首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural determinants underlaying the pH-dependent dimer-tetramer transition of Diocleinae lectins were investigated from the structures of Cratylia floribunda seed lectin crystallized in conditions where it exist as a dimer (pH 4.6) or as a tetramer (pH 8.5). The acidic (aCFL) and the basic (bCFL) tetramers superimpose with overall r.m.s.d. of 0.53 A, though interdimer contacts are drastically reduced in aCFL, and the r.m.s.d. for the superposition of the 117-120 loops of aCFL vs. the bCFL tetramer is 1.29 A. Our data support the view that His51 plays a role in determining the conformation of the central cavity loops and that interdimer contacts involving ordered loop residues stabilize the canonical, pH-dependent tetramer. In the bCFL tetramer, hydrogen bonds between Asn118 and Thr120 of monomers A and D and residues Ser66, Ser108, Ser110, and Thr49 of the opposite monomer stabilize the canonical, pH-dependent tetrameric lectin structure. In CFL, Asn131 makes intradimer contacts with Asn122 and Ala123. In comparison, His131 in Dioclea grandiflora lectin establishes a network of interdimer interactions bridging the four central loops of the pH-independent tetramer. Our data provide new insights into the participation of specific amino acid residues in the mechanism of the quaternary association of Diocleinae lectins.  相似文献   

2.
Diocleinae legume lectins are a group of oligomeric proteins whose subunits display a high degree of primary structure and tertiary fold conservation but exhibit considerable diversity in their oligomerisation modes. To elucidate the structural determinants underlaying Diocleinae lectin oligomerisation, we have determined the crystal structures of native and cadmium-substituted Dioclea guianensis (Dguia) seed lectin. These structures have been solved by molecular replacement using concanavalin (ConA) coordinates as the starting model, and refined against data to 2.0 A resolution. In the native (Mn/Ca-Dguia) crystal form (P4(3)2(1)2), the asymmetric unit contains two monomers arranged into a canonical legume lectin dimer, and the tetramer is formed with a symmetry-related dimer. In the Cd/Cd-substituted form (I4(1)22), the asymmetric unit is occupied by a monomer. In both crystal forms, the tetrameric association is achieved by the corresponding symmetry operators. Like other legume lectins, native D. guianensis lectin contains manganese and calcium ions bound in the vicinity of the saccharide-combining site. The architecture of these metal-binding sites (S1 and S2) changed only slightly in the cadmium/cadmium-substituted form. A highly ordered calcium (native lectin) or cadmium (Cd/Cd-substituted lectin) ion is coordinated at the interface between dimers that are not tetrameric partners in a similar manner as the previously identified Cd(2+) in site S3 of a Cd/Ca-ConA. An additional Mn(2+) coordination site (called S5), whose presence has not been reported in crystal structures of any other homologous lectin, is present in both, the Mn/Ca and the Cd/Cd-substituted D. guianensis lectin forms. On the other hand, comparison of the primary and quaternary crystal structures of seed lectins from D. guianensis and Dioclea grandiflora (1DGL) indicates that the loop comprising residues 117-123 is ordered to make interdimer contacts in the D. grandiflora lectin structure, while this loop is disordered in the D. guianensis lectin structure. A single amino acid difference at position 131 (histidine in D. grandiflora and asparagine in D. guianensis) drastically reduces interdimer contacts, accounting for the disordered loop. Further, this amino acid change yields a conformation that may explain why a pH-dependent dimer-tetramer equilibrium exists for the D. guianensis lectin but not for the D. grandiflora lectin.  相似文献   

3.
The legume lectins from the subtribe Diocleinae, often referred to as concanavalin A-like lectins, are a typical example of highly similar proteins that show distinct biological activities. The pH-dependent oligomerization that some of these lectins undergo and the relative position of amino acids within the carbohydrate-binding site are factors that have been reported to contribute to these differences in the activities of Diocleinae lectins. In the present work, we determined the amino acid sequence and the crystal structure of the lectin of Dioclea rostrata seeds (DRL), with the aim of investigating the structural bases of the different behavior displayed by this lectin in comparison to other Diocleinae lectins and determining the reason for the distinct pH-dependent dimer-tetramer equilibrium. In addition, we discovered a novel multimeric arrangement for this lectin.  相似文献   

4.
The crystal structure and pro-inflammatory property of a lectin from the seeds of Dioclea wilsonii (DwL) were analyzed to gain a better understanding of structure/function relationships of Diocleinae lectins. Following crystallization and structural determination by standard molecular replacement techniques, DwL was found to be a tetramer based on PISA analysis, and composed by two metal-binding sites per monomer and loops which are involved in molecular oligomerization. DwL presents 96% and 99% identity with two other previously described lectins of Dioclea rostrata (DRL) and Dioclea grandiflora (DGL). DwL differs structurally from DVL and DRL with regard to the conformation of the carbohydrate recognition domain and related biological activities. The structural analysis of DwL in comparison to other Diocleinae lectins can be related to the differences in the dose-dependent pro-inflammatory effect elicited in Wistar rats, probably via specific interactions with mast cells complex carbohydrate, resulting in significant paw edema. DwL appears to be involved in positive modulation of mast cell degranulation via recognition of surface carbohydrates. Since this recognition is dependent on site volume and CRD configuration, edematogenesis mediated by resident cells varies in potency and efficacy among different Diocleinae lectins.  相似文献   

5.
The legume lectins are widely used as a model system for studying protein-carbohydrate and protein-protein interactions. They exhibit a fascinating quaternary structure variation, which becomes important when they interact with multivalent glycoconjugates, for instance those on cell surfaces. Recently, it has become clear that certain lectins form weakly associated oligomers. This phenomenon may play a role in the regulation of receptor crosslinking and subsequent signal transduction. The crystal structure of DB58, a dimeric lectin from the legume Dolichos biflorus reveals a separate dimer of a previously unobserved type, in addition to a tetramer consisting of two such dimers. This tetramer resembles that formed by DBL, the seed lectin from the same plant. A single amino acid substitution in DB58 affects the conformation and flexibility of a loop in the canonical dimer interface. This disrupts the formation of a stable DBL-like tetramer in solution, but does not prohibit its formation in suitable conditions, which greatly increases the possibilities for the cross-linking of multivalent ligands. The non-canonical DB58 dimer has a buried symmetrical alpha helix, which can be present in the crystal in either of two antiparallel orientations. Two existing structures and datasets for lectins with similar quaternary structures were reconsidered. A central alpha helix could be observed in the soybean lectin, but not in the leucoagglutinating lectin from Phaseolus vulgaris. The relative position and orientation of the carbohydrate-binding sites in the DB58 dimer may affect its ability to crosslink mulitivalent ligands, compared to the other legume lectin dimers.  相似文献   

6.
Molecular characterization of seven Diocleinae lectins was assessed by sequence analysis, determination of molecular masses by mass spectrometry, and analytical ultracentrifugation equilibrium sedimentation. The lectins show distinct pH-dependent dimer-tetramer equilibria, which we hypothesize are due to small primary structure differences at key positions. Lectins from Dioclea guianensis, Dioclea virgata, and Cratylia floribunda seeds have been crystallized and preliminary X-ray diffraction analyses are reported.  相似文献   

7.
Carbohydrate recognition by monocot mannose-binding lectins was studied via the crystal structure determination of daffodil (Narcissus pseudonarcissus) lectin. The lectin was extracted from daffodil bulbs, and crystallised in the presence of alpha-1,3 mannobiose. Molecular replacement methods were used to solve the structure using the partially refined model of Hippeastrum hybrid agglutinin as a search model. The structure was refined at 2.0 A resolution to a final R -factor of 18.7 %, and Rfreeof 26.7 %.The main feature of the daffodil lectin structure is the presence of three fully occupied binding pockets per monomer, arranged around the faces of a triangular beta-prism motif. The pockets have identical topology, and can bind mono-, di- or oligosaccharides. Strand exchange forms tightly bound dimers, and higher aggregation states are achieved through hydrophobic patches on the surface, completing a tetramer with internal 222-symmetry. There are therefore 12 fully occupied binding pockets per tetrameric cluster. The tetramer persists in solution, as shown with small-angle X-ray solution scattering. Extensive sideways and out-of-plane interactions between tetramers, some mediated via the ligand, make up the bulk of the lattice contacts.A fourth binding site was also observed. This is unique and has not been observed in similar structures. The site is only partially occupied by a ligand molecule due to the much lower binding affinity. A comparison with the Galanthus nivalis agglutinin/mannopentaose complex suggests an involvement of this site in the recognition mechanism for naturally occurring glycans.  相似文献   

8.
Varejão N  Correia MT  Foguel D 《Biochemistry》2011,50(34):7330-7340
pCRAMOLL 1 is a major, non-glycosylated isolectin found in seeds of Cratylia mollis, which belongs to the Leguminosae family and the Diocleinae subtribe. The lectin (~25 kDa) consists of 236 amino acids, sharing 82% identity and virtually identical topological architecture with concanavalin A. Both lectins also share the same pH-dependent dimer-tetramer equilibrium and the ability to recognize Glc/Man moieties. Intricate post-translational events occurring in Diocleinae seed cotyledons result in a mixture of intact and fragmented monomers within the oligomeric assemblies of pCRAMOLL 1. In an earlier report, we demonstrated the production, purification, and characterization of the bacterially expressed form of CRAMOLL 1 (rCRAMOLL 1). The recombinant lectin retained sugar-binding activity and several other biophysical properties of pCRAMOLL 1, but its tetramers, which are composed of intact monomers only, show little enhancement in stability when probed with acidification, high temperatures, or hydrostatic pressure. Here we examined the urea-induced unfolding of the nonfragmented tetramers and dimers of rCRAMOLL 1 and compared this behavior with that of the mixed plant lectin counterparts. Using fluorescence, circular dichroism, size-exclusion chromatography, and chemical cross-linking experiments, we posited that the absence of fragmentation lent greater firmness to tetramers, but not to dimers. Dimeric and tetrameric pCRAMOLL 1 unfolded via a compact monomeric intermediate. In contrast, dimers of rCRAMOLL 1 behaved similarly to the plant dimer counterpart, but its tetrameric form remarkably showed no evidence of such partially unfolded monomers. By analyzing the crystal structure of pCRAMOLL 1, we were able to dissect the importance of the fragmentation to lectin stability.  相似文献   

9.
Sin resolvase is a site-specific serine recombinase that is normally controlled by a complex regulatory mechanism. A single mutation, Q115R, allows the enzyme to bypass the entire regulatory apparatus, such that no accessory proteins or DNA sites are required. Here, we present a 1.86 ? crystal structure of the Sin Q115R catalytic domain, in a tetrameric arrangement stabilized by an interaction between Arg115 residues on neighboring subunits. The subunits have undergone significant conformational changes from the inactive dimeric state previously reported. The structure provides a new high-resolution view of a serine recombinase active site that is apparently fully assembled, suggesting roles for the conserved active site residues. The structure also suggests how the dimer-tetramer transition is coupled to assembly of the active site. The tetramer is captured in a different rotational substate than that seen in previous hyperactive serine recombinase structures, and unbroken crossover site DNA can be readily modeled into its active sites.  相似文献   

10.
Dimeric banana lectin and calsepa, tetrameric artocarpin and octameric heltuba are mannose-specific beta-prism I fold lectins of nearly the same tertiary structure. MD simulations on individual subunits and the oligomers provide insights into the changes in the structure brought about in the protomers on oligomerization, including swapping of the N-terminal stretch in one instance. The regions that undergo changes also tend to exhibit dynamic flexibility during MD simulations. The internal symmetries of individual oligomers are substantially retained during the calculations. Energy minimization and simulations were also carried out on models using all possible oligomers by employing the four different protomers. The unique dimerization pattern observed in calsepa could be traced to unique substitutions in a peptide stretch involved in dimerization. The impossibility of a specific mode of oligomerization involving a particular protomer is often expressed in terms of unacceptable steric contacts or dissociation of the oligomer during simulations. The calculations also led to a rationale for the observation of a heltuba tetramer in solution although the lectin exists as an octamer in the crystal, in addition to providing insights into relations among evolution, oligomerization and ligand binding.  相似文献   

11.
The lectin of Dioclea virgata (DvirL), both native and complexed with X-man, was submitted to X-ray diffraction analysis and the crystal structure was compared to that of other Diocleinae lectins in order to better understand differences in biological properties, especially with regard to the ability of lectins to induce nitric oxide (NO) production. An association was observed between the volume of the carbohydrate recognition domain (CRD), the ability to induce NO production and the relative positions of Tyr12, Arg228 and Leu99. Thus, differences in biological activity induced by Diocleinae lectins are related to the configuration of amino acid residues in the carbohydrate binding site and to the structural conformation of subsequent regions capable of influencing site-ligand interactions. In conclusion, the ability of Diocleinae lectins to induce NO production depends on CRD configuration.  相似文献   

12.
Ultracentrifugation analyses were performed on lectins under varying conditions of pH, ionic strength and temperature. It has been demonstrated that the phytohemagglutinin from Phaseolus vulgaris, the wheat germ agglutinin and the soybean agglutinin are stable when these parameters are varied, whereas the concanavalin A molecule exhibits a striking reversible dimer-tetramer transition with variation in pH (from 6.0 to 7.2) and temperature (from 4 degrees up to 37 degrees C). It has also been demonstrated that, in agglutination experiments undertaken at different temperatures, cells do eventually aggregate with the first three lectins provided that incubation time is sufficient, whereas the concanavalin-A-induced agglutination was previously found to be temperature-sensitive. These results strongly suggest that the effect of temperature on agglutination by lectins may essentially be due to a structural transition of the lectin itself and nott only to modification of cell surface properties.  相似文献   

13.
The amino acid sequences of the major lectins from the seeds of Dioclea lehmanni and Canavalia maritima were determined by DABITC/PITC microsequence analysis of peptides derived from the proteins by enzymatic digestions with trypsin, chymotrypsin and the protease from S. aureus V8. These sequences were found to be very similar to those of the lectins from Dioclea grandiflora and Canavalia ensiformis (Con A). The D. lehmanni lectin was unusual amongst legume lectins in that it contained a single Cys.  相似文献   

14.
Phaseolus vulgaris phytohemagglutinin L is a homotetrameric-leucoagglutinating seed lectin. Its three-dimensional structure shows similarity with other members of the legume lectin family. The tetrameric form of this lectin is pH dependent. Gel filtration results showed that the protein exists in its dimeric state at pH 2.5 and as a tetramer at pH 7.2. Contrary to earlier reports on legume lectins that possess canonical dimers, thermal denaturation studies show that the refolding of phytohemagglutinin L at neutral pH is irreversible. Differential scanning calorimetry (DSC) was used to study the denaturation of this lectin as a function of pH that ranged from 2.0 to 3.0. The lectin was found to be extremely thermostable with a transition temperature around 82 degrees C and above 100 degrees C at pH 2.5 and 7.2, respectively. The ratio of calorimetric to vant Hoff enthalpy could not be calculated because of its irreversible-folding behavior. However, from the DSC data, it was discovered that the protein remains in its compact-folded state, even at pH 2.3, with the onset of denaturation occurring at 60 degrees C.  相似文献   

15.
Felis domesticus allergen 1(Fel d 1) is a 35 kDa tetrameric glycoprotein formed by two heterodimers which elicits IgE responses in 95% of patients with allergy to cat. We have previously established in vitro conditions for the appropriate folding of recombinant Fel d 1 using a direct linkage of chain 1 to chain 2 (construct Fel d 1 (1+2)) and chain 2 to chain 1 (construct Fel d 1 (2+1)). Although the crystal structure of Fel d 1 (2+1) revealed a striking structural similarity to that of uteroglobin, a steroid-inducible cytokine-like molecule with anti-inflammatory and immunomodulatory properties, no functional tetrameric form of Fel d 1 could be identified. Here we present the crystal structure of the Fel d 1 (1+2) tetramer at 1.6 A resolution. Interestingly, the crystal structure of tetrameric Fel d 1 reveals two different calcium-binding sites. Symmetrically positioned on each side of the Fel d 1 tetramer, the external Ca(2+)-binding sites correspond to a putative Ca(2+)-binding site previously suggested for uteroglobin. The second Ca(2+)-binding site lies within the dimerization interface, stabilizing the formation of the Fel d 1 tetramer, and inducing important local conformational changes that directly govern the shape of two water-filled cavities. The crystal structure suggests a potential portal for an unknown ligand. Alternatively, the two cavities could be used by the allergen as a conditional inner space allowing for the spatial rearrangement of centrally localized side-chains, such as Asp130, without altering the overall fold of the molecule. The striking structural similarity of the major cat allergen to uteroglobin, coupled to the identification in the present study of a common Ca(2+)-binding site, let us speculate that Fel d 1 could provoke an allergic response through the modulation of phospholipase A2, by sequestering Ca ions in a similar manner as previously suggested for uteroglobin.  相似文献   

16.
G Perez  M Hernandez  E Mora 《Phytochemistry》1990,29(6):1745-1749
Affinity chromatography of the globulin fraction from the seeds of Dioclea lehmanni on Sephacryl S-200 yielded two lectins, one slightly retarded and another strongly bound. The latter, which was a glucose/mannose specific lectin, was purified and the following properties were determined: pI, Mr of subunits, carbohydrate content, A, aminoacid composition, hemagglutination and inhibition patterns, N-terminal sequence and mitogenic activity. These properties of the lectin were very similar to those of the Con A and Dioclea grandiflora lectins.  相似文献   

17.
The biotin-binding tetrameric proteins, streptavidin from Streptomyces avidinii and chicken egg white avidin, are excellent models for the study of subunit-subunit interactions of a multimeric protein. Efforts are thus being made to prepare mutated forms of streptavidin and avidin, which would form monomers or dimers, in order to examine their effect on quaternary structure and assembly. In the present communication, we compared the crystal structures of binding site W-->K mutations in streptavidin and avidin. In solution, both mutant proteins are known to form dimers, but upon crystallization, both formed tetramers with the same parameters as the native proteins. All of the intersubunit bonds were conserved, except for the hydrophobic interaction between biotin and the tryptophan that was replaced by lysine. In the crystal structure, the binding site of the mutated apo-avidin contains 3 molecules of structured water instead of the 5 contained in the native protein. The lysine side chain extends in a direction opposite that of the native tryptophan, the void being partially filled by an adjacent lysine residue. Nevertheless, the binding-site conformation observed for the mutant tetramer is an artificial consequence of crystal packing that would not be maintained in the solution-phase dimer. It appears that the dimer-tetramer transition may be concentration dependent, and the interaction among subunits obeys the law of mass action.  相似文献   

18.
The seeds of jack fruit (Artocarpus integrifolia) contain two tetrameric lectins, jacalin and artocarpin. Jacalin was the first lectin found to exhibit the beta-prism I fold, which is characteristic of the Moraceae plant lectin family. Jacalin contains two polypeptide chains produced by a post-translational proteolysis which has been shown to be crucial for generating its specificity for galactose. Artocarpin is a single chain protein with considerable sequence similarity with jacalin. It, however, exhibits many properties different from those of jacalin. In particular, it is specific to mannose. The structures of two crystal forms, form I and form II, of the native lectin have been determined at 2.4 and 2.5 A resolution, respectively. The structure of the lectin complexed with methyl-alpha-mannose, has also been determined at 2.9 A resolution. The structure is similar to jacalin, although differences exist in details. The crystal structures and detailed modelling studies indicate that the following differences between the carbohydrate binding sites of artocarpin and jacalin are responsible for the difference in the specificities of the two lectins. Firstly, artocarpin does not contain, unlike jacalin, an N terminus generated by post-translational proteolysis. Secondly, there is no aromatic residue in the binding site of artocarpin whereas there are four in that of jacalin. A comparison with similar lectins of known structures or sequences, suggests that, in general, stacking interactions with aromatic residues are important for the binding of galactose while such interactions are usually absent in the carbohydrate binding sites of mannose-specific lectins with the beta-prism I fold.  相似文献   

19.
HIV-1 Nef modulates disease progression through interactions with over 30 host proteins. Individual chains fold into membrane-interacting N-terminal and C-terminal core (Nefcore) domains respectively. Nef exists as small oligomers near membranes and associates into higher oligomers such as tetramers or hexadecamers in the cytoplasm. Earlier structures of the Nefcore in apo and complexed forms with the Fyn-kinase SH3 domain revealed dimeric association details and the role of the conserved PXXP recognition motif (residues 72–78) of Nef in SH3-domain interactions. The crystal structure of the tetrameric Nef reported here corresponds to the elusive cytoplasmic stage. Comparative analyses show that subunits of Nefcore dimers (open conformation) swing out with a relative displacement of ∼22 Å and rotation of ∼174° to form the ‘closed’ tetrameric structure. The changes to the association are around Asp125, a conserved residue important for viral replication and the important XR motif (residues 107–108). The tetramer associates through C4 symmetry instead of the 222 symmetry expected when two dimers associate together. This novel dimer-tetramer transition agrees with earlier solution studies including small angle X-ray scattering, analytical ultracentrifugation, dynamic laser light scattering and our glutaraldehyde cross-linking experiments. Comparisons with the Nefcore—Fyn-SH3 domain complexes reveal that the PXXP motif that interacts with the SH3-domain in the dimeric form is sterically occluded in the tetramer. However the 151–180 loop that is distal to the PXXP motif and contains several protein interaction motifs remains accessible. The results suggest how changes to the oligomeric state of Nef can help it distinguish between protein partners.  相似文献   

20.
Two isoforms of an antifungal protein, gastrodianin, were isolated from two subspecies of the orchid Gastrodia elata, belonging to the protein superfamily of monocot mannose-specific lectins. In the context that all available structures in this superfamily are oligomers so far, the crystal structures of the orchid lectins, both at 2.0 A, revealed a novel monomeric structure. It resulted from the rearrangement of the C-terminal peptide inclusive of the 12th beta-strand, which changes from the "C-terminal exchange" into a "C-terminal self-assembly" mode. Thus, the overall tertiary scaffold is stabilized with an intramolecular beta-sheet instead of the hybrid observed on subunit/subunit interface in all known homologous dimeric or tetrameric lectins. In contrast to the constrained extended conformation with a cis peptide bond between residues 98 and 99 commonly occurring in oligomers, a beta-hairpin forms from position 97 to 101 with a normal trans peptide bond at the corresponding site in gastrodianin, which determines the topology of the C-terminal peptide and thereby its unique fold pattern. Sequence and structure comparison shows that residue replacement and insertion at the position where the beta-hairpin occurs in association with cis-trans inter-conversion of the specific peptide bond (97-98) are possibly responsible for such a radical structure switch between monomers and oligomers. Moreover, this seems to be a common melody controlling the quaternary states among bulb lectins through studies on sequence alignment. The observations revealed a structural mechanism by which the quaternary organization of monocot mannose binding lectins could be governed. The mutation experiment performed on maltose-binding protein-gastrodianin fusion protein followed by a few biochemical detections provides direct evidence to support this conclusion. Potential carbohydrate recognition sites and biological implications of the orchid lectin based on its monomeric state are also discussed in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号