition, silver granules slightly enhance the electron density of the contents of the secretory granules in the endocrine cells. Morphological and histochemical findings are discussed and compared with results described by others for monogastric mammals.  相似文献   

17.
Abstract. The ribbon‐shaped salivary glands in Bulla striata were studied with light microscopy and transmission electron microscopy (TEM). Secretion is produced in tubules formed by two types of secretory cells, namely granular mucocytes and vacuolated cells, intercalated with ciliated cells. A central longitudinal duct lined by the same cell types collects the secretion and conducts it to the buccal cavity. In granular mucocytes, the nucleus is usually central and the secretory vesicles contain oval‐shaped granular masses attached to the vesicle membrane. Glycogen granules can be very abundant, filling the space around the secretory vesicles. These cells are strongly stained by PAS reaction for polysaccharides. Their secretory vesicles are also stained by Alcian blue, revealing acidic mucopolysaccharides, and the tetrazonium reaction detects proteins in minute spots at the edge of the vesicles, corresponding to the granular masses observed in TEM. Colloidal iron staining for acidic mucopolysaccharides in TEM reveals iron particles in the electron‐lucent region of the vesicles, while the granular masses are free of particles. In vacuolated cells, which are thinner and less abundant than the granular mucocytes, the nucleus is basal and the cytoplasm contains large electron‐lucent vesicles. These vesicles are very weakly colored by light microscopy techniques, but colloidal iron particles could be observed within them. The golf tee‐shaped ciliated cells contain some electron‐dense lysosomes in the apical region. In these cells, the elongated nucleus is subapically located, and bundles of microfibrils are common in the slender cytoplasmic stalk that reaches the basal lamina. The morphological, histochemical, and cytochemical data showed some similarities between salivary glands in B. striata and Aplysia depilans. These similarities could reflect the phylogenetic relationship between cephalaspidean and anaspidean opisthobranchs or result from a convergent adaptation to an identical herbivorous diet.  相似文献   

18.
The seminal vesicle epithelium of the mouse and golden hamster was examined by light microscopy and by transmission and scanning electron microscopy. By transmission electron microscopy, in the seminal vesicle epithelium of both animals secretory epithelial cells which consisted of mostly light and a few dark cells were observed. The epithelial cells possessed secretory granules which contained a densely stained core. The secretory granules in the mouse epithelium reacted weakly with periodic acid-Schiff (PAS) stain and were slightly stained with alcian blue (AB), and those in the golden hamster exhibited strongly positive reactions with PAS and AB. The nuclei in the mouse tissue were spherical or ovoid, and those in the golden hamster tissue had a few lobes. By scanning electron microscopy, the apical surfaces of most of the epithelial cells were commonly flat or domed, and those of some epithelial cells protruded into the lumen as apocrine-like processes, or possessed small and large orifices. Besides the epithelial cells, there were cells characterized by pseudopodium-like cytoplasmic projections, a few membranous structures, an irregular nucleus, and cytoplasm containing a few dense bodies, in the basal portions of the epithelial cells, or between the basal lamina and the epithelial cells. These cells of the two species were similar in their features.  相似文献   

19.
An electron microscopic study was made on the structure of the testicular transitional zone (TZ) in the adult rat. The TZ proper consists of modified Sertoli cellss, with only a few spermatogonia and macrophages, surrounding distally a very narrow lumen. The TZ Sertoli cells have nuclei with a somewhat coarser matrix and more peripheral heterochromatin than Sertoli cell nuclei of the nearby seminiferous tubules, and the electron density of the cytoplasm varies from cell to cell. Smooth endoplasmic reticulum is abundant, but usually there are also scattered ribosomal rosettes and an occasional profile of rough endoplasmic reticulum. Microtubules are very numerous in the columnar portion of the cell, and laminar structures seemingly joining the cell surfaces are sometimes seen. Lipid droplets and lysosmal structures are frequent cellular components in proximal TZ Sertoli cells. Empty intracellular vacuoles are abundant, sometimes arranged around areas of smooth endoplasmic reticulum. Occasionally, membrane-limited fine granules and vacuoles are seen within Sertoli cells and also in the TZ lumen, suggesting a possible secretory activity by these cells. The apical processes of the Sertoli cells form large vacuolar structures, and in the basal parts of the epithelium vacuoles with capillary-like appearance are frequently seen. Phagocytosis of germinal cells by the Sertoli cells occurs in the proximal region of the TZ. Round waste bodies in contact with the Sertoli cell apices protruding into the tubulus rectus, are also common. The tunica propria of the TZ is thickened and somewhat wrinkled, and in the proximal region the myoid cell layer loses its continuity and is replaced by fibroblasts. The epithelium of the tubulus rectus adjacent to the TZ consists of several overlapping epithelial cells. The typical junctional complexes between TZ Sertoli cells appear to be impermeable to the lanthanum tracer.  相似文献   

20.
Isthmic and ampullary oviductal epithelia sampled from Merino ewes at days -1, 1, 3, and 10 of the estrous cycle (estrus = day 0) were studied by scanning and transmission electron microscopy after fixation by vascular perfusion. Secretory cells, ciliated cells, and lymphocytelike basal cells were observed in both isthmic and ampullary epithelium at all stages of the estrous cycle studied and their ultrastructural features were analyzed. Synthesis of lamellated secretory granules occurred in the ampullary secretory cells during the follicular and early luteal phases, and their contents were released by exocytosis into the oviductal lumen during the luteal phase. Granule release was associated with nucleated apical protrusion of these cells into the oviductal lumen. No such secretory activity was displayed by isthmic secretory cells even though a few cells contained nonlamellated granules. Apocrine release of apical vesicles and accompanying cytoplasmic material from apical protrusions of ciliated cells occurred in the isthmus around estrus but not in the ampulla. This unexpected feature has not previously been reported in any other mammal. Dendritic basal cells were distinguished in the lower part of the epithelium by their heterochromatic nuclei, electron-lucent cytoplasm, and lack of attachment zones. No migration of basal cells was observed, and their ultrastructural features were similar in the ampulla and isthmus and at all stages of the estrous cycle examined. The function of these lymphocytelike cells in the epithelium is uncertain, but the presence of phagocytic bodies and lysosomes in 20% of them may indicate a phagocytic role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号