首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Microcin C7, a peptide antibiotic inhibitor of protein synthesis, is produced by Escherichia coli K-12 strains that carry the 43-kilobase low-copy-number plasmid pMccC7. Microcin C7 production and immunity determinants of this plasmid have been cloned into the vectors pBR322 and pACYC184. The resulting plasmids overproduce microcin C7 and express immunity against the microcin. Mcc- and Mcc- Imm- mutants have been isolated on recombinant plasmids by inserting transposable elements. Physical and phenotypic characterization of these mutants shows that a DNA region of 5 kilobases is required to produce microcin C7, and that two small regions located inside the producing region are also required to express immunity. Analysis of plasmids carrying mcc-lacZ gene fusions indicates that all microcin DNA is transcribed in the same direction. The results suggest that a structure like a polycistronic operon is responsible for microcin C7 production and immunity.  相似文献   

3.
4.
Azpiroz MF  Bascuas T  Laviña M 《PloS one》2011,6(10):e26179
Genomic islands are DNA regions containing variable genetic information related to secondary metabolism. Frequently, they have the ability to excise from and integrate into replicons through site-specific recombination. Thus, they are usually flanked by short direct repeats that act as attachment sites, and contain genes for an integrase and an excisionase which carry out the genetic exchange. These mobility events would be at the basis of the horizontal transfer of genomic islands among bacteria.Microcin H47 is a ribosomally-synthesized antibacterial peptide that belongs to the group of chromosome-encoded microcins. The 13 kb-genetic system responsible for its production resides in the chromosome of the Escherichia coli H47 strain and is flanked by extensive and imperfect direct repeats. In this work, both excision and integration of the microcin H47 system were experimentally detected. The analyses were mainly performed in E. coli K12 cells carrying the microcin system cloned in a multicopy plasmid. As expected of a site-specific recombination event, the genetic exchange also occurred in a context deficient for homologous recombination. The DNA sequence of the attachment sites resulting from excision were hybrid between the sequences of the direct repeats. Unexpectedly, different hybrid attachment sites appeared which resulted from recombination in four segments of identity between the direct repeats. Genes encoding the trans-acting proteins responsible for the site-specific recombination were shown to be absent in the microcin H47 system. Therefore, they should be provided by the remaining genetic context, not only in the H47 strain but also in E. coli K12 cells, where both excision and integration occurred. Moreover, a survey of the attachment sites in data banks revealed that they are widely spread among E. coli strains. It is concluded that the microcin system is a small island -H47 genomic island- that would employ a parasitic strategy for its mobility.  相似文献   

5.
AIMS: The antagonistic activity of the Escherichia coli strain H22 against enteric bacteria was studied both in vitro and in vivo. METHODS AND RESULTS: In vitro, bacterial strains belonging to seven of nine genera of the family Enterobacteriaceae (Enterobacter, Escherichia, Klebsiella, Morganella, Salmonella, Shigella and Yersinia) were inhibited by the strain H22. Six days after simultaneous oral inoculation in germ-free mice, E. coli strain H22 reduced the faecal population of Shigella flexneri 4 to undetectable levels (P < 0.05). In ex vivo assay, inhibitory zones against Sh. flexneri 4 were observed around faecal samples from mice inoculated with E. coli strain H22. The in vitro inhibition of Sh. flexneri 4 was shown to be mediated by microcin C7. In addition to microcin C7, strain H22 was shown to produce aerobactin, new variants of colicins E1 and Ib, and bacteriophage particles with morphology similar to the phages of the family Myoviridae. CONCLUSIONS: Altogether, the properties of E. coli H22, observed both under in vitro and in vivo conditions, suggest its potential use as a probiotic strain for livestock and humans. SIGNIFICANCE AND IMPACT OF THE STUDY: The strain H22 was shown to produce several antimicrobial compounds with inhibitory capabilities against pathogenic or potentially pathogenic enterobacteria.  相似文献   

6.
Plasmid DNA from enterotoxigenic Escherichia coli strains H-10407 and H-10407-P was examined for nucleotide sequence homology to two E. coli genes encoding infant mouse-active heat-stable enterotoxins (ST). A 62-megadalton plasmid of strain H-10407 contained sequences homologous to the gene encoding a toxin designated STIb, previously isolated from a human isolate of E. coli. A 42-megadalton plasmid of strains H-10407 and H-10407-P contained sequences homologous to the gene encoding a toxin designated STIa, previously isolated from bovine and porcine isolates of E. coli.  相似文献   

7.
Most Escherichia coli O157-serogroup strains are classified as enterohemorrhagic E. coli (EHEC), which is known as an important food-borne pathogen for humans. They usually produce Shiga toxin (Stx) 1 and/or Stx2, and express H7-flagella antigen (or nonmotile). However, O157 strains that do not produce Stxs and express H antigens different from H7 are sometimes isolated from clinical and other sources. Multilocus sequence analysis revealed that these 21 O157:non-H7 strains tested in this study belong to multiple evolutionary lineages different from that of EHEC O157:H7 strains, suggesting a wide distribution of the gene set encoding the O157-antigen biosynthesis in multiple lineages. To gain insight into the gene organization and the sequence similarity of the O157-antigen biosynthesis gene clusters, we conducted genomic comparisons of the chromosomal regions (about 59 kb in each strain) covering the O-antigen gene cluster and its flanking regions between six O157:H7/non-H7 strains. Gene organization of the O157-antigen gene cluster was identical among O157:H7/non-H7 strains, but was divided into two distinct types at the nucleotide sequence level. Interestingly, distribution of the two types did not clearly follow the evolutionary lineages of the strains, suggesting that horizontal gene transfer of both types of O157-antigen gene clusters has occurred independently among E. coli strains. Additionally, detailed sequence comparison revealed that some positions of the repetitive extragenic palindromic (REP) sequences in the regions flanking the O-antigen gene clusters were coincident with possible recombination points. From these results, we conclude that the horizontal transfer of the O157-antigen gene clusters induced the emergence of multiple O157 lineages within E. coli and speculate that REP sequences may involve one of the driving forces for exchange and evolution of O-antigen loci.  相似文献   

8.
9.
We isolated pHP69, a 9,153 bp plasmid from Helicobacter pylori with a 33.98% (G+C) content. We identified 11 open reading frames (ORFs), including replication initiation protein A (repA), fic (cAMP-induced filamentation protein), mccC, mccB, mobA, mobD, mobB, and mobC, as well as four 22 bp tandem repeat sequences. The nucleic acid and predicted amino acid sequences of these ORFs exhibited significant homology to those of other H. pylori plasmids. pHP69 repA encodes a replication initiation protein and its amino acid sequence is similar to those of replicase proteins from theta-type plasmids. pHP69 contains two types of repeat sequences (R1 and R2), a MOBHEN family mobilization region comprising mobC, mobA, mobB, and mobD, and genes encoding microcin B and C. Among the 36 H. pylori strains containing plasmids, mobA or mccBC are present in 12 or 6, respectively and 3 contain both genes. To examine intrinsic capability of H. pylori for conjugative plasmid transfer, a shuttle vector pBHP69KH containing pHP69 and replication origin of pBR322 was constructed. It was shown that this vector could stably replicate and be mobilized among clinical H. pylori strains and demonstrated to gene transfer by natural plasmid.  相似文献   

10.
The complete nucleotide sequence of two genes from Clostridium thermosulfurogenes EM1 homologous to E. coli genes encoding transport proteins was determined by the dideoxy procedure. The genes were cloned from plasmid pCT4, which contains the alpha-amylase gene from C. thermosulfurogenes EM1 as a 2.9-kbp XbaI fragment, inserted into the XbaI site of pUC18, to yield plasmid pCT401. The proteins encoded by the two identified complete ORFs are very hydrophobic and thus are probably integral membrane proteins. They show over 50% similarity to the maltose transport proteins MalF and MalG and to the glycerol-3-phosphate uptake proteins UgpA and UgpE of Escherichia coli. Since these genes are located immediately upstream of the alpha-amylase gene (amyA) of C. thermosulfurogenes EM1, the encoded proteins might be involved in transport of starch degradation products. The genes were tentatively designated amyC and amyD.  相似文献   

11.
Delgado MA  Salomón RA 《Plasmid》2005,53(3):258-262
The Escherichia coli plasmid pTUC100 encodes production of, and immunity to, the peptide antibiotic microcin J25. In the present study, an approximately 8-kb fragment immediately adjacent to the previously sequenced microcin region was isolated and its DNA sequence was determined. The main features of the newly characterized region are: (i) a basic replicon which is almost identical to that of the RepFIIA plasmid R100; (ii) two ORFs with 96% identity to two ORFs of unknown function on pO157, a large plasmid harbored by enterohemorragic E. coli, and a large ORF which does not show significant homology to any other reported nucleotide or protein sequence; and (iii) two intact insertion sequences, IS1294 and IS1. Sequence analysis, as well as that of the G+C content of both the 8-kb fragment and the previously sequenced microcin locus, lead us to propose that plasmid pTUC100 is a composite structure assembled from DNA elements from various sources.  相似文献   

12.
The role of Escherichia coli as a pathogen has been the focus of considerable study, while much less is known about it as a commensal and how it adapts to and colonizes different environmental niches within the mammalian gut. In this study, we characterize Escherichia coli organisms (n = 146) isolated from different regions of the intestinal tracts of eight pigs (dueodenum, ileum, colon, and feces). The isolates were typed using the method of random amplified polymorphic DNA (RAPD) and screened for the presence of bacteriocin genes and plasmid replicon types. Molecular analysis of variance using the RAPD data showed that E. coli isolates are nonrandomly distributed among different gut regions, and that gut region accounted for 25% (P < 0.001) of the observed variation among strains. Bacteriocin screening revealed that a bacteriocin gene was detected in 45% of the isolates, with 43% carrying colicin genes and 3% carrying microcin genes. Of the bacteriocins observed (H47, E3, E1, E2, E7, Ia/Ib, and B/M), the frequency with which they were detected varied with respect to gut region for the colicins E2, E7, Ia/Ib, and B/M. The plasmid replicon typing gave rise to 25 profiles from the 13 Inc types detected. Inc F types were detected most frequently, followed by Inc HI1 and N types. Of the Inc types detected, 7 were nonrandomly distributed among isolates from the different regions of the gut. The results of this study indicate that not only may the different regions of the gastrointestinal tract harbor different strains of E. coli but also that strains from different regions have different characteristics.  相似文献   

13.
14.
Many Helicobacter pylori isolates carry cryptic plasmids of extremely variable size. In this study we analyzed two H. pylori plasmids, pHel4 and pHel5, from H. pylori strains P8 and P29, respectively. Plasmid pHel4 consists of 10,970 bp, constituting 15 putative open reading frames (ORFs), whereas pHel5 consists of 18,291 bp, constituting 17 ORFs. The findings that both plasmids encode a conserved RepA protein and that both have an origin of replication containing an iteron place them in the group of theta plasmids. In pHel4, the products of the overlapping orf4C, orf4D, orf4E, and orf4F sequences are homologous to MobA, MobB, MobC, and MobD, encoded by colicinogenic plasmids, suggesting that pHel4 might be mobilizable. A further putative operon consists of orf4B and orf4A, the products of which are homologous to microcin C7 (MccC7) biosynthesis and secretion proteins MccB and MccC, respectively. Plasmid pHel5 carries putative genes encoding proteins with homology to an endonuclease and gene products of an H. pylori chromosomal plasticity zone. Both plasmids contain repeat sequences, such as the previously identified R2 repeat, which are considered preferred recombination sites. In pHel4, a new repeat sequence (R4 repeat), which seems to act as a hot spot for site-specific recombination, was identified. All H. pylori plasmids characterized so far have a modular structure. We suggest a model that explains the existing plasmids by insertions and deletions of genetic elements at the repeat sequences. A genetic exchange between plasmids and the bacterial chromosome, combined with plasmid mobilization, might add a novel mechanism to explain the high genetic macrodiversity within the H. pylori population.  相似文献   

15.
Twenty-five and three strains of Escherichia coli O157:H7 were identified from 25 tenderloin beef and three chicken meat burger samples, respectively. The bacteria were recovered using the immunomagnetic separation procedure followed by selective plating on sorbitol MacConkey agar and were identified as E. coli serotype O157:H7 with three primer pairs that amplified fragments of the SLT-I, SLT-II and H7 genes in PCR assays. Susceptibility testing to 14 antibiotics showed that all were resistant to two or more antibiotics tested. Although all 28 strains contained plasmid, there was very little variation in the plasmid sizes observed. The most common plasmid of 60 MDa was detected in all strains. We used DNA fingerprinting by randomly amplified polymorphic DNA (RAPD) and pulsed-field gel electrophoresis (PFGE) to compare the 28 E. coli O157:H7 strains. At a similarity level of 90%, the results of PFGE after restriction with XbaI separated the E. coli O157:H7 strains into 28 single isolates, whereas RAPD using a single 10-mer oligonucleotides separated the E. coli O157:H7 strains into two clusters and 22 single isolates. These typing methods should aid in the epidemiological clarification of the E. coli O157:H7 in the study area.  相似文献   

16.
Escherichia coli G3/10 is a component of the probiotic drug Symbioflor 2. In an in vitro assay with human intestinal epithelial cells, E. coli G3/10 is capable of suppressing adherence of enteropathogenic E. coli E2348/69. In this study, we demonstrate that a completely novel class II microcin, produced by probiotic E. coli G3/10, is responsible for this behavior. We named this antibacterial peptide microcin S (MccS). Microcin S is coded on a 50.6 kb megaplasmid of E. coli G3/10, which we have completely sequenced and annotated. The microcin S operon is about 4.7 kb in size and is comprised of four genes. Subcloning of the genes and gene fragments followed by gene expression experiments enabled us to functionally characterize all members of this operon, and to clearly identify the nucleotide sequences encoding the microcin itself (mcsS), its transport apparatus and the gene mcsI conferring self immunity against microcin S. Overexpression of cloned mcsI antagonizes MccS activity, thus protecting indicator strain E. coli E2348/69 in the in vitro adherence assay. Moreover, growth of E. coli transformed with a plasmid containing mcsS under control of an araC PBAD activator-promoter is inhibited upon mcsS induction. Our data provide further mechanistic insight into the probiotic behavior of E. coli G3/10.  相似文献   

17.
Abstract The DNA sequence of heat-labile enterotoxin from the chicken enterotoxigenic Escherichia coli 21d strain was determined by direct dideoxy sequencing of polymerase chain reaction (PCR)-amplified DNA and was compared with those of heat-labile enterotoxins from porcine and human enterotoxigenic E. coli strains EWD 299 and H 10407. The structural genes of the A and B subunits of chicken heat-labile enterotoxin were identical to those of human heat-labile enterotoxin from the human H 10407 strain. Moreover, 67 base pairs of the upstream and 60 base pairs of the downstream region of the chicken heat-labile enterotoxin gene were also identical to those of the human heat-labile enterotoxin from strain H 10407. However, the patterns of plasmids from the 21d and H 10407 strains were different. The 21d strain had no band corresponding to the 42-MDa plasmid of the H10407 strain encoding the heat-labile enterotoxin gene but it had a smaller plasmid. These data suggest that although the DNA sequence of chicken heat-labile enterotoxin is identical to that of human heat-labile enterotoxin, the plasmid encoding the chicken heat-labile enterotoxin gene in the chicken might be different from that encoding the human heat-labile enterotoxin gene in the H10407 strain.  相似文献   

18.
Pathogenic Escherichia coli remains important etiological agent of infantile diarrhea in Bangladesh. Previous studies have focused mostly on clinical strains, but very little is known about their presence in aquatic environments. The present study was designed to characterize potentially pathogenic E. coli isolated between November 2001 and December 2003 from aquatic environments of 13 districts of Bangladesh. Serotyping of 96 randomly selected strains revealed O161 to be the predominant serotype (19%), followed by O55 and O44 (12% each), and 11% untypable. Serotype-based pathotyping of the E. coli strains revealed 47%, 30%, and 6% to belong to EPEC, ETEC, and EHEC pathotypes, respectively. The majority of the 160 strains tested were resistant to commonly used antimicrobial agents. Plasmid pro-filing showed a total of 17 different bands ranging from 1.3 to 40 kb. However, 35% of the strains did not contain any detectable plasmid, implying no correlation between plasmid and drug resistance. Although virulence gene profiling revealed 97 (61%) of the strains to harbor the gene encoding heat-stable enterotoxin (ST), 2 for the gene encoding Shiga toxin (Stx), and none for the gene for heat-labile enterotoxin (LT), serotype-based pathotyping of E. coli was not fully supported by this gene profiling. A dendrogram derived from the PFGE patterns of 22 strains of three predominant serogroups indicated two major clusters, one containing mainly serogroup O55 and the other O8. Three strains of identical PFGE profiles belonging to serogroup O55 were isolated from three distinct areas, which may be of epidemiological significance. Finally, it may be concluded that serotype-based pathotyping may be useful for E. coli strains of clinical origin; however, it is not precise enough for reliably identifying environmental strains as diarrheagenic.  相似文献   

19.
The virulence plasmid pJM1 enables the fish pathogen Vibrio anguillarum, a gram-negative polarly flagellated comma-shaped rod bacterium, to cause a highly fatal hemorrhagic septicemic disease in salmonids and other fishes, leading to epizootics throughout the world. The pJM1 plasmid 65,009-nucleotide sequence, with an overall G+C content of 42.6%, revealed genes and open reading frames (ORFs) encoding iron transporters, nonribosomal peptide enzymes, and other proteins essential for the biosynthesis of the siderophore anguibactin. Of the 59 ORFs, approximately 32% were related to iron metabolic functions. The plasmid pJM1 confers on V. anguillarum the ability to take up ferric iron as a complex with anguibactin from a medium in which iron is chelated by transferrin, ethylenediamine-di(o-hydroxyphenyl-acetic acid), or other iron-chelating compounds. The fatDCBA-angRT operon as well as other downstream biosynthetic genes is bracketed by the homologous ISV-A1 and ISV-A2 insertion sequences. Other clusters on the plasmid also show an insertion element-flanked organization, including ORFs homologous to genes involved in the biosynthesis of 2,3-dihydroxybenzoic acid. Homologues of replication and partition genes are also identified on pJM1 adjacent to this region. ORFs with no known function represent approximately 30% of the pJM1 sequence. The insertion sequence elements in the composite transposon-like structures, corroborated by the G+C content of the pJM1 sequence, suggest a modular composition of plasmid pJM1, biased towards acquisition of modules containing genes related to iron metabolic functions. We also show that there is considerable microheterogeneity in pJM1-like plasmids from virulent strains of V. anguillarum isolated from different geographical sources.  相似文献   

20.
Alfredson DA  Korolik V 《Plasmid》2003,50(2):152-160
A small cryptic plasmid, pCJ419, was identified in a human clinical isolate of Campylobacter jejuni, cloned and sequenced. pCJ419 is a circular molecule of 4013 bp with a G+C content of 27.1%. The products of four open reading frames (ORFs) share significant sequence similarity with putative proteins from known C. jejuni and Campylobacter coli plasmids. ORF-1 encodes a putative mobilisation protein (Mob). ORF-2 and ORF-3 encode proteins that have high identity to putative RepA and RepB proteins, respectively, of known C. jejuni and C. coli plasmids. ORF-4 encodes a protein that has high identity to a hypothetical protein of unknown function, Cjp32, previously described in a pVir plasmid of C. jejuni. Tandem repeating 22-bp sequences typical of a plasmid replication origin (ori) were identified upstream of the DNA sequences encoding putative replication initiation proteins. An Escherichia coli-Campylobacter shuttle cloning vector, pGU0202, was constructed using plasmid pMW2 that harbours a Campylobacter-derived kanamycin resistance gene [aph(3')-III]. The sequences encoding pCJ419 mob, RepA and RepB proteins were inserted upstream of aph(3')-III resulting in a stable construct of 6174 bp that was used to transform both E. coli and Campylobacter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号