首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Choline oxidase, isolated from the soil bacterium Arthrobacter globiformis, converts choline to glycinebetaine (N-trimethylglycine) without a requirement for any cofactors. The gene for this enzyme, designated codA, was cloned and introduced into the cyanobacterium Synechococcus sp. PCC 7942. The codA gene was experssed under the control of a strong constitutive promoter, and the transformed cells accumulated glycinebetaine at intracellular levels of 60–80 mM. Consequently the cells acquired tolerance to salt stress, as evaluated in terms of growth, accumulation of chlorophyll and photosynthetic activity.  相似文献   

2.
This report describes the first successful genetic engineering of tolerance to salt in an agriculturally important species of woody plants by Agrobacterium-mediated transformation with the codA gene of Arthrobacter globiformis. This gene encodes choline oxidase, which catalyzes the oxidation of choline to glycinebetaine. The binary plasmid vector pGC95.091, containing a kanamycin-resistance gene (nptII), a gene for -glucuronidase (gusA) and the codA gene in its T-DNA region, was used with a disarmed strain of Agrobacterium tumefaciens, EHA101, to transform Japanese persimmon (Diospyros kaki Thunb. `Jiro') by the leaf disk transformation method. The pRS95.101 plasmid that included only nptII and gusA in the T-DNA region was used as a control. We selected eight transgenic lines with one or two copies of the T-DNA after transformation with pGC95.091 (PC lines) and three lines after transformation with pRS95.101 (PR lines). The eight PC lines produced choline oxidase and glycinebetaine whereas neither was found in untransformed `Jiro' and in the control PR lines. Transgenic plants grew normally, resembling wild-type plants both in vitro and ex vitro. The activity of photosystem II in leaves of the transgenic Japanese persimmon plants under NaCl stress was determined in terms of the ratio of the variable (F v) to the maximum (F m) fluorescence of chlorophyll (F v/F m). The rate of decline in (F v/F m under NaCl stress was lower in the PC lines than in the control PR lines. These results demonstrated that genetic engineering of Japanese persimmon, which allowed it to accumulate glycinebetaine, enhanced the tolerance to salt stress of this plant.  相似文献   

3.
Arabidopsis thaliana was transformed with the codA gene from Arthrobacter globiformis. This gene encodes choline oxidase, an enzyme that converts choline to glycinebetaine. The photosynthetic activity, monitored in terms of chlorophyll fluorescence, of transformed plants was more tolerant to light stress than that of wild-type plants. This enhanced tolerance to light stress was caused by acceleration of the recovery of the photosystem II (PS II) complex from the photo-inactivated state. The transformed plants synthesized glycinebetaine, but no changes were detected in the relative levels of membrane lipids or in the relative levels of fatty acids in the various membrane lipids. Transformation with the codA gene increased levels of H2O2, a by-product of the reaction catalyzed by choline oxidase, by only 50% to 100% under stress or non-stress conditions. The activity of ascorbate peroxidase and, to a lesser extent, that of catalase in transformed plants were significantly higher than in the wild-type plants. These observations suggest that H2O2 produced by choline oxidase in the transformed plants might have stimulated the expression of H2O2 scavenging enzymes, with resultant maintenance of the level of H2O2 within a certain limited range. It appears that glycinebetaine produced in vivo, but not changes in membrane lipids or in the level of H2O2, protected the PS II complex in transformed plants from damage due to light stress.  相似文献   

4.
Mutational analysis of chilling tolerance in plants   总被引:1,自引:0,他引:1  
A mutational approach was taken to identify genes required for low-temperature growth of the chilling-tolerant plant Arabidopsis thaliana. The screen identified mutants that were specifically compromised in their ability to grow at 5°C but were indistinguishable from wild type when grown at 22°C. The populations screened were mutated either by ethyl methanesulphonate or by T-DNA insertion. In both cases symptoms at 5°C included chlorosis, reduced growth, necrosis and death. This diversity of phenotypes demonstrates roles for chilling-tolerance responses in such diverse processes as organdie biogenesis, cell metabolism and cell and organ development. Co-segregation analysis on the first five mutants isolated from the T-DNA lines indicated that in three of them, pfc1, pfc2 and sop1, the chilling phenotype is the result of T-DNA insertion in a gene required for chilling tolerance rather than the creation of a temperature-conditional mutation in an essential housekeeping gene. This identification of T-DNA tagged alleles will facilitate cloning of the PFC1, PFC2 and SOP1 loci and allow for the biochemical and molecular genetic characterization of these chilling-tolerance genes and the proteins that they encode.  相似文献   

5.
6.
Arabidopsis thaliana was transformed with the codA gene from Arthrobacter globiformis, which encodes choline oxidase, the enzyme that synthesizes glycinebetaine from choline. The transformation enabled the plants to accumulate glycinebetaine in chloroplasts, and significantly enhanced the freezing tolerance of plants. Furthermore, the photosynthetic machinery of transformed plants was more tolerant to freezing stress than that of wild-type plants. Exogenous application of glycinebetaine also increased the freezing tolerance of wild-type plants, suggesting that the presence of glycinebetaine in transformed plants had enhanced their ability to tolerate freezing stress. Northern blotting analysis revealed that the enhancement of freezing tolerance was not related to the expression of four cold-regulated genes. These results suggest that engineering of the biosynthesis of glycinebetaine by transformation with the codA gene might be an effective method for enhancing the freezing tolerance of plants.  相似文献   

7.
Genetically engineered rice (Oryza sativa L.) with the ability to synthesize glycinebetaine was established by introducing the codA gene for choline oxidase from the soil bacterium Arthrobacter globiformis. Levels of glycinebetaine were as high as 1 and 5 mol per gram fresh weight of leaves in two types of transgenic plant in which choline oxidase was targeted to the chloroplasts (ChlCOD plants) and to the cytosol (CytCOD plants), respectively. Although treatment with 0.15 m NaCl inhibited the growth of both wild-type and transgenic plants, the transgenic plants began to grow again at the normal rate after a significantly less time than the wild-type plants after elimination of the salt stress. Inactivation of photosynthesis, used as a measure of cellular damage, indicated that ChlCOD plants were more tolerant than CytCOD plants to photoinhibition under salt stress and low-temperature stress. These results indicated that the subcellular compartmentalization of the biosynthesis of glycinebetaine was a critical element in the efficient enhancement of tolerance to stress in the engineered plants.  相似文献   

8.
Gibberellins (GAs) are biosynthesized through a complex pathway that involves several classes of enzymes. To predict sites of individual GA biosynthetic steps, we studied cell type-specific expression of genes encoding early and late GA biosynthetic enzymes in germinating Arabidopsis seeds. We showed that expression of two genes, AtGA3ox1 and AtGA3ox2, encoding GA 3-oxidase, which catalyzes the terminal biosynthetic step, was mainly localized in the cortex and endodermis of embryo axes in germinating seeds. Because another GA biosynthetic gene, AtKO1, coding for ent-kaurene oxidase, exhibited a similar cell-specific expression pattern, we predicted that the synthesis of bioactive GAs from ent-kaurene oxidation occurs in the same cell types during seed germination. We also showed that the cortical cells expand during germination, suggesting a spatial correlation between GA production and response. However, promoter activity of the AtCPS1 gene, responsible for the first committed step in GA biosynthesis, was detected exclusively in the embryo provasculature in germinating seeds. When the AtCPS1 cDNA was expressed only in the cortex and endodermis of non-germinating ga1-3 seeds (deficient in AtCPS1) using the AtGA3ox2 promoter, germination was not as resistant to a GA biosynthesis inhibitor as expression in the provasculature. These results suggest that the biosynthesis of GAs during seed germination takes place in two separate locations with the early step occurring in the provasculature and the later steps in the cortex and endodermis. This implies that intercellular transport of an intermediate of the GA biosynthetic pathway is required to produce bioactive GAs.  相似文献   

9.
Abstract

In spite of the simplicity of its molecules, the complex effects of benzoic acids on the regulation of plant growth are an increasingly attractive field of research to chemists and biologists. Halide substituted benzoic acids offer an excellent opportunity to explore the effect of electron withdrawing substituents (fluoro-, chloro-, bromo- and iodo-) on the response of plant growth stage. Under normal physiological conditions, benzoic acids are ionized molecules that exhibit low solubility in water. Monoethanolamine, a natural alkanolamine, was used to generate salts of monoethanolamine of halogenated para-substituted benzoic acids, new compounds with biological activity. This study reports on the biological effects of these substances at different concentrations on Arabidopsis thaliana seed germination and early seedling growth. Seed germination at 22°C, in a vertical position, under a photoperiod of 16 h light and 8 h darkness, was variable depending on the concentration of the compounds applied. Final germination percentages were similar for all treatments and control at 0.05 mM and 0.1 mM (exception p-Br BA and p-I MEASPBA). No germination occurred when seeds were treated with more than 0.5 mM. The results also revealed that the primary root length and the number of secondary roots are reduced in a concentration-dependent manner and also in relation to increasing atomic size of the substituents (F < Cl < Br < I). It is concluded that uptake rates of benzoic acid anions by roots decrease with a decrease in hydrophilic character of the anion and with an increase in molecular size.  相似文献   

10.
11.
Cold tolerance in plants is an ecologically important trait that has been under intensive study for basic and applied reasons. Determining the fitness benefits and costs of cold tolerance has previously been difficult because cold tolerance is normally an induced trait that is not expressed in warm environments. The recent creation of transgenic plants constitutively expressing cold tolerance genes enables the investigation of the fitness consequences of cold tolerance in multiple temperature environments. We studied three genes from the CBF (C-repeat/dehydration responsive element binding factor) cold tolerance pathway, CBF1, 2 and 3, in Arabidopsis thaliana to test for benefits and costs of constitutive cold tolerance. We used multiple insertion lines for each transgene and grew the lines in cold and control conditions. Costs of cold tolerance, as determined by fruit number, varied by individual transgene. CBF2 and 3 overexpressers showed costs of cold tolerance, and no fitness benefits, in both environments. CBF1 overexpressing plants showed no fitness cost of cold tolerance in the control environment and showed a marginal fitness benefit in the cold environment. These results suggest that constitutive expression of traits that are normally induced in response to environmental stress will not always lead to costs in the absence of that stress, and that the ecological risks of CBF transgene escape should be assessed prior to their use in commercial agriculture.  相似文献   

12.
BACKGROUND AND AIMS: Germination and establishment of seeds are complex traits affected by a wide range of internal and external influences. The effects of parental temperature preconditioning and temperature during germination on germination and establishment of Arabidopsis thaliana were examined. METHODS: Seeds from parental plants grown at 14 and at 22 degrees C were screened for germination (protrusion of radicle) and establishment (greening of cotyledons) at three different temperatures (10, 18 and 26 degrees C). Seventy-three accessions from across the entire distribution range of A. thaliana were included. KEY RESULTS: Multifactorial analyses of variances revealed significant differences in the effects of genotypes, preconditioning, temperature treatment, and their interactions on duration of germination and establishment. Reaction norms showed an enormous range of plasticity among the preconditioning and different germination temperatures. Correlations of percentage total germination and establishment after 38 d with the geographical origin of accessions were only significant for 14 degrees C preconditioning but not for 22 degrees C preconditioning. Correlations with temperature and precipitation on the origin of the accessions were mainly found at the lower germination temperatures (10 and 18 degrees C) and were absent at higher germination temperatures (26 degrees C). CONCLUSIONS: Overall, the data show huge variation of germination and establishment among natural accessions of A. thaliana and might serve as a valuable source for further germination and plasticity studies.  相似文献   

13.
14.
In this study, we report a function of myo-inositol-O-methyltransferase (Imt1) in response to low temperature stress using transgenic Arabidopsis thaliana. Imt1 gene was constructed identical to the Imt1 gene from a halophyte Mesembryanthemum crystallinum. After cold stress, the Imt1 transgenic plants exhibited stronger growth than the wild type plants. The elevated cold tolerance of the Imt1 over-expressing plants was confirmed by the lower electrolyte leakage and accumulation of malondialdehyde, but higher proline and soluble sugar contents in transgenic than wild type plants.  相似文献   

15.
BACKGROUND AND AIMS: Glycinebetaine (GB), a quaternary ammonium compound, is a very effective compatible solute. In higher plants, GB is synthesized from choline (Cho) via betaine aldehyde (BA). The first and second steps in the biosynthesis of GB are catalysed by choline monooxygenase (CMO) and by betaine aldehyde dehydrogenase (BADH), respectively. Rice (Oryza sativa), which has two genes for BADH, does not accumulate GB because it lacks a functional gene for CMO. Rice plants accumulate GB in the presence of exogenously applied BA, which leads to the development of a significant tolerance to salt, cold and heat stress. The goal in this study was to evaluate and to discuss the effects of endogenously accumulated GB in rice. METHODS: Transgenic rice plants that overexpressed a gene for CMO from spinach (Spinacia oleracea) were produced by Agrobacterium-mediated transformation. After Southern and western blotting analysis, GB in rice leaves was quantified by (1)H-NMR spectroscopy and the tolerance of GB-accumulating plants to abiotic stress was investigated. KEY RESULTS: Transgenic plants that had a single copy of the transgene and expressed spinach CMO accumulated GB at the level of 0.29-0.43 micromol g(-1) d. wt and had enhanced tolerance to salt stress and temperature stress in the seedling stage. CONCLUSIONS: In the CMO-expressing rice plants, the localization of spinach CMO and of endogenous BADHs might be different and/or the catalytic activity of spinach CMO in rice plants might be lower than it is in spinach. These possibilities might explain the low levels of GB in the transgenic rice plants. It was concluded that CMO-expressing rice plants were not effective for accumulation of GB and improvement of productivity.  相似文献   

16.
Enzymatic and non‐enzymatic antioxidants play important roles in the tolerance of abiotic stress. To increase the resistance of seeds to oxidative stress, At2S3 promoter from Arabidopsis was used to achieve overexpression of the antioxidants in a seed‐specific manner. This promoter was shown to be capable of driving the target gene to have a high level of expression in seed‐related organs, including siliques, mature seeds, and early seedlings, thus making its molecular farming applications in plants possible. Subsequently, genes encoding Mn‐superoxide dismutase (MSD1), catalase (CAT1), and homogentisate phytyltransferase (HPT1, responsible for the first committed reaction in the tocopherol biosynthesis pathway) were overexpressed in Arabidopsis under the control of the At2S3 promoter. Double overexpressers co‐expressing two enzymes and triple overexpressers were produced by cross pollination. Mn‐SOD and total CAT activities, as well as γ‐tocopherol content, significantly increased in the corresponding overproduction lines. Moreover, single MSD1‐transgene, double, and triple overexpressers displayed remarkably enhanced oxidative stress tolerance compared to wild type during seed germination and early seedling growth. Interestingly, an increase in the total CAT activity was also observed in the single MSD1‐transgenic lines as a result of MSD1 overexpression. Together, the combined increase in Mn‐SOD and CAT activities in seeds plays an essential role in the improvement of antioxidant capacity at early developmental stage in Arabidopsis.  相似文献   

17.
The tolerances of Columbia Arabidopsis thaliana (L.) Heynh. to NaCl, L-asparagine (L-Asn) and D-asparagine (D-Asn) during seedling establishment on sterile agar medium were determined. Germination and the establishment of upright seedlings with expanded green cotyledons were increasingly inhibited by NaCl concentrations from 20 to 180 m M and radicle growth was prevented at 225 m M NaCl. Tolerance of established seedlings to NaCl was similar at these concentrations. Seedling establishment was prevented at 20 m M L-Asn and 60 m M D-Asn, but L-Asn was not toxic to established seedlings. At lower concentrations, exogenous L- and D-Asn enhanced NaCl tolerance during germination and seedling establishment. Inhibition of seedling establishment by NaCl concentrations below 225 m M was reduced by the addition of L- and D-Asn to the medium. Maximal reduction of NaCl inhibition occurred between 2 and 4 m M for both L- and D-Asn. Higher concentrations of NaCl prevented establishment whether exogenous Asn was present or not. Reduction of NaCl inhibition occurred to the same extent whether L-Asn was presented simultaneously with the NaCl or preloaded for up to 24 h. The total seedling content of Na+ increased about 4-fold to 55 μg (mg dry weight)−1 as the medium concentration of NaCl was increased from 9 μ M to 150 m M NaCl. Total K+ content declined about 80% from about 34 μg (mg dry weight)−1 over the same range of NaCl concentrations. The Na+ uptake and K+ efflux by whole seedlings were similar whether or not NaCl tolerance was increased by exogenous Asn.  相似文献   

18.
Glycinebetaine is one of the compatible solutes that accumulate in the chloroplasts of certain halotolerant plants when these plants are exposed to salt or cold stress. The codA gene for choline oxidase, the enzyme that converts choline into glycinebetaine, has previously been cloned from a soil bacterium, Arthrobacter globiformis. Transformation of Arabidopsis thaliana with the cloned codA gene under the control of the 35S promoter of cauliflower mosaic virus enabled the plant to accumulate glycinebetaine and enhanced its tolerance to salt and cold stress. At 300 mM NaCl, considerable proportions of seeds of transformed plants germinated well, whereas seeds of wild-type plants failed to germinate. At 100 mM NaCl, transformed plants grew well whereas wild-type plants did not do so. The transformed plants tolerated 200 mM NaCl, which was lethal to wild-type plants. After plants had been incubated with 400 mM NaCl for two days, the photosystem II activity of wild-type plants had almost completely disappeared, whereas that of transformed plants remained at more than 50% of the original level. When exposed to a low temperature in the light, leaves of wild-type plants exhibited symptoms of chlorosis, whereas those of transformed plants did not. These observations demonstrate that the genetic modification of Arabidopsis thaliana that allowed it to accumulate glycinebetaine enhanced its ability to tolerate salt and cold stress.  相似文献   

19.
Arabidopsis thaliana was transformed previously with thecodA gene from the soil bacteriumArthrobacter globiformis. This gene encodes choline oxidase, the enzyme that converts choline to glycinebetaine. Transformation with thecodA gene significantly enhanced the tolerance of transgenic plants to low temperature and high-salt stress. We report here that seeds of transgenic plants that expressed thecodA gene were also more tolerant to salt stress during germination than seeds of non-transformed wild-type plants. Seedlings of transgenic plants grew more rapidly than those of wild-type plants under salt-stress conditions. Furthermore, exogenously applied glycinebetaine was effective in alleviating the harmful effects of salt stress during germination of seeds and growth of young seedlings, a result that suggests that it was glycinebetaine that had enhanced the tolerance of the transgenic plants. These observations indicate that synthesis of glycinebetaine in transgenic plantsin vivo, as a result of the expression of thecodA gene, might be veryuseful in improving the ability of crop plants to tolerate salt stress. The extended abstract of a paper presented at the 13th International Symposium in Conjugation with Award of the International Prize for Biology “Frontier of Plant Biology”  相似文献   

20.
Abstract With appropriate pretreatment of the seeds fluence-response curves for the induction of germination of Arabidopsis thaliana show two phases. A proportion of the population responds to very low fluence (VLFR), 104–10?2μmolm?2 establishing 10?4–10?2% of the total phytochrome in the far-red absorbing form (Pfr) and a proportion of the population respond to low fluence (LFR), 1–1000 μmolm?2, establishing 1–75% Pfr. The VLFR is nol normally seen because the pre-existing Pfr level satisfies the Pfr requirement or use of green safelight establishes more Pfr than necessary to saturate the VLFR. Endogenous Pfr was depicted by a 24 h 35°C treatment, presumably as a result of dark destruction and/or dark reversion to the red absorbing form of phytochrome (Pr), making it possible to visualize the VLFR. A short pulse of 35°C treatment in combination with an appropriate temperature regime is also able to sensitize a proportion of the seed population. The proportion of the population showing the VLFR is determined by the duration of the cold imbibition pretreatment as well as the duration of the 35°C treatment. Complex fluence-response curves were observed in which a proportion of the seeds being promoted in the VLFR range, were inhibited at higher fluences before being further promoted in the LFR range. This was particularly clear for seed batches being sensitized by a short 35°C treatment. The VLFR may be of significance in the natural environment, enabling seeds buried in the upper layer of the soil to germinate, where the fluence rate falls off sharply and the LFR is not satisfied. A model is presented to explain the two phases in the fluence-response curves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号