首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arabidopsis thaliana was transformed with the codA gene for choline oxidase from Arthrobacter globiformis under control of the 35S RNA promoter of cauliflower mosaic virus. As a result, high levels of glycinebetaine accumulated in the seeds of transformed plants. Transformation with the codA gene significantly enhanced the tolerance to high temperatures during the imbibition and germination of seeds, as well as during growth of young seedlings. The extent of enhancement of the tolerance to high temperature was correlated with levels of choline oxidase expressed and of glycinebetine accumulated in the transformed plants. The induction of homologues of heat shock protein 70 at high temperature was less conspicuous in the transformed plants than in the wild-type plants, suggesting that the transformation alleviated the high-temperature stress.  相似文献   

2.
Arabidopsis thaliana was transformed with the codA gene from Arthrobacter globiformis, which encodes choline oxidase, the enzyme that synthesizes glycinebetaine from choline. The transformation enabled the plants to accumulate glycinebetaine in chloroplasts, and significantly enhanced the freezing tolerance of plants. Furthermore, the photosynthetic machinery of transformed plants was more tolerant to freezing stress than that of wild-type plants. Exogenous application of glycinebetaine also increased the freezing tolerance of wild-type plants, suggesting that the presence of glycinebetaine in transformed plants had enhanced their ability to tolerate freezing stress. Northern blotting analysis revealed that the enhancement of freezing tolerance was not related to the expression of four cold-regulated genes. These results suggest that engineering of the biosynthesis of glycinebetaine by transformation with the codA gene might be an effective method for enhancing the freezing tolerance of plants.  相似文献   

3.
Arabidopsis thaliana was transformed previously with thecodA gene from the soil bacteriumArthrobacter globiformis. This gene encodes choline oxidase, the enzyme that converts choline to glycinebetaine. Transformation with thecodA gene significantly enhanced the tolerance of transgenic plants to low temperature and high-salt stress. We report here that seeds of transgenic plants that expressed thecodA gene were also more tolerant to salt stress during germination than seeds of non-transformed wild-type plants. Seedlings of transgenic plants grew more rapidly than those of wild-type plants under salt-stress conditions. Furthermore, exogenously applied glycinebetaine was effective in alleviating the harmful effects of salt stress during germination of seeds and growth of young seedlings, a result that suggests that it was glycinebetaine that had enhanced the tolerance of the transgenic plants. These observations indicate that synthesis of glycinebetaine in transgenic plantsin vivo, as a result of the expression of thecodA gene, might be veryuseful in improving the ability of crop plants to tolerate salt stress. The extended abstract of a paper presented at the 13th International Symposium in Conjugation with Award of the International Prize for Biology “Frontier of Plant Biology”  相似文献   

4.
Tomato (Lycopersicon esculentum Mill.) plants, which normally do not accumulate glycinebetaine (GB), are susceptible to chilling stress. Exposure to temperatures below 10 degrees C causes various injuries and greatly decreases fruit set in most cultivars. We have transformed tomato (cv. Moneymaker) with a chloroplast-targeted codA gene of Arthrobacter globiformis, which encodes choline oxidase to catalyze the conversion of choline to GB. These transgenic plants express codA and synthesize choline oxidase, while accumulating GB in their leaves and reproductive organs up to 0.3 and 1.2 micromol g(-1) fresh weight (FW), respectively. Their chloroplasts contain up to 86% of total leaf GB. Over various developmental phases, from seed germination to fruit production, these GB-accumulating plants are more tolerant of chilling stress than their wild-type counterparts. During reproduction, they yield, on average, 10-30% more fruit following chilling stress. Endogenous GB contents as low as 0.1 micromol g(-1) FW are apparently sufficient to confer high levels of tolerance in tomato plants, as achieved via transformation with the codA gene. Exogenous application of either GB or H2O2 improves both chilling and oxidative tolerance concomitant with enhanced catalase activity. These moderately increased levels of H2O2 in codA transgenic plants, as a byproduct of choline oxidase-catalyzed GB synthesis, might activate the H2O2-inducible protective mechanism, resulting in improved chilling and oxidative tolerances in GB-accumulating codA transgenic plants. Thus, introducing the biosynthetic pathway of GB into tomato through metabolic engineering is an effective strategy for improving chilling tolerance.  相似文献   

5.
Arabidopsis thaliana was transformed with the codA gene from Arthrobacter globiformis. This gene encodes choline oxidase, an enzyme that converts choline to glycinebetaine. The photosynthetic activity, monitored in terms of chlorophyll fluorescence, of transformed plants was more tolerant to light stress than that of wild-type plants. This enhanced tolerance to light stress was caused by acceleration of the recovery of the photosystem II (PS II) complex from the photo-inactivated state. The transformed plants synthesized glycinebetaine, but no changes were detected in the relative levels of membrane lipids or in the relative levels of fatty acids in the various membrane lipids. Transformation with the codA gene increased levels of H2O2, a by-product of the reaction catalyzed by choline oxidase, by only 50% to 100% under stress or non-stress conditions. The activity of ascorbate peroxidase and, to a lesser extent, that of catalase in transformed plants were significantly higher than in the wild-type plants. These observations suggest that H2O2 produced by choline oxidase in the transformed plants might have stimulated the expression of H2O2 scavenging enzymes, with resultant maintenance of the level of H2O2 within a certain limited range. It appears that glycinebetaine produced in vivo, but not changes in membrane lipids or in the level of H2O2, protected the PS II complex in transformed plants from damage due to light stress.  相似文献   

6.
Tomato (Lycopersicon esculentum cv. 'Moneymaker') was transformed with a codA gene, from Arthrobacter globiformis, for choline oxidase that had been modified to allow targeting to both chloroplasts and the cytosol. Glycinebetaine (GB) accumulated in seeds of transformed plants up to 1 μmol g(-1) dry weight (DW), while no detectable GB was found in wild-type (WT) seeds. The codA-transgenic seeds germinated faster and at higher frequency than WT seeds with high temperature treatment. After heat stress, levels of expression of a mitochondrial small heat-shock protein (MT-sHSP), heat-shock protein 70 (HSP70) and heat-shock cognate 70 (HSC70) were higher in transgenic seeds than in WT seeds during heat stress, and the accumulation of HSP70 was more prominent in codA-transgenic seeds than in WT seeds. Addition of GB to the germination medium or imbibition of seeds in a solution of GB enhanced the tolerance of WT seeds to high temperatures. WT seeds treated with exogenous GB also expressed heat-shock genes at elevated levels and accumulated more HSP70 than controls. Our results suggest that GB, either applied exogenously or accumulated in vivo in codA-transgenic seeds, enhanced the expression of heat-shock genes in and improved the tolerance to high temperature of tomato seeds during germination.  相似文献   

7.
Previously, we showed that transformation with the codA gene for choline oxidase allows plants to synthesize glycine betaine (GB) and enhances their ability to tolerate various kinds of stress during germination and vegetative growth. In this study, we examined the tolerance of transformed plants to salt stress at the reproductive stage, which is the stage at which plants are most sensitive to environmental stress. Salt-shock treatment of wild-type plants for 3 days resulted in the abortion of flower buds and decreased the number of seeds per silique. These deleterious effects were clearly visible 6 days after the termination of salt-shock treatment. Microscopic examination of floral structures revealed that salt stress inhibited the development of anthers, pistils, and petals. In particular, the production of pollen grains and ovules was dramatically inhibited. These effects of salt stress were significantly reduced by transformation with the codA gene, and our observations suggested that the enhanced tolerance of the transgenic plants was a result of the accumulation of GB in the reproductive organs. Indeed, levels of GB in flowers, siliques, and inflorescence apices were about five times higher than in leaves.  相似文献   

8.
Transformation with the bacterial gene codA for choline oxidase allows Synechococcus sp. PCC 7942 cells to accumulate glycinebetaine when choline is supplemented exogenously. First, we observed two types of protective effect of glycinebetaine against heat-induced inactivation of photosystem II (PSII) in darkness; the codA transgene shifted the temperature range of inactivation of the oxygen-evolving complex from 40-52 degrees C (with half inactivation at 46 degrees C) to 46-60 degrees C (with half inactivation at 54 degrees C) and that of the photochemical reaction center from 44-55 degrees C (with half inactivation at 51 degrees C) to 52-63 degrees C (with half inactivation at 58 degrees C). However, in light, PSII was more sensitive to heat stress; when moderate heat stress, such as 40 degrees C, was combined with light stress, PSII was rapidly inactivated, although these stresses, when applied separately, did not inactivate either the oxygen-evolving complex or the photochemical reaction center. Further our studies demonstrated that the moderate heat stress inhibited the repair of PSII during photoinhibition at the site of synthesis de novo of the D1 protein but did not accelerate the photodamage directly. The codA transgene and, thus, the accumulation of glycinebetaine alleviated such an inhibitory effect of moderate heat stress on the repair of PSII by accelerating the synthesis of the D1 protein. We propose a hypothetical scheme for the cyanobacterial photosynthesis that moderate heat stress inhibits the translation machinery and glycinebetaine protects it against the heat-induced inactivation.  相似文献   

9.
The codA gene for biosynthesis of glycinebetaine from Arthrobacter globiformis was used for transforming Brassica juncea cv. Pusa Jaikisan (which lack any means to synthesize glycinebetaine) through Agrobacterium mediated transformation. The stable insertion of the codA gene in the shoots obtained on medium with kanamycin and hygromycin was confirmed by PCR analysis of the nptII gene. Southern hybridization with a codA probe further demonstrated its successful integration. Immunoblot analysis revealed the presence of choline oxidase demonstrating that the bacterial codA gene had been successfully transcribed and translated. The seeds of transgenic lines showed enhanced capacity to germinate under salt stress as compared to that of the wild type. Further, the seedlings of transgenic plants that expressed codA gene showed significantly higher growth than that of the wild type under salt stress conditions. These results demonstrated that the introduction of a biosynthetic pathway for glycinebetaine into Brassica juncea significantly enhanced their salt tolerance. Hence, homozygous genotypes of selected transformed lines can be exploited for improving the salt tolerance of the desirable cultivars of Brassica juncea through breeding programmes.  相似文献   

10.
Genetically engineered rice (Oryza sativa L.) with the ability to synthesize glycinebetaine was established by introducing the codA gene for choline oxidase from the soil bacterium Arthrobacter globiformis. Levels of glycinebetaine were as high as 1 and 5 mol per gram fresh weight of leaves in two types of transgenic plant in which choline oxidase was targeted to the chloroplasts (ChlCOD plants) and to the cytosol (CytCOD plants), respectively. Although treatment with 0.15 m NaCl inhibited the growth of both wild-type and transgenic plants, the transgenic plants began to grow again at the normal rate after a significantly less time than the wild-type plants after elimination of the salt stress. Inactivation of photosynthesis, used as a measure of cellular damage, indicated that ChlCOD plants were more tolerant than CytCOD plants to photoinhibition under salt stress and low-temperature stress. These results indicated that the subcellular compartmentalization of the biosynthesis of glycinebetaine was a critical element in the efficient enhancement of tolerance to stress in the engineered plants.  相似文献   

11.
Seeds of the empress tree ( Paulownia tomentosa Steud.) were imbibed for two weeks in darkness at constant temperatures (18, 23 or 28°C), and then irradiated with red light for 5 min. Germination was poor if it took place at the same temperature as imbibition, but a high percentage was achieved if the seeds were exposed to higher or lower temperatures before they were irradiated. Maximum germination was obtained when the difference between pretreatment and imbibition was about 10°C. The effect increased with the duration of the pretreatment and was optimal at 24 h. The effect decreased as the time lapse between temperature pretreatment and red light irradiation increased, and it was lost after two days. If pretreatment was shorter than 24 h (12 h). a high percent of germination was obtained by alternating pretreatment and imbibition temperatures. The germination of seeds imbibed in 40% heavy water was also stimulated by temperature pretreatments. Light and temperature also exhibited an interactive effect in the germination of seeds that were imbibed in darkness for only 3 days. For each of the germination phases there was a temperature at which the time needed for 50% germination was the shortest, namely 35°C during imbibition, 37.5°C in the period of Pfr activity. and 32.5°C during radicle protrusion. The data obtained are shortly discussed in relation to the domestication of empress tree in Southern Europe.  相似文献   

12.
Glycinebetaine is one of the compatible solutes that accumulate in the chloroplasts of certain halotolerant plants when these plants are exposed to salt or cold stress. The codA gene for choline oxidase, the enzyme that converts choline into glycinebetaine, has previously been cloned from a soil bacterium, Arthrobacter globiformis. Transformation of Arabidopsis thaliana with the cloned codA gene under the control of the 35S promoter of cauliflower mosaic virus enabled the plant to accumulate glycinebetaine and enhanced its tolerance to salt and cold stress. At 300 mM NaCl, considerable proportions of seeds of transformed plants germinated well, whereas seeds of wild-type plants failed to germinate. At 100 mM NaCl, transformed plants grew well whereas wild-type plants did not do so. The transformed plants tolerated 200 mM NaCl, which was lethal to wild-type plants. After plants had been incubated with 400 mM NaCl for two days, the photosystem II activity of wild-type plants had almost completely disappeared, whereas that of transformed plants remained at more than 50% of the original level. When exposed to a low temperature in the light, leaves of wild-type plants exhibited symptoms of chlorosis, whereas those of transformed plants did not. These observations demonstrate that the genetic modification of Arabidopsis thaliana that allowed it to accumulate glycinebetaine enhanced its ability to tolerate salt and cold stress.  相似文献   

13.
The cyanobacterium Synechococcus sp. strain PCC 7942 was transformed with the codA gene for choline oxidase from Arthrobacter globiformis under the control of a constitutive promoter. This transformation allowed the cyanobacterial cells to accumulate glycine betaine at 60 to 80 mM in the cytoplasm. The transformed cells could grow at 20 degrees C, the temperature at which the growth of control cells was markedly suppressed. Photosynthesis of the transformed cells at 20 degrees C was more tolerant to light than that of the control cells. This was caused by the enhanced ability of the photosynthetic machinery in the transformed cells to recover from low-temperature photoinhibition. In darkness, photosynthesis of the transformed cells was more tolerant to low temperature such as 0 to 10 degrees C than that of the control cells. In parallel with the improvement in the ability of the transformed cells to tolerate low temperature, the lipid phase transition of plasma membranes from the liquid-crystalline state to the gel state shifted toward lower temperatures, although the level of unsaturation of the membrane lipids was unaffected by the transformation. These findings suggest that glycine betaine enhances the tolerance of photosynthesis to low temperature.  相似文献   

14.
Conversion of exogenous 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene was studied in sunflower (Helianthus annuus L., cv. Mirasol) seeds in relation to germinability. Ethylene production from ACC decreased during seed maturation, and non-dormant mature seeds were practically unable to synthesize ethylene until germination and growth occurred, indicating that ethylene forming enzyme (EFE) activity developed during tissue imbibition and growth. ACC conversion to ethylene was reduced by the presence of pericarp, and in young seedlings it was less in cotyledons than in growing axes.ACC conversion to ethylene by cotyledons from young seedlings was optimal at c. 30°C, and was strongly inhibited at 45°C. Pretreatment of imbibed seeds at high temperature (45°C) induced a thermodormancy and a progressive decrease in EFE activity.Abscisic acid and methyl-jasmonate, two growth regulators which inhibit seed germination and seedling growth, and cycloheximide were also shown to inhibit ACC conversion to ethylene by cotyledons of 3-day-old seedlings and by inbibed seeds.Abbreviations ABA abscisic acid - ACC 1-aminocyclopropane-1-carboxylic acid - CH cycloheximide - EFE ethylene forming enzyme - IAA indole-3-acetic acid - Me-Ja methyl-jasmonate  相似文献   

15.
Genetically engineered tomato (Lycopersicon esculentum) with the ability to synthesize glycinebetaine was generated by introducing the codA gene encoding choline oxidase from Arthrobacter globiformis. Integration of the codA gene in transgenic tomato plants was verified by PCR analysis and DNA blot hybridization. Transgenic expression of gene was verified by RT-PCR analysis and RNA blot hybridization. The codA-transgenic plants showed higher tolerance to salt stress during seed germination, and subsequent growth of young seedlings than wild-type plants. The codA transgene enhanced the salt tolerance of whole plants and leaves. Mature leaves of codA-transgenic plants revealed higher levels of relative water content, chlorophyll content, and proline content than those of wild-type plants under salt and water stresses. Results from the current study suggest that the expression of the codA gene in transgenic tomato plants induces the synthesis of glycinebetaine and improves the tolerance of plants to salt and water stresses.  相似文献   

16.
In species of the Annonaceae family, particularly Annona diversifolia Safford, benzylisoquinoline alkaloids (BIA) are secondary metabolites that appear to contribute to the phytopathogen defense mechanisms of plants. Polyphenol oxidase (PPO, EC 1.14.18.1), amine oxidase (AO, EC 1.4.3.4), tyrosine decarboxylase (TYDC, EC 4.1.1.25), and norcoclaurine synthase (NCS, EC 4.2.1.78) catalyze the initial steps in BIA biosynthesis. This study reports the activity of these enzymes in different plant organs at four stages of the early development of A. diversifolia seedlings: seeds imbibed for 5 days, seeds after 3 days of germination, seedlings with leaf primordia, and seedlings with two true leaves. Evaluations were performed according to specific protocols for each of the enzymes. All four enzymes were active in the developing embryos during imbibition and germination, but no activity was detected in the endosperm. In seedlings with leaf primordia and seedlings with two true leaves (25 and 30 days after the start of imbibition, respectively), the activities of three enzymes (TYDC, PPO, and AO) were observed in all of the tissues, while NCS activity was only observed in the stems and roots. The activities of these enzymes in embryos provides evidence that alkaloid biosynthesis at early developmental stages is related to embryo growth and development. This study is the first report that has described some aspects of alkaloid biosynthesis in Annonaceae.  相似文献   

17.
Deep dormancy of apple (Malus domestica Borkh.) seeds is terminated by a 3-month-long cold stratification. It is expressed by rapid germination of seeds and undisturbed growth of seedlings. However, stimulation of germination of isolated apple embryos is also observed after applying inhibitors of cytochrome c oxidase: nitric oxide (NO) or hydrogen cyanide (HCN) during the first 3–6 h of imbibition of dormant embryos. The aim of this work was to compare the effect of yet another toxic gaseous molecule carbon monoxide (CO) with the effects of HCN and NO on germination of apple embryos and growth and development of young seedlings. We demonstrated that stimulation of germination after short-term pre-treatment with HCN, NO or CO was accompanied by enhanced NO emission from the embryo axes during their elongation. Moreover, similarly high NO production from non-dormant embryos, after cold stratification, was detected. Therefore, we propose that NO may act as signaling molecule in apple embryo dormancy break.  相似文献   

18.
Freshly harvested seeds of Arabidopsis thaliana, Columbia (Col) accession were dormant when imbibed at 25°C in the dark. Their dormancy was alleviated by continuous light during imbibition or by 5 weeks of storage at 20°C (after-ripening). We investigated the possible role of reactive oxygen species (ROS) in the regulation of Col seed dormancy. After 24 h of imbibition at 25°C, non-dormant seeds produced more ROS than dormant seeds, and their catalase activity was lower. In situ ROS localization revealed that germination was associated with an accumulation of superoxide and hydrogen peroxide in the radicle. ROS production was temporally and spatially regulated: ROS were first localized within the cytoplasm upon imbibition of non-dormant seeds, then in the nucleus and finally in the cell wall, which suggests that ROS play different roles during germination. Imbibition of dormant and non-dormant seeds in the presence of ROS scavengers or donors, which inhibited or stimulated germination, respectively, confirmed the role of ROS in germination. Freshly harvested seeds of the mutants defective in catalase (cat2-1) and vitamin E (vte1-1) did not display dormancy; however, seeds of the NADPH oxidase mutants (rbohD) were deeply dormant. Expression of a set of genes related to dormancy upon imbibition in the cat2-1 and vet1-1 seeds revealed that their non-dormant phenotype was probably not related to ABA or gibberellin metabolism, but suggested that ROS could trigger germination through gibberellin signaling activation.  相似文献   

19.
The relationship between seedling characters and germination rate within a seed lot was studied in cauliflower, leek and onion seeds. Newly germinated seeds were selected after successive days of imbibition at 20°C and placed on slope tests to assess early seedling growth. In all three species seedling length decreased and the coefficient of variation of those seedling lengths increased with increasing number of days of imbibition required for germination. Slow germinating seeds in all three species produced fewer normal healthy seedlings than faster germinating seeds. The relevance of these results to pre-germinated seed sowing techniques is discussed.  相似文献   

20.
Celery seeds ( Apium graveolens L.) given a germination induction period (3 days imbibition at 17°C in the light) could be prevented from germinating by up to 14 days subsequent exposure to high temperature (32°C), polyethylene glycol (PEG), abscisic acid (ABA) or dark (22°C). When the seeds were returned to 17°C in the light, germination occurred and, except for the high temperature treatment, was more rapid compared to seeds given a germination induction period only.
Celery seeds incubated for 3 days at 17°C in the light and then air-dried at 20°C germinated slowly when re-sown at 17°C in the light, and achieved only 19% germination after 21 days. Exposing the seeds to high temperature, PEG, ABA or dark for up to 14 days before drying maintained seed viability and subsequent germination was faster. The longer treatment periods gave increased benefit, and PEG was the most effective treatment. It is suggested that the effectiveness of the treatments in inducing dehydration tolerance relates to their ability to inhibit germination possibly via their prevention of cell expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号