首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gene expression in animal cells allows large scale production of proteins used for either structure and function studies or therapeutic purposes. Maximizing recombinant protein production is necessary to optimize cell growth and protein expression. Some studies have demonstrated the presence of pharmacologically active substances in insect hemolymph. In this work, we have identified and purified a protein from Lonomia obliqua hemolymph able to increase the production of the rabies virus glycoprotein, expressed in Drosophila melanogaster S2 cells, by about 59%.  相似文献   

2.
Most rabies vaccines are based on inactivated virus, which production process demands a high level of biosafety structures. In the past decades, recombinant rabies virus glycoprotein (RVGP) produced in several expression systems has been extensively studied to be used as an alternative vaccine. The immunogenic characteristics of this protein depend on its correct conformation, which is present only after the correct post-translational modifications, typically performed by animal cells. The main challenge of using this protein as a vaccine candidate is to keep its trimeric conformation after the purification process. We describe here a new immunoaffinity chromatography method using a monoclonal antibody for RVGP Site II for purification of recombinant rabies virus glycoprotein expressed on the membrane of Drosophila melanogaster S2 cells. RVGP recovery achieved at least 93%, and characterization analysis showed that the main antigenic proprieties were preserved after purification.  相似文献   

3.
The aim of this study was to achieve expression of recombinant rabies virus glycoprotein (rRVGP) in Drosophila S2 cells. For this, a cDNA coding for the selection hygromycin antibiotic and the cDNA encoding the RVGP protein under the control of the constitutive actin promoter (Ac) were cloned in an expression plasmid, which was transfected into S2 cells. S2 cell populations (S2AcRVGPHy) showed rRVGP expression in cell lysates, attaining concentrations up to 1.5 μg/107 cells (705 μg/L). Of the transfected cells, 20% were shown to express the rRVGP. Cell subpopulations selected by limiting dilution expressed higher rRVGP yields and 90% of the cells were shown to express the rRVGP. Cell populations re-selected by addition of hygromycin were shown to express 10 times higher rRVGP yields. The data presented here show that Drosophila S2 cells can be efficiently transfected with an expression/selection plasmid for rRVGP expression, allowing its synthesis with a high degree of physical and biological integrity. The importance of subpopulation selection was indicated by the increasing rRVGP yields during these procedures.  相似文献   

4.
Apoptosis is a major problem in animal cell culture during production of biopharmaceuticals, such as recombinant proteins or viral particles. In the present work baculovirus-insect cell expression system (BEVS/IC) is used as model to produce rotavirus like-particles, composed by three layers of three different viral proteins (VP2, VP6 and VP7). In this model baculovirus infection also induces host cell death. Herein a new strategy to enhance cell life span and to increase recombinant rotavirus protein production of BEVS/IC system was developed. This strategy relies on hemolymph from Lonomia oblique (total extracts or a semi-purified fraction) medium supplementation. The total extract and a purified fraction from hemolymph of Lonomia obliqua were able to protect Sf-9 cell culture against apoptosis triggered by oxidative stress (using the pro-oxidant agents tert butylhydroperoxide and hydrogen peroxide) and by baculovirus infection. Furthermore, hemolymph enhance final recombinant protein production, as it was observed by the increased amounts of VP6 and VP7, which were measured by the semi-quantitative western blot method. In conclusion, hemolymph medium supplementation can be a promising strategy to improve cell viability and productivity of recombinant protein in BEVS/IC system.  相似文献   

5.
Culture conditions that affect product quality are important to the successful operation and optimization of recombinant protein production. The objective of this study was to optimize culture conditions for growth of recombinant Drosophila melanogaster S2 cells (S2AcRVGP) in order to enhance the production of rRVGP. The addition of DMSO and glycerol to the medium and growth at a reduced temperature (22 °C) were the culture condition variations selected to be tested. Experimental cultures were first performed in serum-free Sf900 II medium in 250 ml Schott flasks. The most promising conditions identified in these experiments were also tested on a higher scale in a 3l bioreactor. In the Schott flasks experiments, all the changes in culture conditions resulted in an increase of rRVGP production. The protein concentration was 3.6-fold higher with addition of 1% DMSO and 1% glycerol and 9.3-fold higher when the cells were cultured at 22 °C instead of the standard 28 °C. The maximum concentration of rRVGP reached was 591 μg l−1. In bioreactor experiments, with control of pH at 6.20 and DO at 50%, the reduced culture temperature (22 °C) was the strategy that promoted the highest glycoprotein production, 928 μg l−1.  相似文献   

6.
The recombinant G glycoprotein from the surface of the rabies virus (RVGP) is a promising candidate as a rabies vaccine component and also for diagnostic purposes. In this study, RVGP production by transfected Drosophila melanogaster S2 cells cultivated in a serum-free medium (supplemented IPL-41 medium) was carried out. The effects of pH and pO2 were evaluated in batch culture in parallel spinner flasks. The use of a pH equal to 6.3 and a pO2 of 40% air saturation resulted in the highest RVGP content. These conditions were also used in fed-batch mode, yielding a RVGP content level of 98 g/107 cells. The main nutrients consumed were glucose, glutamine, asparagine, serine and proline and the major metabolites produced were alanine and ammonia, according to the metabolism studies performed. Since RVGP is a transmembrane protein, two different methods for protein recovery were assessed and compared. Detergent-based cell disruption showed to be more effective than mechanical disruption with glass beads for glycoprotein recovery.  相似文献   

7.
Recombinant rabies virus glycoprotein (rRVGP) was expressed in Drosophila melanogaster Schneider 2 (S2) cells. The cDNA encoding the entire RVGP gene was cloned in an expression plasmid under the control of the constitutive actin promoter (Ac), which was co-transfected into S2 cells together with a hygromycin selection plasmid. Selected S2 cell populations (S2AcRVGP) had a decreased ability to grow and consume substrates, when compared to the non-transfected cells (S2). They were shown, by PCR, to express the RVGP gene and mRNA and, by immunoblotting, to synthesize the rRVGP in its expected molecular mass of 65 kDa. ELISA kinetic studies showed the rRVGP expression in cell lysates and supernatants attaining concentrations of 300 microg/L. By flow cytometry analysis, about 30% of the cells in the co-transfected populations were shown to express the rRVGP. Cell populations selected by limiting dilution expressed higher rRVGP yields. Mice immunized with rRVGP were shown to synthesize antibodies against rabies virus and be protected against experimental infection with rabies virus. The data presented here show that S2 cells can be suitable hosts for the rRVGP expression, allowing its synthesis in a high degree of physical and biological integrity.  相似文献   

8.
Drosophila melanogaster Schneider 2 (S2) cells have been increasingly used as a suitable expression system for the production of different recombinant proteins, and the employment of bioreactors for large-scale culture is an important tool for this purpose. In this work, Drosophila S2 cells producing the rabies virus glycoprotein RVGP were cultivated in bioreactor, employing a serum-free medium, aiming an improvement in cell growth and in glycoprotein production. To overcome cell growth limitation commonly observed in stirred flasks, different experiments in bioreactor were performed, in which some system modifications were carried out to attain the desired goal. The study showed that this cell line is considerably sensitive to hydrodynamic forces, and a high cell density (about 16.0 × 106 cells mL−1) was only obtained when Pluronic F68® percentage was increased to 0.6% (w/v). Despite ammonium concentration affected RVGP production, and also cell growth, an elevated amount of the target protein was obtained, attaining 563 ng 10−7 cells.  相似文献   

9.
Aiming at maximizing the production of transmembrane rabies virus glycoprotein (rRVGP), the influence of hypothermic temperature on a recombinant Drosophila melanogaster S2 cell culture in Sf-900II medium was investigated. Cell growth and rRVGP production were assessed at 4 culture temperatures in Schott flasks: 16, 20, 24 and 28°C. The maximum specific growth rates μ(max) were, respectively: 0.009, 0.019, 0.038 and 0.035h(-1), while the maximum rRVGP levels C(max)(rRVGP) were: 0.075, 2.973, 0.480 and 1.404mgL(-1). The best production temperature (20°C) was then tested in a bioreactor with control of pH and dissolved oxygen in batch and fed-batch modes. In the batch culture, μ(max) and C(max)(rRVGP) were 0.060h(-1) and 0.149mgL(-1) at 28°C and 0.026h(-1) and 0.354mgL(-1) at 20°C, respectively. One batch-culture experiment was carried out with adaptation of the cells by the temperature falling in steps from 20°C to 16°C, so that μ(max) fell from 0.023 to 0.013h(-1), while C(max)(rRVGP) was improved to 0.567mgL(-1). In the fed-batch mode at 20°C, μ(max) was 0.025h(-1) and C(max)(rRVGP) was 1.155mgL(-1). Taken together, these results indicate that the best strategy for optimized rRVGP production is the culture at hypothermic temperature of 20°C, when μ(max) is kept low and with feeding of limitant aminoacids.  相似文献   

10.
The baculovirus Anticarsia gemmatalis nucleopolyhedrovirus (AgMNPV), a member of the family Baculoviridae, has been widely applied as a biopesticide for the control of the velvetbean caterpillar, a pest of soybean crop field. Baculoviruses are considered safe and efficient agents for this purpose, because they do not infect vertebrates, being safe for the health of humans and animals, as well as to the environment. The objective of this work was to identify proteins obtained from Lonomia obliqua hemolymph with potential application in the optimization of baculovirus AgMNPV replication in Sf9 insect cell culture. In this work the improvement of the cell culture and viral replication of the AgMNPV baculovirus was observed when Grace medium was supplemented with 10 % (v/v) Fetal Bovine Serum (FBS), 1 % (v/v) hemolymph extract, or 3 % (v/v) of hemolymph fractions or hemolymph sub-fractions obtained by purifying hemolymph through High Performance Liquid Chromatography. Hemolymph presented a positive effect on the synthesis of polyhedra and enhanced baculovirus replication in Spodoptera frugiperda (Sf9) cells (TCID50/mL), and led to Sf9 cell culture improvement. Grace medium supplemented with 10 % (v/v) FBS and 1 % (v/v) hemolymph provided an increase of baculovirus replication, when the cells were infected with multiplicity of infection of 1. In this case, the baculovirus replication was 6,443.91 times greater than that obtained with the control: Grace medium supplemented with 10 % (v/v) FBS. In addition, this work suggests that hemolymph from L. obliqua could have an interesting application in biotechnology, due to an increase in the viability of the cells and virus replication.  相似文献   

11.
Many active principles produced by animals, plants and microorganisms have been employed in the development of new drugs for the treatment of human diseases. Among animals known to produce pharmacologically active molecules that interfere in human cell physiology, the caterpillar Lonomia obliqua has become the focus of toxicological studies due to recent findings about its venom constituents. The objective of this study was to investigate the effects of L. obliqua venom upon the viability and the proliferation of different cell lineages and to propose mechanisms for the herein observed induction of cell proliferation in glioma cell lines. MTT analyses indicate that L. obliqua venom increases the viability of tumor cell lines U138-MG and HT-29; on the other hand, it inhibits the viability of V-79 nontumor cells. Cell count based on the trypan blue exclusion method suggests a proliferating activity of the venom upon U138-MG cells. Exposure of U138-MG to crude venom extract led to a decrease in the production of nitric oxide, and activation of the cAMP signaling pathway inhibited the effects of the venom, indicating that these mechanisms may influence cell proliferation triggered by the venom. Despite the proliferative effects of crude venom on U138-MG and HT-29 cell cultures, a protein purified from L. obliqua hemolymph previously shown to have cytoprotective activity had no effect on U138-MG and HT-29; however, this same protein increased the viability of V-79 cells that had previously been exposed to the cytotoxic activity of the crude venom extract. This study indicates that the venom and the antiapoptotic protein act differently and have different effects on cell cultures, depending on the cell line analyzed. Biomolecules displaying either mitogenic or cytotoxic activities are of great biotechnological interest. Further studies encompassing the purification of active principles from L. obliqua venom are necessary to further elucidate its effects on different cell types.  相似文献   

12.
Isolation of mRNA from specific tissues of Drosophila by mRNA tagging   总被引:3,自引:0,他引:3  
To study the function of specific cells or tissues using genomic tools like microarray analyses, it is highly desirable to obtain mRNA from a homogeneous source. However, this is particularly challenging for small organisms, like Caenorhabditis elegans and Drosophila melanogaster. We have optimized and applied a new technique, mRNA tagging, to isolate mRNA from specific tissues of D.melanogaster. A FLAG-tagged poly(A)-binding protein (PABP) is expressed in a specific tissue and mRNA from that tissue is thus tagged by the recombinant PABP and separated from mRNA in other tissues by co-immunoprecipitation with a FLAG-tag specific antibody. The fractionated mRNA is then amplified and used as probe in microarray experiments. As a test system, we employed the procedures to identify genes expressed in Drosophila photoreceptor cells. We found that most known photoreceptor cell-specific mRNAs were identified by mRNA tagging. Furthermore, at least 11 novel genes have been identified as enriched in photoreceptor cells. mRNA tagging is a powerful general method for profiling gene expression in specific tissues and for identifying tissue-specific genes.  相似文献   

13.
A cDNA encoding an α-l-fucosidase from Drosophila melanogaster was obtained from the recombinant plasmid named pGEM-DmFuca and inserted into the pBacHTeGFPT vector to construct the recombinant donor plasmid which was transposed to the target AcBacmid in Escherichia coli (DH10) by Tn7 transposition function. The AcBacmid-GFP-DmFuca plasmid was used to transfect Tn-5B1-4 cells of the Cabbage looper Trichoplusia ni. SDS-PAGE analysis revealed a band of about 80 kDa. Using a polyclonal antiserum raised against α-l-fucosidase protein from D. melanogaster Western blotting analysis confirmed that the fusion protein eGFP-DmFuca has been successfully expressed in a biologically active form in Tn-5B1-4 cells. The recombinant protein, containing the histidine-tag motif, was purified using an affinity chromatography column. In vitro binding assays the purified eGFP-DmFuca interacts with α-l-fucose residues present on the micropyle of the D. melanogaster eggshell, confirming that the α-l-fucosidase is a good candidate as receptor involved in gamete interactions in fruit fly.  相似文献   

14.
In the present review we discuss strategies that have been used for heterologous gene expression in Drosophila melanogaster Schneider 2 (S2) cells using plasmid vectors. Since the growth of S2 cells is not dependent on anchorage to solid substrates, these cells can be easily cultured in suspension in large volumes. The factors that most affect the growth and gene expression of S2 cells, namely cell line, cell passage, inoculum concentration, culture medium, temperature, dissolved oxygen concentration, pH, hydrodynamic forces and toxic metabolites, are discussed by comparison with other insect and mammalian cells. Gene expression, cell metabolism, culture medium formulation and parameters involved in cellular respiration are particularly emphasized. The experience of the authors with the successful expression of a biologically functional protein, the rabies virus glycoprotein (RVGP), by recombinant S2 cells is presented in the topics covered.  相似文献   

15.
Mammalian cellular repressor of E1A-stimulated genes is a lysosomal glycoprotein implicated in cellular growth and differentiation. The genome of the fruit fly Drosophila melanogaster encodes a putative orthologue (dCREG), suggesting evolutionarily conserved physiological functions of this protein. In D. melanogaster S2 cells, dCREG was found to localize in lysosomes. Further studies revealed that intracellular dCREG is subject of proteolytic maturation. Processing and turnover could be substantially reduced by RNAi-mediated silencing of cathepsin L. In contrast to mammalian cells, lysosomal delivery of dCREG does not depend on its carbohydrate moiety. Furthermore, depletion of the putative D. melanogaster lysosomal sorting receptor lysosomal enzyme receptor protein did not compromise cellular retention of dCREG. We also investigated the developmental consequences of dCREG ablation in whole D. melanogaster flies. Ubiquitous depletion of dCREG proved lethal at the late pupal stage once a knock-down efficiency of > 95% was achieved. These results demonstrate that dCREG is essential for proper completion of fly development.  相似文献   

16.
为了研制基因工程狂犬病疫苗,我国于1991年首次报道了在痘苗病毒天坛株中表达狂犬病毒糖蛋白,但报道中重组病毒的选择是先经人骨髓瘤细胞(TK-143)在诱变剂5-溴脱氧尿苷(BrudR)作用下通过标记拯救技术筛选出携带有同源基因的重组病毒,然后再利用重组病毒中携带的Lac基因为选择标记,通过噬斑纯化获得重组病毒,用这种选择方式获得的重组病毒,经过了TK-143细胞和BrudR,因此不宜发展成疫苗,本研究探索不经过TK-143细胞和BrudR,仅利用Lac基因为选择标记,直接在鸡胚细胞上通过噬斑纯化获得重组病毒,现将研究结果报道如下。  相似文献   

17.
The ongoing conflict between viruses and their hosts can drive the co-evolution between host immune genes and viral suppressors of immunity. It has been suggested that an evolutionary ‘arms race’ may occur between rapidly evolving components of the antiviral RNAi pathway of Drosophila and viral genes that antagonize it. We have recently shown that viral protein 1 (VP1) of Drosophila melanogaster Nora virus (DmelNV) suppresses Argonaute-2 (AGO2)-mediated target RNA cleavage (slicer activity) to antagonize antiviral RNAi. Here we show that viral AGO2 antagonists of divergent Nora-like viruses can have host specific activities. We have identified novel Nora-like viruses in wild-caught populations of D. immigrans (DimmNV) and D. subobscura (DsubNV) that are 36% and 26% divergent from DmelNV at the amino acid level. We show that DimmNV and DsubNV VP1 are unable to suppress RNAi in D. melanogaster S2 cells, whereas DmelNV VP1 potently suppresses RNAi in this host species. Moreover, we show that the RNAi suppressor activity of DimmNV VP1 is restricted to its natural host species, D. immigrans. Specifically, we find that DimmNV VP1 interacts with D. immigrans AGO2, but not with D. melanogaster AGO2, and that it suppresses slicer activity in embryo lysates from D. immigrans, but not in lysates from D. melanogaster. This species-specific interaction is reflected in the ability of DimmNV VP1 to enhance RNA production by a recombinant Sindbis virus in a host-specific manner. Our results emphasize the importance of analyzing viral RNAi suppressor activity in the relevant host species. We suggest that rapid co-evolution between RNA viruses and their hosts may result in host species-specific activities of RNAi suppressor proteins, and therefore that viral RNAi suppressors could be host-specificity factors.  相似文献   

18.
Drosophila Mos1 belongs to the mariner family of transposons, which are one of the most ubiquitous transposons among eukaryotes. We first determined nuclear transportation of the Drosophila Mos1-EGFP fusion protein in fish cell lines because it is required for a function of transposons. We next constructed recombinant baculoviral vectors harboring the Drosophila Mos1 transposon or marker genes located between Mos1 inverted repeats. The infectivity of the recombinant virus to fish cells was assessed by monitoring the expression of a fluorescent protein encoded in the viral genome. We detected transgene expression in CHSE-214, HINAE, and EPC cells, but not in GF or RTG-2 cells. In the co-infection assay of the Mos1-expressing virus and reporter gene-expressing virus, we successfully transformed CHSE-214 and HINAE cells. These results suggest that the combination of a baculovirus and Mos1 transposable element may be a tool for transgenesis in fish cells.  相似文献   

19.
The presence of serum in cell culture raises safety problems for the production of biologicals, thus a new serum-free medium (MDSS2) was developed. The evaluation of this medium for the growth of different cell lines (BHK-21 C13, BSR and Vero) has shown that cells grew in this medium similarly to standard serum-containing medium, independently of the culture system used: in static (as monolayer) as well as in agitated systems (in suspension in spinner and perfusion reactors). BHK-21 and BSR cells grew as aggregate cultures and could proliferate in both static and agitated culture systems. Vero cells stayed attached to a substrate and proliferated equally in static and in agitated microcarrier-culture systems. The cell densities obtained with BHK-21 cells depended only on the culture system used. They ranged from 2–3×106 to 6–12×106 cells per ml for static batch and perfusion reactor cultures respectively. The cell concentration was 3 to 6 times higher than in classical cultures performed in serum-containing medium. The cell densities obtained with Vero cells were indistinguishable from those obtained in serum-containing medium, whatever the cell culture system used. These cell lines have been used for the production of rabies virus. With respect to BHK-21 and BSR, similar production rates of rabies glycoprotein have been found as in the standard roller bottle process. The production of rabies virus and of viral glycoprotein by Vero cells cultivated in serum-free medium was augmented 1.5-fold and 2.5-fold, respectively, when compared to serum-containing medium.A recombinant BHK-21 cell line, producing human IL-2, can also proliferate in MDSS2, after addition of insulin. The specific IL-2 production rate was augmented 3–4 fold in comparison to serum-containing medium.For the cells tested, the MDSS2 serum-free medium is a good growth and production medium. Its use for cultivating other cell lines and/or for the production of other biologicals is discussed.  相似文献   

20.
Ge J  Wang X  Tao L  Wen Z  Feng N  Yang S  Xia X  Yang C  Chen H  Bu Z 《Journal of virology》2011,85(16):8241-8252
Effective, safe, and affordable rabies vaccines are still being sought. Newcastle disease virus (NDV), an avian paramyxovirus, has shown promise as a vaccine vector for mammals. Here, we generated a recombinant avirulent NDV La Sota strain expressing the rabies virus glycoprotein (RVG) and evaluated its potential to serve as a vaccine against rabies. The recombinant virus, rL-RVG, retained its high-growth property in chicken eggs, with titers of up to 109.8 50% egg infective doses (EID50)/ml of allantoic fluid. RVG expression enabled rL-RVG to spread from cell to cell in a rabies virus-like manner, and RVG was incorporated on the surface of the rL-RVG viral particle. RVG incorporation did not alter the trypsin-dependent infectivity of the NDV vector in mammalian cells. rL-RVG and La Sota NDV showed similar levels of sensitivity to a neutralization antibody against NDV and similar levels of resistance to a neutralization antibody against rabies virus. Animal studies demonstrated that rL-RVG is safe in several species, including cats and dogs, when administered as multiple high doses of recombinant vaccine. Intramuscular vaccination with rL-RVG induced a substantial rabies virus neutralization antibody response and provided complete protection from challenge with circulating rabies virus strains. Most importantly, rL-RVG induced strong and long-lasting protective neutralization antibody responses to rabies virus in dogs and cats. A low vaccine dose of 108.3 EID50 completely protected dogs from challenge with a circulating strain of rabies virus for more than a year. This is the first study to demonstrate that immunization with an NDV-vectored vaccine can induce long-lasting, systemic protective immunity against rabies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号