首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of polyethylenimine (PEI)-mediated gene transfer at early times after transfection of Chinese hamster ovary (CHO) cell in suspension were investigated using a novel in vitro assay. Addition of an excess of competitor DNA to the culture medium at various times after the initiation of transfection inhibited further cellular uptake of PEI–DNA particles. Using this approach, a constant rate of particle uptake was observed during the first 60 min of transfection at a PEI:DNA ratio of 2:1 (w/w) and a cell density of 2 × 106 cells/ml under serum-free conditions. The uptake rate declined considerably during the next 2 h of transfection. Both the rate and the level of PEI–DNA uptake in serum-free minimal medium were found to be dependent on the PEI–DNA ratio, the cell density at the time of transfection, and the extent of particle aggregation. These studies of the early phase of PEI-mediated transfection are expected to lead to further opportunities for optimization of gene transfer to suspension cultures of mammalian cells for the purpose of large-scale transient recombinant protein production.  相似文献   

2.
In order to establish a simple and scaleable transfection system we have used the cationic polymer polyethylenimine (PEI) to study transient transfection in HEK293 and 293(EBNA) cells grown in serum-free suspension culture. The transfection complexes were made directly within the cell culture by consecutively adding plasmid and PEI (direct method). Alternatively, the DNA-PEI transfection complexes were prepared in fresh medium (1/10 culture volume) and then added to the cells (indirect method). The results of this study clearly show that the ratio of PEI nitrogen to DNA phosphate is very important for high expression levels. The precise ratio is dependent on the DNA concentration. For example, using 1 μg/ml DNA by the indirect method, the ratio of optimal PEI:DNA was about 10–13:1. However, the ratio increases to 33:1 for 0.1–0.2 μg/ml DNA. By testing several different molecular weights of the polycationic polymer we could show that the highest transfection efficiency was obtained with the PEI 25 kDa. Using PEI 25 kDa the indirect method is superior to the direct addition because significantly lower DNA concentrations are needed. The expression levels of the soluble human TNF receptor p55 are even higher at low DNA compared to 1 μg/ml plasmid. The EBV-based pREP vectors gave better transient gene expression when used in 293(EBNA) cells compared to HEK293 cells in suspension culture. No differences in expression levels in the two cell lines were observed when the pC1 (CMV)-TNFR was used. In conclusion, PEI is a low-toxic transfection agent which provides high levels of transient gene expression in 293(EBNA) cells grown in serum-free suspension culture. This system allows highly reproducible, cost-effective production of milligram amounts of recombinant proteins in 2–5 l spinner culture scale within 3–5 days. Fermentor scale experiments, however, are less efficient because the PEI-mediated transient tranfection is inhibited by conditioned medium. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
We have developed a simple and robust transient expression system utilizing the 25 kDa branched cationic polymer polyethylenimine (PEI) as a vehicle to deliver plasmid DNA into suspension-adapted Chinese hamster ovary cells synchronized in G2/M phase of the cell cycle by anti-mitotic microtubule disrupting agents. The PEI-mediated transfection process was optimized with respect to PEI nitrogen to DNA phosphate molar ratio and the plasmid DNA mass to cell ratio using a reporter construct encoding firefly luciferase. Optimal production of luciferase was observed at a PEI N to DNA P ratio of 10:1 and 5 mug DNA 10(6) cells(-1). To manipulate transgene expression at mitosis, we arrested cells in G2/M phase of the cell cycle using the microtubule depolymerizing agent nocodazole. Using secreted human alkaline phosphatase (SEAP) and enhanced green fluorescent protein (eGFP) as reporters we showed that continued inclusion of nocodazole in cell culture medium significantly increased both transfection efficiency and reporter protein production. In the presence of nocodazole, greater than 90% of cells were eGFP positive 24 h post-transfection and qSEAP was increased almost fivefold, doubling total SEAP production. Under optimal conditions for PEI-mediated transfection, transient production of a recombinant chimeric IgG4 encoded on a single vector was enhanced twofold by nocodazole, a final yield of approximately 5 microg mL(-1) achieved at an initial viable cell density of 1 x 10(6) cells mL(-1). The glycosylation of the recombinant antibody at Asn297 was not significantly affected by nocodazole during transient production by this method.  相似文献   

4.
PEI介导的大规模基因瞬时转染研究进展   总被引:1,自引:0,他引:1  
基因重组蛋白具有巨大的商业和科研价值。近年来,大规模基因瞬时表达(large scale transient gene expression,TGE)技术的出现提供了一种相较于传统筛选稳定细胞株重组蛋白生产工艺而言更加高效(high efficient)和更加节约人力(labor consuming)、物力(cost effective)和时间(time consuming)的解决方案。通过基因瞬时表达技术,可以在短时间内获得毫克至克级别的在分子结构、理化特性和生物学功能等方面都接近于原始存在的蛋白质分子,可以满足细胞信号转导、新药筛选和临床前研究等药物研发前期的阶段对重组蛋白的巨大需求。因此,该技术成为当前研究的热点。阳离子聚合物-聚乙烯亚胺(PEI)是目前报道的工业化、大规模瞬时转染表达重组蛋白领域最广泛使用的基因载体和转染试剂。本文就近年来PEI介导的大规模瞬时转染的转染机理、宿主细胞选择以及转染优化措施等各方面的最新研究进展作一综述。  相似文献   

5.
Polyethyleneimines (PEIs) are efficient non-viral vectors for gene transfer. Heparan sulfate proteoglycans have been proposed to be the cell-surface receptors for PEI.DNA complexes (polyplexes). Here, we investigated if syndecan-1 (SDC1) and syndecan-2 (SDC2) are involved in PEI-mediated transfection. Following addition of polyplexes to HEK293 cells, green fluorescent protein-tagged SDCs rapidly formed clusters with PEI that were dependent of lipid raft integrity. However, although SDC1 overexpression slightly enhanced PEI-mediated gene expression, SDC2 dramatically inhibited it. Confocal microscopy analysis showed that SDC1.polyplex endocytosis occurred within minutes after addition of polyplexes, whereas SDC2.polyplex endocytosis took hours. Expression of SDC1 cytoplasmic deletion mutants revealed that the SDC1 cytoplasmic tail is required for gene expression, but not for clustering or endocytosis, whereas overexpression of SDC1/SDC2 chimeras showed that the SDC2 ectodomain is responsible for the inhibitory effect on gene transfer. This study provides evidence that SDCs may have opposing effects on PEI-mediated transfection.  相似文献   

6.
Many protein-free media have been deveoped, because protein-free media are usually more economical than serum-free or serumcontaining media and facilitate the purification ofbioactive materials. We evaluated various iron salts and chelating agents replacing transferrin to develop a protein-free medium for a human-human hybridoma, HB4C5, and found out that ferric citrate was favorable for the production and the productivity of monoclonal antibodies.  相似文献   

7.
Ronggai Li 《Cytotechnology》2015,67(6):987-993
A practical method was developed for the transient transfection of Chinese hamster ovary (CHO) cells with 25 kDa linear polyethylenimine (PEI) then optimal culture conditions determined for the production of rainbow trout (Oncorhynchus mykiss) IFN-γ recombinant protein. We found that culture temperature had a significant impact upon recombinant protein yield, with best results being obtained at 32 °C. However the amount of serum added to the culture medium had no effect upon recombinant IFN-γ (rIFN-γ) production. In this study maximal rIFN-γ yields and minimal PEI toxicity were achieved using a DNA/PEI ratio of 1:8, where the amount of PEI did not exceed 10 µg per 5 ml of RPMI1640 culture medium, with cells subsequently cultured at 32 °C for 7 days. Thus, linear PEI is a technically simple and cost-efficient method for the transient transfection of CHO cells and is compatible with serum-free operations.  相似文献   

8.
While reliable transfection methods are essential for Chinese hamster ovary (CHO) cell line engineering, reduced transfection efficiencies have been observed in several commercially prepared media. In this study, we aimed to assess common media additives that impede efficiency mediated by three chemical transfection agents: liposomal-based (Lipofectamine 2000), polymer-based (TransIT-X2), and lipopolyplex-based (TransIT-PRO). An in-house GFP-expressing vector and serum-free medium (BCR-F12: developed for the purposes of this study) were used to analyze transient transfection efficiencies of three CHO cell lines (CHO-K1, DG44, DP12). Compared to a selection of commercially available media, BCR-F12 displayed challenges associated with transfection in vendor-prepared formulations, with no detection when liposomal-based methods were used, reduced (<3%) efficiency observed when polymer-based methods were used and only limited efficiency (25%) with lipopolyplexes. Following a stepwise removal protocol, ferric ammonium citrate (FAC) was identified as the critical factor impeding transfection, with transfection enabled with the liposomal- and polymer-based methods and a 1.3- to 7-fold increased lipopolyplex efficiency observed in all cell lines in FAC-depleted media (−FAC), although lower viabilities were observed. Subsequent early addition of FAC (0.5–5 hr post-transfection) revealed 0.5 hr post-transfection as the optimal time to supplement in order to achieve transfection efficiencies similar to −FAC medium while retaining optimal cellular viabilities. In conclusion, FAC was observed to interfere with DNA transfection acting at early stages in all transfection agents and all cell lines studied, and a practical strategy to circumvent this problem is suggested.  相似文献   

9.
BACKGROUND: The relatively high transfection efficiency of polyethylenimine (PEI) vectors has been hypothesized to be due to their ability to avoid trafficking to degradative lysosomes. According to the proton sponge hypothesis, the buffering capacity of PEI leads to osmotic swelling and rupture of endosomes, resulting in the release of the vector into the cytoplasm. METHODS: The mechanism of PEI-mediated DNA transfer was investigated using quantitative methods to study individual steps in the overall transfection process. In addition to transfection efficiency, the cellular uptake, local pH environment, and stability of vectors were analyzed. N-Quaternized (and therefore non-proton sponge) versions of PEI and specific cell function inhibitors were used to further probe the proton sponge hypothesis. RESULTS: Both N-quaternization and the use of bafilomycin A1 (a vacuolar proton pump inhibitor) reduced the transfection efficiency of PEI by approximately two orders of magnitude. Chloroquine, which buffers lysosomes, enhanced the transfection efficiency of N-quaternized PEIs and polylysine by 2-3-fold. In contrast, chloroquine did not improve the transfection efficiency of PEI. The measured average pH environment of PEI vectors was 6.1, indicating that they successfully avoid trafficking to acidic lysosomes. Significantly lower average pH environments were observed for permethyl-PEI (pH 5.4), perethyl-PEI (pH 5.1), and polylysine (pH 4.6) vectors. Cellular uptake levels of permethyl-PEI and perethyl-PEI vectors were found to be 20 and 90% higher, respectively, than that of parent PEI vectors, indicating that the reduction in transfection activity of the N-quaternized PEIs is due to a barrier downstream of cellular uptake. A polycation/DNA-binding affinity assessment showed that the more charge dense N-quaternized PEIs bind DNA less tightly than PEI, demonstrating that poor vector unpackaging was not responsible for the reduced transfection activity of the N-quaternized PEIs. CONCLUSIONS: The results obtained are consistent with the proton sponge hypothesis and strongly suggest that the transfection activity of PEI vectors is due to their unique ability to avoid acidic lysosomes.  相似文献   

10.
The proliferative response of peripheral blood mononuclear cells (PBMC) in synthetic serum-free media depends on the presence of sufficient amounts of transferrin (Tf). In the present communication we show that the reduction of Tf concentration in culture media results in a decreased proliferation, whereas lymphokine production and the expression of activation markers (IL-2 receptor; transferrin receptor, (TfR); HLA class II) remain unchanged. To examine whether this effect is due to iron depletion we added iron chelates (ferric citrate, FeCi; ferric nitrilotriacetic acid, FeNTA) which can be internalized by cells without the requirement for Tf. The iron chelates could fully restore the proliferative response even in complete absence of Tf, suggesting that the observed inhibitory effect was indeed caused by iron depletion. Addition of a monoclonal TfR antibody, J 64, also caused a marked inhibition of proliferation of PBMC in regular serum-containing medium as well as in Tf-free synthetic medium; this effect could not be overcome by any of the tested iron chelates. Therefore, growth inhibition caused by J 64 cannot simply be attributed to iron starvation. These data suggest that J 64 may interfere with processes others than iron uptake and that the TfR might confer a necessary promoting signal for lymphocyte proliferation.  相似文献   

11.
Summary Iron is essential for tumor cell growth. Previous studies have demonstrated that apart from transferrin-bound iron uptake, mammalian cells also possess a transport system capable of efficiently obtaining iron from small molecular weight iron chelates (Sturrock et al., 1990). In the present study, we have examined the ability of tumor cells to grow in the presence of low molecular weight iron chelates of citrate. In chemically defined serum-free medium, most human tumor cell lines required either transferrin (5 μg/ml) or a higher concentration of ferric citrate (500 μM) as an iron source. However, we have also found that from 13 human cell lines tested, 4 were capable of long-term growth in transferrin-free medium with a substantially lower concentration of ferric citrate (5 μM). When grown in medium containing transferrin, both regular and low-iron dependent cell lines use transferrin-bound iron. Growth of both cell types in transferrin medium was inhibited to a certain degree by monoclonal antibody 42/6, which specifically blocks the binding of transferrin to the transferrin receptor. On the contrary, growth of low-iron dependent cell lines in transferrin-free, low-iron medium (5 μM ferric citrate) could not be inhibited by monoclonal antibody 42/6. Furthermore, no autocrine production of transferrin was observed. Low-iron dependent cell lines still remain sensitive to iron depletion as the iron(III) chelator, desferrioxamine, inhibited their growth. We conclude that low-iron dependent tumor cells in transferrin-free, low-iron medium may employ a previously unknown mechanism for uptake of non-transferrin-bound iron that allows them to efficiently use low concentrations of ferric citrate as an iron source. The results are discussed in the context of alternative iron uptake mechanisms to the well-characterized receptor-mediated endocytosis process.  相似文献   

12.
瞬时基因表达可溶性的VEGFR2: I-IV   总被引:1,自引:0,他引:1  
通过RT-PCR的方法从三个月的流产绒毛组织中克隆目的基因VEGFR2 (Vascular endothelial growth factor receptor 2, 血管内皮细胞生长因子受体2) 胞外I-IV区, 连接到真核表达载体上构建了重组表达载体。首先在无血清悬浮培养的HEK293细胞中, 使用报告基因GFP(Green fluorescence protein, 绿色荧光蛋白)优化转染条件, 发现在转染时DNA: PEI=1:2 (W/W)、1.5 mg DNA/106 cells及开始转染4 h内使用无血清、摇床(120 r/min)时可以达到最佳的转染效率和细胞数量。在确定转染条件之后, 将构建的表达载体分别在HEK293细胞、COS-7细胞和CHO-K1细胞中进行瞬时转染表达, 结果发现仅在CHO-K1细胞的培养上清中检测到目的蛋白的表达。瞬时转染CHO-K1细胞至总体积约为1.5 L, 由于目的蛋白的羧基端有8-His标签, 通过Ni2+-IDA柱纯化得到5 mg左右的目的蛋白。  相似文献   

13.
通过RT-PCR的方法从三个月的流产绒毛组织中克隆目的基因VEGFR2 (Vascular endothelial growth factor receptor 2, 血管内皮细胞生长因子受体2) 胞外I-IV区, 连接到真核表达载体上构建了重组表达载体。首先在无血清悬浮培养的HEK293细胞中, 使用报告基因GFP(Green fluorescence protein, 绿色荧光蛋白)优化转染条件, 发现在转染时DNA: PEI=1:2 (W/W)、1.5 mg DNA/106 cells及开始转染4 h内使用无血清、摇床(120 r/min)时可以达到最佳的转染效率和细胞数量。在确定转染条件之后, 将构建的表达载体分别在HEK293细胞、COS-7细胞和CHO-K1细胞中进行瞬时转染表达, 结果发现仅在CHO-K1细胞的培养上清中检测到目的蛋白的表达。瞬时转染CHO-K1细胞至总体积约为1.5 L, 由于目的蛋白的羧基端有8-His标签, 通过Ni2+-IDA柱纯化得到5 mg左右的目的蛋白。  相似文献   

14.
Cell expansion, gene transfer and protein production were all executed with a single serum-free, animal protein-free commercial medium designed for suspension-adapted Chinese hamster ovary cells (CHO DG44). This is a most important process to consider for clinical production of recombinant proteins. The transfection with polyethylenimine (PEI) was shown here to be scalable using both stirred-tank bioreactors of 3- and 150-l and novel agitated cultivation vessels (50 ml ventilated centrifuge tubes and 1-l square-shaped glass bottles) that lack any instrumentation. The transient transfections spanned a range of working volumes from 2 ml to 80 l. The maximum transient recombinant antibody yield was 22 mg/l, the highest ever reported for a multiliter transfection in CHO. The transiently expressed protein had the same extent of glycosylation as the same antibody produced from a stably transfected recombinant CHO cell line.  相似文献   

15.
The generation of transgenic cell lines is acquired by facilitating the uptake and integration of DNA. Unfortunately, most of the systems generating stable expression systems are cost and time-consuming and transient expression is optimized to generate milligram amounts of the recombinant protein. Therefore we improved and compared two transfection systems, one based on cationic liposomes consisting of DOTAP/DOPE and the second one on polyethylenimine (PEI). Both systems have been used as chemically defined transfection systems in combination with serum-free cultivated host cell line. At first we had determined the toxicity and ideal ratio of DNA to PEI followed by determination of the optimal transfection conditions in order to achieve maximum transfection efficiency. We then directly compared DOTAP/DOPE and PEI in transient transfection experiments using enhanced green fluorescence protein (EGFP) and a human monoclonal antibody, mAb 2F5, as a model protein. The results which were achieved in case of EGFP were more than 15% transfectants at a viability of 85%. Despite the fact that expression of the mAb was found negligible we used both techniques to generate stable mAb 2F5 expressing cell lines that underwent several cycles of screening and amplification with methotrexate, and resulted in cell lines with similar volumetric production titers. These experiments serve to demonstrate the potential of stable cell lines even in case where the transient systems did not show satisfying results.  相似文献   

16.
Gene therapy has great potential for human diseases. Development of efficient delivery systems is critical to its clinical translation. Recent studies have shown that microbubbles in combination with ultrasound (US) can be used to facilitate gene delivery. An aim of this study is to investigate whether the combination of US-targeted microbubble destruction (UTMD) and polyethylenimine (PEI) (UTMD/PEI) can mediate even greater gene transfection efficiency than UTMD alone and to optimize ultrasonic irradiation parameters. Another aim of this study is to investigate the biological effects of PHD2-shRNA after its transfection into H9C2 cells. pEGFP-N1 or eukaryotic shPHD2-EGFP plasmid was mixed with albumin-coated microbubbles and PEI to form complexes for transfection. After these were added into H9C2 cells, the cells were exposed to US with various sets of parameters. The cells were then harvested and analyzed for gene expression. UTMD/PEI was shown to be highly efficient in gene transfection. An US intensity of 1.5 W/cm2, a microbubble concentration of 300μl/ml, an exposure time of 45s, and a plasmid concentration of 15μg/ml were found to be optimal for transfection. UTMD/PEI-mediated PHD2-shRNA transfection in H9C2 cells significantly down regulated the expression of PHD2 and increased expression of HIF-1α and downstream angiogenesis factors VEGF, TGF-β and bFGF. UTMD/PEI, combined with albumin-coated microbubbles, warrants further investigation for therapeutic gene delivery.  相似文献   

17.
High cell densities for transient transfection with polyethyleneimine (PEI) can be used for rapid and maximal production of recombinant proteins. High cell densities can be obtained by different cultivation systems, such as batch or perfusion systems. Herein, densities up to 18 million cells/mL were obtained by centrifugation for transfection evaluation. PEI transfection efficiency was easily determined by transfected enhanced green fluorescence protein (EGFP) reporter plasmid DNA (pDNA). A linear correlation between fluorescence intensity and transfection efficiency was improved. The transfection efficiency of PEI was highly dependent on the transfection conditions and directly related to the level of recombinant protein. Several factors were required to optimize the transient transfection process; these factors included the media type (which is compatible with low or high cell density transfection), the preculture CHO‐K1 suspension cell density, and the pDNA to PEI level. Based on design of experiment (DoE) analyses, the optimal transfection conditions for 10 × 106 cells/mL in the CHOMACS CD medium achieved 73% transfection efficiency and a cell viability of over 80%. These results were confirmed for the production of transforming growth factor‐beta 1 (TGF‐β1) in a shake flask. The purified TGF‐β1 protein concentration from 60 mL supernatant was 27 µg/mL, and the protein was biologically active.  相似文献   

18.
Transient gene expression (TGE) in Chinese hamster ovary (CHO) cells with polyethylenimine (PEI) as a transfection reagent has been considered as an attractive method to produce recombinant proteins rapidly for pre-clinical studies. A high level of transfection efficiency, which is required for high-level TGE in CHO cells, can be achieved by increasing the PEI concentration. However, PEI induces cytotoxicity in a dose-dependent manner. To overcome this problem, Bcl-2 protein, an anti-apoptotic protein, was overexpressed in CHO cells (DG44). At a ratio of PEI to DNA (an N/P ratio) of 10, there were no significant differences in transfection efficiency and cell viability between Bcl-2 overexpressing and non-overexpressing cells. The transfection efficiency and cell viability were 2–11% and 83–92%, respectively. However, there were significant differences (P < 0.05) in the transfection efficiency and cell viability between them at a higher N/P ratio. At an N/P ratio of 40, the transfection efficiency and cell viability of Bcl-2 non-overexpressing cells were 24–38% and 35–40%, respectively, while those of Bcl-2 overexpressing cells were 48–53% and 43–56%, respectively. Furthermore, compared with Bcl-2 non-overexpressing cells, more DNAs entered the Bcl-2 overexpressing cells, resulting in a higher rate of TGE per cell. PE-Annexin V apoptosis revealed that Bcl-2 overexpression suppressed PEI-induced apoptotic cell death at high N/P ratios. Taken together, Bcl-2 overexpression in CHO cells suppresses apoptotic cell death during PEI-mediated transient transfection, resulting in enhanced transfection efficiency and TGE.  相似文献   

19.
Transient gene expression (TGE) is a well-established enabling technology for rapid generation of recombinant proteins, with Human Embryonic Kidney (HEK) and Chinese Hamster Ovary (CHO) cell lines and polyethyleneimine (PEI) as the transfection reagent being its most popular components. However, despite considerable progress made in the field, volumetric titers can still be a limiting factor causing the manipulation of increasing quantities of culture media and DNA. Here, we report a systematic analysis of TGE conditions and their influence on yields and protein quality. Guided by Design of Experiments (DoE), we conclude that TGE yields with one test antibody can be maximized by a parallel increase of cell density - 2.4 to 3.0 × 10(6)cells/mL - and PEI concentration - 24 to 30 mg/L - while maintaining a 1:1 ratio of heavy chain and light chain encoding plasmids. Interestingly, we also show that in these conditions, DNA concentration can be maintained in the 1mg/L range, thereby limiting the need for large DNA preparations. Our optimized settings for PEI-mediated TGE in HEK and CHO cells evaluated on several proteins are generally applicable to recombinant antibodies and proteins.  相似文献   

20.
Efficient gene transfer to the airways by nonviral vectors is a function of different parameters, among which the size and the charge of the transfecting particles. The aim of this study was to determine the transfection efficiency of polyethylenimine (PEI)/albumin polyplexes in ex vivo and in vivo models of respiratory epithelium and to correlate it with biophysical characteristics of the particles. Complexes were obtained by adding different amounts of human serum albumin (HSA) to PEI polyplexes preformed in saline. The presence of HSA caused the formation of bigger and more negative polyplexes and increased PEI transfection efficiency in primary respiratory epithelial cells by 4-6-fold. For in vivo administration to the lung, PEI polyplexes were formed in water and optimized with respect to the N/ P ratio. PEI/pC-Luc complexes gave the highest luciferase expression at N/ P 15 when administered through the trachea. At this N/ P ratio, the size and the surface charge of albumin-containing polyplexes were not different as compared with plain PEI polyplexes. Formulation of PEI polyplexes in the presence of HSA or murine serum albumin (MSA) resulted in a 2-fold increase in luciferase expression. In mice treated with PEI or PEI/MSA polyplexes containing the nuclear beta-gal gene, X-gal staining revealed that transfected cells localized at the bronchiolar epithelium and that PEI/MSA transfected four times as many cells as PEI ( p < 0.05). Finally, double administration of PEI/MSA polyplexes resulted in a further enhancement of transfection of the lung. Our data show that serum albumin enhances PEI-mediated gene transfer to airway epithelial cells in vivo, likely facilitating the uptake of polyplexes, and indicate that this formulation would fulfill the requirement of repeated administration, as necessary in chronic lung diseases like cystic fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号