首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein-protein interactions: methods for detection and analysis.   总被引:24,自引:0,他引:24       下载免费PDF全文
The function and activity of a protein are often modulated by other proteins with which it interacts. This review is intended as a practical guide to the analysis of such protein-protein interactions. We discuss biochemical methods such as protein affinity chromatography, affinity blotting, coimmunoprecipitation, and cross-linking; molecular biological methods such as protein probing, the two-hybrid system, and phage display: and genetic methods such as the isolation of extragenic suppressors, synthetic mutants, and unlinked noncomplementing mutants. We next describe how binding affinities can be evaluated by techniques including protein affinity chromatography, sedimentation, gel filtration, fluorescence methods, solid-phase sampling of equilibrium solutions, and surface plasmon resonance. Finally, three examples of well-characterized domains involved in multiple protein-protein interactions are examined. The emphasis of the discussion is on variations in the approaches, concerns in evaluating the results, and advantages and disadvantages of the techniques.  相似文献   

2.
F J Stevens 《Biochemistry》1986,25(5):981-993
The association of two or more macromolecules results in the formation of a complex characterized by a larger Stokes radius than that of its components. Therefore, analytical procedures such as ultracentrifugation and size-exclusion gel chromatography that resolve molecules on the basis of size have been used to characterize the association. In this paper we describe an iterative computer simulation of small-zone size-exclusion gel filtration. The simulation describes univalent and bivalent interactions of proteins of equal and nonequal molecular weight and appears to have both qualitative and quantitative application to the evaluation of protein-protein interaction as revealed by alteration of chromatographic elution profiles. To test the validity of the simulation, the model was applied to an antibody-antigen interaction by determining the association constant (Ka) for the interaction between the binding fragment derived from a human immunoglobulin A rheumatoid factor and the antigenic fragment obtained from a human myeloma immunoglobulin G. The self-consistency of the estimated Ka values obtained with a valence value of 2 in contrast to the lack of self-consistency if an antigenic valence of 1 was assumed was taken to support the ability of the algorithm to reasonably emulate the chromatographic processes of interacting proteins. In conjunction with the computer simulation, a sensitive microcomputer-interfaced chromatography system was assembled, which is capable of analyzing 300 ng of protein in less than 1 h. This combination of rapid reagent-conservative chromatography and simulation analysis may contribute to the usefulness of small-zone gel filtration in studies of protein-protein interaction.  相似文献   

3.
Liver function and protein binding in camels   总被引:1,自引:0,他引:1  
1. Dehydration of camels for 10 days resulted in reduction of liver functions, expressed in longer half life and reduced clearance of bromosulfophthalein (BSP), elevated AST (ALT levels were below the limit of detection of the method) and reduced serum albumin concentrations. 2. Binding of BSP to camel serum proteins by gel permeation chromatography and by equilibrium dialysis showed very strong binding. 3. Binding parameters of various drugs to camels serum by equilibrium dialysis showed close similarities both qualitatively and quantitatively to those of humans. 4. Albumin seems to be the major serum binding protein of BSP.  相似文献   

4.
Four legume species (four genera) were examined and found to contain hemagglutinins with properties similar to those which we have previously described for the enzymic hemagglutinin in Vigna radiata. Examination of extracts by gel filtration and ion exchange chromatography showed that an alpha-galactosidase activity exactly co-purified with a hemagglutinin activity in each of the four species. The alpha-galactosidase activities in the four species were virtually identical to each other with respect to substrate and inhibitor specificity as well as kinetic behavior. Additionally the hemagglutinin activities in all four species displayed very similar carbohydrate specificities. The inhibitor specificities displayed by the enzymes and the hemagglutinins were qualitatively and quantitatively very nearly identical to each other. The remarkable similarities of these proteins, both to each other and to the previously described Vigna enzymic hemagglutinin, suggest that each of these plants may contain a homologue from a specific class of enzymic hemagglutinin.  相似文献   

5.
Very weak protein-protein interactions may play a critical role in cell physiology but they are not easily detectable in "in vitro" experiments. To detect these weak interactions, we have developed a strategy that included: (a) design of a rapid and very effective crosslinking of protein-protein complexes with poly-functional reagents; (b) selective adsorption of very large proteins on lowly activated ionic exchangers, based on the need of a multipoint physical adsorption to incorporate the proteins into the matrix; (c) purification by selective adsorption of protein-protein complexes formed by strong protein-protein interactions, via selective adsorption of the complexes on lowly activated ionic exchangers via multi-protein physical adsorption and leaving the non-associated proteins in the solution; (d) reinforcement of very weak protein-protein interactions by selective adsorption of the complex on lowly activated ionic exchange supports via a synergetic cooperation of the weak protein-protein interaction plus the interactions of both proteins with the support enabling the almost full shifting of the equilibrium towards the association position; (e) control of the aggregation state of proteins like BSA, formed by weak protein-protein interactions. In this last case, it seems that the interaction of the protein molecules placed on the borders of the aggregate with the groups on the support partially stabilizes the whole aggregate, although, some molecules of the aggregate cannot interact with the support. The size of the aggregates may be defined by controlling the concentration of ionised groups on the support: the less activated the supports are, the bigger the complexes. In this way, solid-phase proteomics could be a very interesting tool to detect weak protein-protein interactions.  相似文献   

6.
7.
We present a miniaturized pull-down method for the detection of protein-protein interactions using standard affinity chromatography reagents. Binding events between different proteins, which are color-coded with quantum dots (QDs), are visualized on single affinity chromatography beads by fluorescence microscopy. The use of QDs for single molecule detection allows the simultaneous analysis of multiple protein-protein binding events and reduces the amount of time and material needed to perform a pull-down experiment.  相似文献   

8.
Cell growth and differentiation require precise coordination of cell cycle and differentiation proteins. This can be achieved by direct interactions between proteins, by indirect interaction in multiprotein complexes, or by modulation of gene expression levels of partner proteins. Contradictory data abound in the literature regarding the binding between some central cell cycle proteins, pRb, and CDK6, with myogenic differentiation promoting, MyoD, and inhibiting, Id-2, factors. We have tested these interactions using pure proteins and in vitro biophysical and biochemical methods, which included mass spectrometry, nuclear magnetic resonance (NMR), the affinity chromatography pull-down assays, and gel filtration chromatography. Using this multimethod approach, we were able to document interactions between pRb and HPV-E7, pRb and SV40 large T antigen, CDK6 and p19, and MyoD and DNA. Using the same methods, we could unambiguously show that there is no direct protein-protein interaction in vitro between the small pocket domain of pRb and the bHLH domain of MyoD, the small pocket domain of pRb and Id-2, and CDK6 and a 15-amino-acid peptide from the C-terminal domain of MyoD. Indirect interactions, through additional binding partners in multiprotein complexes or modulation of gene expression levels of these proteins, are therefore their probable mode of action.  相似文献   

9.
Use of protein-protein interactions in affinity chromatography.   总被引:2,自引:0,他引:2  
Biospecific recognition between proteins is a phenomenon that can be exploited for designing affinity-chromatographic purification systems for proteins. In principle, the approach is straightforward, and there are usually many alternative ways, since a protein can be always found which binds specifically enough to the desired protein. Routine immunoaffinity chromatography utilizes the recognition of antigenic epitopes by antibodies. However, forces involved in protein-protein interactions as well the forces keeping the three-dimensional structures of proteins intact are complicated, and proteins are easily unfolded by various factors with unpredictable results. Because of this and because of the generally high association strength between proteins, the correct adjustment of binding forces between an immobilized protein and the protein to be purified as well as the release of bound proteins in biologically active form from affinity complexes are the main problem. Affinity systems involving interactions like enzyme-enzyme, subunit-oligomer, protein-antibody, protein-chaperone and the specific features involved in each case are presented as examples. This article also aims to sketch prospects for further development of the use of protein-protein interactions for the purification of proteins.  相似文献   

10.
Surface plasmon resonance (SPR) has become one of the most important techniques for studying macromolecular interactions. The most obvious advantages of SPR over other techniques are: direct and rapid determination of association and dissociation rates of binding process, no need for labelling of protein or lipids, and small amounts of sample used in the assay (often nM concentrations of proteins). In biochemistry, SPR is used mainly to study protein-protein interactions. On the other hand, protein-membrane interactions, although crucial for many cell processes, are less well studied. Recent advances in the preparation of stable membrane-like surfaces and the commercialisation of sensor chips has enabled widespread use of SPR in protein-membrane interactions. One of the most popular is Biacore's L1 sensor chip that allows capture of intact liposomes or even subcellular preparations. Lipid specificity of protein-membrane interactions can, therefore, be easily studied by manipulating the lipid composition of the immobilised membrane. The number of published papers has increased steadily in the last few years and the examples include domains or proteins that participate in cell signalling, pore-forming proteins, membrane-interacting peptides, coagulation factors, enzymes, amyloidogenic proteins, prions, etc. This paper gives a brief overview of different membrane-mimetic surfaces that can be prepared on the surface of SPR chips, properties of liposomes on the surface of L1 chips and some selected examples of protein-membrane interactions studied with such system.  相似文献   

11.
Membrane protein-protein interactions are important for regulation, targeting, and activity of proteins in membranes but are difficult to detect and analyse. This review covers current approaches to studying membrane protein interactions. In addition to standard biochemical and genetic techniques, the classic yeast nuclear two-hybrid system has been highly successful in identification and characterization of soluble protein-protein interactions. However, classic yeast two-hybrid assays do not work for membrane proteins because such yeast-based interactions must occur in the nucleus. Here, we highlight recent advances in yeast systems for the detection and characterization of eukaryote membrane protein-protein interactions. We discuss these implications for drug screening and discovery.  相似文献   

12.
Mutations affecting specific starch biosynthetic enzymes commonly have pleiotropic effects on other enzymes in the same metabolic pathway. Such genetic evidence indicates functional relationships between components of the starch biosynthetic system, including starch synthases (SSs), starch branching enzymes (BEs), and starch debranching enzymes; however, the molecular explanation for these functional interactions is not known. One possibility is that specific SSs, BEs, and/or starch debranching enzymes associate physically with each other in multisubunit complexes. To test this hypothesis, this study sought to identify stable associations between three separate SS polypeptides (SSI, SSIIa, and SSIII) and three separate BE polypeptides (BEI, BEIIa, and BEIIb) from maize (Zea mays) amyloplasts. Detection methods included in vivo protein-protein interaction tests in yeast (Saccharomyces cerevisiae) nuclei, immunoprecipitation, and affinity purification using recombinant proteins as the solid phase ligand. Eight different instances were detected of specific pairs of proteins associating either directly or indirectly in the same multisubunit complex, and direct, pairwise interactions were indicated by the in vivo test in yeast. In addition, SSIIa, SSIII, BEIIa, and BEIIb all comigrated in gel permeation chromatography in a high molecular mass form of approximately 600 kD, and SSIIa, BEIIa, and BEIIb also migrated in a second high molecular form, lacking SSIII, of approximately 300 kD. Monomer forms of all four proteins were also detected by gel permeation chromatography. The 600- and 300-kD complexes were stable at high salt concentration, suggesting that hydrophobic effects are involved in the association between subunits.  相似文献   

13.
Co-operativity in monomeric enzymes   总被引:1,自引:0,他引:1  
It has been known for at least 20 years that monomeric enzymes can in principle show kinetic behaviour similar in appearance to the binding of ligands to oligomeric proteins in which there are co-operative interactions between multiple binding sites. However, the initial lack of experimental examples of kinetic co-operativity suggested that in nature co-operativity always arose from interactions between binding sites. Now, however, several examples are known, most of which cannot be explained in terms of multiple binding sites on one polypeptide chain. All current theoretical models for monomeric co-operativity postulate that it arises from the presence in the mechanism of parallel pathways for substrate binding that are slow compared with the possible rate of the catalytic reaction. Rapid removal of the intermediates produced in the slow steps prevents them from approaching equilibrium and allows the appearance of kinetic properties that would not be possible in systems at equilibrium.  相似文献   

14.
A significant consequence of protein phosphorylation is to alter protein-protein interactions, leading to dynamic regulation of the components of protein complexes that direct many core biological processes. Recent proteomic studies have populated databases with extensive compilations of cellular phosphoproteins and phosphorylation sites and a similarly deep coverage of the subunit compositions and interactions in multiprotein complexes. However, considerably less data are available on the dynamics of phosphorylation, composition of multiprotein complexes or that define their interdependence. We describe a method to identify candidate phosphoprotein complexes by combining phosphoprotein affinity chromatography, separation by size, denaturing gel electrophoresis, protein identification by tandem mass spectrometry, and informatics analysis. Toward developing phosphoproteome profiling, we have isolated native phosphoproteins using a phosphoprotein affinity matrix, Pro-Q Diamond resin (Molecular Probes-Invitrogen). This resin quantitatively retains phosphoproteins and associated proteins from cell extracts. Pro-Q Diamond purification of a yeast whole cell extract followed by 1-D PAGE separation, proteolysis and ESI LC-MS/MS, a method we term PA-GeLC-MS/MS, yielded 108 proteins, a majority of which were known phosphoproteins. To identify proteins that were purified as parts of phosphoprotein complexes, the Pro-Q eluate was separated into two fractions by size, <100 kDa and >100 kDa, before analysis by PAGE and ESI LC-MS/MS and the component proteins queried against databases to identify protein-protein interactions. The <100 kDa fraction was enriched in phosphoproteins indicating the presence of monomeric phosphoproteins. The >100 kDa fraction contained 171 proteins of 20-80 kDa, nearly all of which participate in known protein-protein interactions. Of these 171, few are known phosphoproteins, consistent with their purification by participation in protein complexes. By comparing the results of our phosphoprotein profiling with the informational databases on phosphoproteomics, protein-protein interactions and protein complexes, we have developed an approach to examining the correlation between protein interactions and protein phosphorylation.  相似文献   

15.
BACKGROUND: Zinc finger domains have traditionally been regarded as sequence-specific DNA binding motifs. However, recent evidence indicates that many zinc fingers mediate specific protein-protein interactions. For instance, several zinc fingers from FOG family proteins have been shown to interact with the N-terminal zinc finger of GATA-1. RESULTS: We have used NMR spectroscopy to determine the first structures of two FOG family zinc fingers that are involved in protein-protein interactions: fingers 1 and 9 from U-shaped. These fingers resemble classical TFIIIA-like zinc fingers, with the exception of an unusual extended portion of the polypeptide backbone prior to the fourth zinc ligand. [15N,(1)H]-HSQC titrations have been used to define the GATA binding surface of USH-F1, and comparison with other FOG family proteins indicates that the recognition mechanism is conserved across species. The surface of FOG-type fingers that interacts with GATA-1 overlaps substantially with the surface through which classical fingers typically recognize DNA. This suggests that these fingers could not contact both GATA and DNA simultaneously. In addition, results from NMR, gel filtration, and sedimentation equilibrium experiments suggest that the interactions are of moderate affinity. CONCLUSIONS: Our results demonstrate unequivocally that zinc fingers comprising the classical betabetaalpha fold are capable of mediating specific contacts between proteins. The existence of this alternative function has implications for the prediction of protein function from sequence data and for the evolution of protein function.  相似文献   

16.
Microscopy has become an essential tool for cellular protein investigations. The development of new fluorescent markers such as green fluorescent proteins generated substantial opportunities to monitor protein-protein interactions qualitatively and quantitatively using advanced fluorescence microscope techniques including wide-field, confocal, multiphoton, spectral imaging, lifetime, and correlation spectroscopy. The specific aims of the investigation of protein dynamics in live specimens dictate the selection of the microscope methodology. In this article confocal and spectral imaging methods to monitor the dimerization of alpha enhancer binding protein (C/EBPalpha) in the pituitary GHFT1-5 living cell nucleus have been described. Also outline are issues involved in protein imaging using light microscopy techniques and the advantages of lifetime imaging of protein-protein interactions.  相似文献   

17.
A protocol for the characterization of IgG glycopeptides is described. Central to this scheme is the novel application of an alkaline borate buffer to gel filtration chromatography. The use of this buffer significantly enhances the resolution of glycopeptides. Furthermore, it results in the separation of a unique size class of glycopeptides derived from IgG secreted by murine hybridomas. Although predominantly neutral, these glycopeptides differ both qualitatively and quantitatively by lectin affinity chromatography from the other glycopeptides which are presumably derived from the Fc portion of IgG.  相似文献   

18.
Molecular switches such as small GTPases of the Ras family cycle between inactive GDP-bound and active GTP-bound states. Their essential role in controlling development and cell homeostasis requires mechanisms which determine amplitude and timing of activation. This is achieved in part by the action of guanine nucleotide exchange factors, which function as highly controlled enzymes whose activity relies on spatial segregation and intra- and intermolecular regulation. Here, we describe two experimental methodologies that permit the identification and characterization of GTPase binding sites on activators by assaying complex formation within a broad range of affinities. In the first assay system, proteins presented on the surface of filamentous phage are used to probe affinity determinants of protein-protein interactions. In this application, a protein-displayed phage library is generated by random mutagenesis and a plate-based selection is performed to identify mutations that confer higher binding affinity to an immobilized target. The second method uses light scattering as a tool for measuring the molecular weight, stoichiometry, and polydispersity of protein complexes in solution. In this application, conventional gel filtration chromatography provides initial fractionation, and in-line light scattering measurements allow accurate determination of molar masses of the eluent. This technique also provides information about conformational homogeneity which can be used as a quality  相似文献   

19.
20.
Applications of affinity chromatography in proteomics   总被引:7,自引:0,他引:7  
Affinity chromatography is a powerful protein separation method that is based on the specific interaction between immobilized ligands and target proteins. Peptides can also be separated effectively by affinity chromatography through the use of peptide-specific ligands. Both two-dimensional electrophoresis (2-DE)- and non-2-DE-based proteomic approaches benefit from the application of affinity chromatography. Before protein separation by 2-DE, affinity separation is used primarily for preconcentration and pretreatment of samples. Those applications entail the removal of one protein or a class of proteins that might interfere with 2-DE resolution, the concentration of low-abundance proteins to enable them to be visualized in the gel, and the classification of total protein into two or more groups for further separation by gel electrophoresis. Non-2-DE-based approaches have extensively employed affinity chromatography to reduce the complexity of protein and peptide mixtures. Prior to mass spectrometry (MS), preconcentration and capture of specific proteins or peptides to enhance sensitivity can be accomplished by using affinity adsorption. Affinity purification of protein complexes followed by identification of proteins by MS serves as a powerful tool for generating a map of protein-protein interactions and cellular locations of complexes. Affinity chromatography of peptide mixtures, coupled with mass spectrometry, provides a tool for the study of protein posttranslational modification (PTM) sites and quantitative proteomics. Quantitation of proteomes is possible via the use of isotope-coded affinity tags and isolation of proteolytic peptides by affinity chromatography. An emerging area of proteomics technology development is miniaturization. Affinity chromatography is becoming more widely used for exploring PTM and protein-protein interactions, especially with a view toward developing new general tag systems and strategies of chemical derivatization on peptides for affinity selection. More applications of affinity-based purification can be expected, including increasing the resolution in 2-DE, improving the sensitivity of MS quantification, and incorporating purification as part of multidimensional liquid chromatography experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号