首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A real-time PCR assay was developed for the quantitative detection of Campylobacter jejuni in foods after enrichment culture. The specificity of the assay for C. jejuni was demonstrated with a diverse range of Campylobacter species, related organisms, and unrelated genera. The assay had a linear range of quantification over six orders of magnitude, and the limit of detection was approximately 12 genome equivalents. The assay was used to detect C. jejuni in both naturally and artificially contaminated food samples. Ninety-seven foods, including raw poultry meat, offal, raw shellfish, and milk samples, were enriched in blood-free Campylobacter enrichment broth at 37 degrees C for 24 h, followed by 42 degrees C for 24 h. Enrichment cultures were subcultured to Campylobacter charcoal-cefoperazone-deoxycholate blood-free selective agar, and presumptive Campylobacter isolates were identified with phenotypic methods. DNA was extracted from enrichment cultures with a rapid lysis method and used as the template in the real-time PCR assay. A total of 66 samples were positive for C. jejuni by either method, with 57 samples positive for C. jejuni by subculture to selective agar medium and 63 samples positive in the real-time PCR assay. The results of both methods were concordant for 84 of the samples. The total time taken for detection from enrichment broth samples was approximately 3 h for the real-time PCR assay, with the results being available immediately at the end of PCR cycling, compared to 48 h for subculture to selective agar. This assay significantly reduces the total time taken for the detection of C. jejuni in foods and is an important model for other food-borne pathogens.  相似文献   

2.
A PCR enzyme-linked immunosorbent assay (ELISA) assay was applied to the detection of Campylobacter jejuni and Campylobacter coli in environmental water samples after enrichment culture. Bacterial cells were concentrated from 69 environmental water samples by using filtration, and the filtrates were cultured in Campylobacter blood-free broth. After enrichment culture, DNA was extracted from the samples by using a rapid-boiling method, and the DNA extracts were used as a template in a PCR ELISA assay. A total of 51 samples were positive by either PCR ELISA or culture; of these, 43 were found to be positive by PCR ELISA and 43 were found to be positive by culture. Overall, including positive and negative results, 59 samples were concordant in both methods. Several samples were positive in the PCR ELISA assay but were culture negative; therefore, this assay may be able to detect sublethally damaged or viable nonculturable forms of campylobacters. The method is rapid and sensitive, and it significantly reduces the time needed for the detection of these important pathogens by 2 to 3 days.  相似文献   

3.
To explore the use of DNA microarrays for pathogen detection in food, we produced DNA oligonucleotide arrays to simultaneously determine the presence of Arcobacter and the presence of Campylobacter in retail chicken samples. Probes were selected that target housekeeping and virulence-associated genes in both Arcobacter butzleri and thermotolerant Campylobacter jejuni and Campylobacter coli. These microarrays showed a high level of probe specificity; the signal intensities detected for A. butzleri, C. coli, or C. jejuni probes were at least 10-fold higher than the background levels. Specific identification of A. butzleri, C. coli, and C. jejuni was achieved without the need for a PCR amplification step. By adapting an isolation method that employed membrane filtration and selective media, C. jejuni isolates were recovered from package liquid from whole chicken carcasses prior to enrichment. Increasing the time of enrichment resulted in the isolation of A. butzleri and increased the recovery of C. jejuni. C. jejuni isolates were further classified by using an additional subset of probes targeting the lipooligosaccharide (LOS) biosynthesis locus. Our results demonstrated that most of the C. jejuni isolates likely possess class B, C, or H LOS. Validation experiments demonstrated that the DNA microarray had a detection sensitivity threshold of approximately 10,000 C. jejuni cells. Interestingly, the use of C. jejuni sequence-specific primers to label genomic DNA improved the sensitivity of this DNA microarray for detection of C. jejuni in whole chicken carcass samples. C. jejuni was efficiently detected directly both in package liquid from whole chicken carcasses and in enrichment broths.  相似文献   

4.
Conventional detection and confirmation methods for Campylobacter jejuni are lengthy and tedious. A rapid hybridization protocol in which a 1,475-bp chromogen-labelled DNA probe (pDT1720) and Campylobacter strains filtered and grown on 0.22-micron-pore-size hydrophobic grid membrane filters (HGMFs) are used was developed. Among the environmental and clinical isolates of C. jejuni, Campylobacter coli, Campylobacter jejuni subsp. doylei, Campylobacter lari, and Arcobacter nitrofigilis and a panel of 310 unrelated bacterial strains tested, only C. jejuni and C. jejuni subsp. doylei isolates hybridized with the probe under stringent conditions. The specificity of the probe was confirmed when the protocol was applied to spiked skim milk and chicken rinse samples. Based on the nucleotide sequence of pDT1720, a pair of oligonucleotide primers was designed for PCR amplification of DNA from Campylobacter spp. and other food pathogens grown overnight in selective Mueller-Hinton broth with cefoperazone and growth supplements. All C. jejuni strains tested, including DNase-producing strains and C. jejuni subsp. doylei, produced a specific 402-bp amplicon, as confirmed by restriction and Southern blot analysis. The detection range of the assay was as low as 3 CFU per PCR to as high as 10(5) CFU per PCR for pure cultures. Overnight enrichment of chicken rinse samples spiked initially with as little as approximately 10 CFU/ml produced amplicons after the PCR. No amplicon was detected with any of the other bacterial strains tested or from the chicken background microflora. Since C. jejuni is responsible for 99% of Campylobacter contamination in poultry, PCR and HGMF hybridization were performed on naturally contaminated chicken rinse samples, and the results were compared with the results of conventional cultural isolation on Preston agar. All samples confirmed to be culture positive for C. jejuni were also identified by DNA hybridization and PCR amplification, thus confirming that these DNA-based technologies are suitable alternatives to time-consuming conventional detection methods. DNA hybridization, besides being sensitive, also has the potential to be used in direct enumeration of C. jejuni organisms in chicken samples.  相似文献   

5.
Campylobacter jejuni is recognized as a leading human food-borne pathogen. Traditional diagnostic testing for C. jejuni is not reliable due to special growth requirements and the possibility that this bacterium can enter a viable but nonculturable state. Nucleic acid-based tests have emerged as a useful alternative to traditional enrichment testing. In this article, we present a 5'-nuclease PCR assay for quantitative detection of C. jejuni and describe its evaluation. A probe including positions 381121 to 381206 of the published C. jejuni strain NCTC 11168 genome sequence was identified. When this probe was applied, the assay was positive for all of the isolates of C. jejuni tested (32 isolates, including the type strain) and negative for all other Campylobacter spp. (11 species tested) and several other bacteria (41 species tested). The total assay could be completed in 3 h with a detection limit of approximately 1 CFU. Quantification was linear over at least 6 log units. Quantitative detection methods are important for both research purposes and further development of C. jejuni detection methods. In this study, we used the assay to investigate to what extent the PCR signals generated by heat-killed bacteria interfere with the detection of viable C. jejuni after exposure at elevated temperatures for up to 5 days. An approach to the reduction of the PCR signal generated by dead bacteria was also investigated by employing externally added DNases to selectively inactivate free DNA and exposed DNA in heat-killed bacteria. The results indicated relatively good discrimination between exposed DNA from dead C. jejuni and protected DNA in living bacteria.  相似文献   

6.
Campylobacter species, primarily Campylobacter jejuni and Campylobacter coli, are regarded as a major cause of human gastrointestinal disease, commonly acquired by eating undercooked chicken. We describe a PCR-ELISA for the detection of Campylobacter species and the discrimination of C. jejuni and C. coli in poultry samples. The PCR assay targets the 16S/23S ribosomal RNA intergenic spacer region of Campylobacter species with DNA oligonucleotide probes designed for the specific detection of C. jejuni, C. coli, and Campylobacter species immobilized on Nucleo-Link wells and hybridized to PCR products modified with a 5' biotin moiety. The limit of detection of the PCR-ELISA was 100-300 fg (40-120 bacterial cells) for C. jejuni and C. coli with their respective species-specific oligonucleotide probes and 10 fg (4 bacterial cells) with the Campylobacter genus-specific probe. Testing of poultry samples, which were presumptive positive for Campylobacter following culture on the Malthus V analyzer, with the PCR-ELISA determined Campylobacter to be present in 100% of samples (n = 40) with mixed cultures of C. jejuni/C. coli in 55%. The PCR-ELISA when combined with culture pre-enrichment is able to detect the presence of Campylobacter and definitively identify C. jejuni and C. coli in culture-enriched poultry meat samples.  相似文献   

7.
Model samples of Campylobacter jejuni for polymerase chain reaction (PCR) were prepared by rapid and simple procedures consisting of centrifugation, proteinase K treatment, Chelex 100 treatment, and boiling lyses. A PCR based on specific amplification of the variable sequence of 16S rRNA gene was performed using Tth DNA polymerase and the PCR products were visualized by agarose gel electrophoresis. The assay allowed the detection of 10 CFU/mL C. jejuni in the physiological saline and 100 CFU/mL in the basic Park and Sanders broth.  相似文献   

8.
A previously developed polymerase chain reaction (PCR) amplification of a target region in the flaA Campylobacter flagellin gene was evaluated and adapted for use with environmental water samples. The ability to detect Campylobacter jejuni or Campylobacter coli in seeded water samples was tested with various filters after concentration and freeze-thaw lysis of the bacterial cells. A nonradioactive probe for the amplified flagellin gene fragment detected as little as 1 to 10 fg of genomic DNA and as few as 10 to 100 viable C. jejuni cells per 100 ml of water filtered onto Fluoropore (Millipore Corp.) filters. No amplification was obtained with cellulose acetate filters, most likely because of binding of the DNA to the filter. Concentration and lysis of target cells on Fluoropore and Durapore (Millipore Corp.) filters allowed PCR to be performed in the same reaction tube without removing the filters. This methodology was then adapted for use with environmental water samples. The water supply to a broiler chicken production farm was suspected as the source of C. jejuni known to be endemic in grow-out flocks at the farm, despite the inability to culture the organisms by standard methods. The filtration-PCR method detected Campylobacter DNA in more than half of the farm water samples examined. Amplified campylobacter DNA was not detected in small volumes of regional surface water samples collected on a single occasion in February. The filtration-PCR amplification method provided a basis for detection of C. jejuni and C. coli in environmental waters with a high degree of specificity and sensitivity.  相似文献   

9.
Campylobacter jejuni is a major cause of diarrheal disease and food-borne gastroenteritis. The main reservoir of C. jejuni in poultry is the cecum, with an estimated content of 6 to 8 log10 CFU/g. If a flock is infected with C. jejuni, the majority of the birds in that flock will harbor the bacterium. Diagnostics at the flock level could thus be an important control point. The aim of the work presented here was to develop a complete quantitative PCR-based detection assay for C. jejuni obtained directly from cecal contents and fecal samples. We applied an approach in which the same paramagnetic beads were used both for cell isolation and for DNA purification. This integrated approach enabled both fully automated and quantitative sample preparation and a DNA extraction method. We developed a complete quantitative diagnostic assay through the combination of the sample preparation approach and real-time 5'-nuclease PCR. The assay was evaluated both by spiking the samples with C. jejuni and through the detection of C. jejuni in naturally colonized chickens. Detection limits between 2 and 25 CFU per PCR and a quantitative range of >4 log10 were obtained for spiked fecal and cecal samples. Thirty-one different poultry flocks were screened for naturally colonized chickens. A total of 262 (204 fecal and 58 cecal) samples were analyzed. Nineteen of the flocks were Campylobacter positive, whereas 12 were negative. Two of the flocks contained Campylobacter species other than C. jejuni. There was a large difference in the C. jejuni content, ranging from 4 to 8 log10 CFU/g of fecal or cecal material, for the different flocks tested. Some issues that have not yet promoted much attention are the prequantitative differences in the ability of C. jejuni to colonize poultry and the importance of these differences for causing human disease through food contamination. Understanding the colonization kinetics in poultry is therefore of great importance for controlling human infections by this bacterium.  相似文献   

10.
Direct detection of Escherichia coli O157 and foodborne pathogens associated with bloody diarrhea were achieved using polymerase chain reaction (PCR) after the preparation of DNA from stool specimens using the microspin technique. PCR was compared with cultivation and toxin production tests with respect to the efficiency of detection of each pathogen; E. coli O157, Vibrio parahaemolyticus, Salmonella serovar Enteritidis and Campylobacter jejuni. Detection of some or all of the above pathogens in clinical stool specimens was achieved using PCR. The minimum number of cells required for the detection of the above pathogens by PCR was 101 CFUs/0.5 g of stool sample. PCR was completed within 6 hr. The above pathogens were also detected in cultivation and toxin production tests. Partial purification of the template DNA using the microspin technique was essential for the elimination of PCR inhibitors from the DNA samples. This PCR method is an accurate, easy-to-read screening method for the detection of Shiga-like toxin producing E. coli O157 and enteropathogens associated with bloody diarrhea in stool specimens.  相似文献   

11.
Campylobacter jejuni is a leading human food-borne pathogen. The rapid and sensitive detection of C. jejuni is necessary for the maintenance of a safe food/water supply. In this article, we present a real-time polymerase chain reaction (PCR) assay for quantitative detection of C. jejuni in naturally contaminated poultry, milk and environmental samples without an enrichment step. The whole assay can be completed in 60 min with a detection limit of approximately 1 CFU. The standard curve correlation coefficient for the threshold cycle versus the copy number of initial C. jejuni cells was 0.988. To test the PCR system, a set of 300 frozen chicken meat samples, 300 milk samples and 300 water samples were screened for the presence of C. jejuni. 30.6% (92/300) of chicken meat samples, 27.3% (82/300) of milk samples, and 13.6% (41/300) of water samples tested positive for C. jejuni. This result indicated that the real-time PCR assay provides a specific, sensitive and rapid method for quantitative detection of C. jejuni. Moreover, it is concluded that retail chicken meat, raw milk and environmental water are commonly contaminated with C. jejuni and could serve as a potential risk for consumers in eastern China, especially if proper hygienic and cooking conditions are not maintained.  相似文献   

12.
Abstract Two extraction procedures were examined, and it was found that DNA recovered from Campylobacter jejuni lysed by the cetyltrimethylammonium bromide (CTAB) method was more suitable for use as a PCR template than DNA released by the boiling method. The region targeted for PCR amplification was a 1.73-kb portion of the flagellin A gene of C. jejuni . The detection limit was lower than 30 cells per 100 ml in artificially contaminated waters. PCR assay and conventional culturing method had the same sensitivity, but results of the PCR technique were available within 48 h and so shortened the time necessary for detection by 48 h.  相似文献   

13.
Campylobacter jejuni is recognized as a leading human food-borne pathogen. Traditional biochemical identification for C. jejuni is not reliable due to special growth requirements and the possibility that this bacterium can enter a viable but nonculturable (VNC) state. Nucleic acid-based tests have emerged as a useful alternative to traditional testing. In this article, we present fluorescent quantitative PCR assay for quantitative detection of C. jejuni, the assay was carried out using a LightCycler instrument and product formation was monitored continuously with the fluorescent double-stranded DNA binding dye SYBR Green I. When this assay was applied, the assay positive for all of the isolates of C. jejuni tested (11 isolates, including type strain ATCC33560) and negative for all other Campylobacter spp. (three isolates) and several other bacteria (five species tested). The total assay could be completed in 60 min with a detection limit of approximately 1 CFU, and a correlation coefficient was 1.000. Result indicated that fluorescent quantitative detection methods provided a special, sensitive, rapid, reproducible and accurate method for quantitative detection of C. jejuni.  相似文献   

14.
空肠弯曲菌LAMP快速检测方法的建立   总被引:2,自引:0,他引:2  
本研究使用恒温环介导技术, 以空肠弯曲菌的促旋酶基因A(gyrA)设计引物, 建立空肠弯曲菌的LAMP快速检测方法。不同来源的4株空肠弯曲菌LAMP检测均显示阳性, 其他14种细菌LAMP检测显示阴性。实验结果表明, 设计的引物具有良好的特异性。本研究进行了LAMP检测方法与细菌平板计数法和PCR法的灵敏度比较, 结果LAMP检测与PCR法有相近的灵敏度, 比细菌平板计数法灵敏度高3个数量级。我们还研究发现提取核酸前加入DNase可以有效地减少死菌DNA对LAMP结果的影响。使用LAMP方法对鸡法氏囊的检测表明, 结合核酸提取步骤中的DNase处理步骤, 可以准确的检测出鸡法氏囊中的空肠弯曲菌。  相似文献   

15.
AIM: Campylobacter species are significantly implicated in human gastrointestinal infections. Of 20 species of Campylobacter, C. jejuni, C. coli and C. lari have been considered as the most important causative agents of human infections. In order to better understand the occurrence and epidemiology of these thermophilic Campylobacter species, an improved and rapid detection method is warranted. A novel triplex polymerase chain reaction (PCR) assay was developed based on the variable 16S-23S rDNA internal transcribed spacer (ITS) region to identify and discriminate between these species in water samples. METHODS AND RESULTS: Campylobacter species-specific primers for C. jejuni, C. coli and C. lari derived from highly variable sequences in the ITS region were used. Specificity of the newly designed primers and PCR conditions were verified using other species of Campylobacter as well as 31 different negative control species. The assay was further validated with 97 Campylobacter cultures from water samples. CONCLUSIONS: The assay was found to be simple, easy to perform, and had a high sensitivity, specificity and reproducibility. It enabled simultaneous detection and differentiation of multiple Campylobacter species in water samples. SIGNIFICANCE AND IMPACT OF STUDY: Use of the newly developed PCR assay, coupled with a previously developed rapid DNA template preparation step, will enable improved detection capabilities for Campylobacter species in environmental matrices.  相似文献   

16.
A polymerase chain reaction (PCR)-based survey of campylobacters associated with faeces collected from 382 beef cattle was undertaken. To ensure the removal of PCR inhibitors present in faeces and determine if adequate extraction was achieved, faeces were seeded with internal control DNA (i.e., DNA designed to amplify with the Campylobacter genus primer set, but provide a smaller amplicon) before the extraction procedure. In only two samples (0.5%) were the internal control or Campylobacter genus amplicons not detected. In the remaining 380 faecal samples, Campylobacter DNA was detected in 83% of the faecal samples (80% of the faecal samples were positive for Campylobacter genus DNA, and 3% of the samples were negative for Campylobacter genus DNA but positive for DNA of individual species). The most frequently detected species was Campylobacter lanienae (49%), a species only recently connected to livestock hosts. Campylobacter jejuni DNA was detected in 38% of the faecal samples, and Campylobacter hyointestinalis and Campylobacter coli DNA were detected in 8% and 0.5% of the samples, respectively. Campylobacter fetus DNA was not detected. Twenty-four percent of the faecal samples contained DNA of at least two species of Campylobacter. Of these samples, the majority (81%) contained DNA of C. jejuni and C. lanienae. The results of this study indicate that beef cattle commonly release a variety of Campylobacter species into the environment and may contribute to the high prevalence of campylobacteriosis in humans inhabiting areas of intensive cattle production, such as southern Alberta. Furthermore, this study demonstrates the utility of using PCR as a rapid and accurate method for simultaneously detecting the DNA of a diverse number of Campylobacter species associated with bovine faeces.  相似文献   

17.
Reducing colonization of poultry flocks by Campylobacter spp. is a key strategy in the control and prevention human campylobacteriosis. Horizontal transmission of campylobacters, from in and around the farm, is the presumed route of flock colonization. However, the identification and prioritization of sources are confounded by the ubiquitous nature of these organisms in the environment, their poor rates of recovery by standard culture methods, and the need for cost-effective and timely methods for strain-specific comparison. A real-time PCR screening test for the strain-specific detection of campylobacters in environmental samples has been developed to address this issue. To enable this approach, fluorescently labeled PCR oligonucleotide probes suitable for a LightCycler-based assay were designed to match a highly variable DNA segment within the flaA short variable region (SVR) of Campylobacter jejuni or C. coli. The capacity of such probes to provide strain-specific tools was investigated by using bacterial cultures and spiked and naturally contaminated poultry fecal and environmental samples. The sensitivity of two representative probes was estimated, by using two different C. jejuni strains, to be 1.3 x 10(2) to 3.7 x 10(2) CFU/ml in bacterial cultures and 6.6 x 10(2) CFU/ml in spiked fecal samples. The specificity of the SVR for C. jejuni and C. coli was confirmed by using a panel of strains comprising other Campylobacter species and naturally contaminated samples. The approach was field tested by sampling the environment and feces of chickens of two adjacently located poultry houses on a conventional broiler farm throughout the life of one flock. All environmental samples were enriched for 2 days, and then DNA was prepared and stored. Where feasible, campylobacter isolates were also recovered and stored for subsequent testing. A strain-specific probe based on the SVR of the strain isolated from the first positive chicken fecal sample was developed. This probe was then used to screen the stored environmental samples by real-time PCR. Pulsed-field gel electrophoresis was used to compare recovered environmental and fecal isolates to assess the specificity of the method. The results established the proof of principle that strain-specific probes, based on the SVR of flaA, can identify a flock-colonizing strain in DNA preparations from enriched environmental cultures. Such a novel strategy provides the opportunity to investigate the epidemiology of campylobacters in poultry flocks and allows targeted biosecurity interventions to be developed. The strategy may also have wider applications for the tracking of specific campylobacter strains in heavily contaminated environments.  相似文献   

18.
A polymerase chain reaction (PCR) method designed to sensitively detect and identify Campylobacter jejuni and Campylobacter coli without the need for isolating and culturing strains is described. The intergenic sequence between the flagellin genes flaA and flaB was amplified and characterized with a triple primer or seminested primer approach. A total of 50 bacterial strains, 27 of C. jejuni and C. coli and 23 of other species, were tested, giving no false-positive or false-negative results. The detection limit as determined by ethidium bromide staining of amplification products on agarose gels was 10 bacteria or less in artificially contaminated water, milk, and soft cheese samples with the seminested primer PCR assay. As an application of the PCR system, a set of 93 samples of milk and other dairy products was screened for the presence of C. jejuni and C. coli. We identified six positive samples (6.5%), while none were found with a conventional culture method.  相似文献   

19.
W A Day  Jr  I L Pepper    L A Joens 《Applied microbiology》1997,63(3):1019-1023
Development of a PCR assay for Campylobacter jejuni is based on the isolation of species-specific DNA. An arbitrarily primed PCR incorporating 10-mer primers was used to generate fingerprints of C. jejuni M129 genomic DNA. Fingerprint products were then screened individually for their species specificity in dot blot hybridizations with 6 C. jejuni isolates, 4 Campylobacter species other than C. jejuni, and 27 enteric bacterial species other than Campylobacter spp. A 486-bp fingerprint product hybridized specifically to C. jejuni DNA under stringent conditions; no binding to Campylobacter DNA other than that of C. jejuni or to DNA from enteric bacteria was detected. The 486-bp fingerprint product was sequenced, and primers corresponding to three overlapping regions of the DNA probe were synthesized. Evaluation of the three primer pairs for specificity to C. jejuni DNA identified an oligonucleotide primer pair which amplified a 265-bp product from six C. jejuni isolates only. In sensitivity studies using a crude M129 lysate as the template, the C. jejuni-specific PCR amplified the 265-bp product in a lysate with as few as 100 bacteria.  相似文献   

20.
AIMS: To develop a real-time (rt) PCR for species differentiation of thermophilic Campylobacter and to develop a method for assessing co-colonization of pigs by Campylobacter spp. METHODS AND RESULTS: The specificity of a developed 5' nuclease rt-PCR for species-specific identification of Campylobacter jejuni, Campylobacter coli, Campylobacter lari, Campylobacter upsaliensis and of a hipO gene nucleotide probe for detection of C. jejuni by colony-blot hybridization were determined by testing a total of 75 reference strains of Campylobacter spp. and related organisms. The rt-PCR method allowed species-specific detection of Campylobacter spp. in naturally infected pig faecal samples after an enrichment step, whereas the hybridization approach enhanced the specific isolation of C. jejuni (present in minority to C. coli) from pigs. Conclusions: The rt-PCR was specific for Campylobacter jejuni, C. coli, C. lari, and C. upsaliensis and the colony-blot hybridization approach provided an effective tool for isolation of C. jejuni from pig faecal samples typically dominated by C. coli. SIGNIFICANCE AND IMPACT OF THE STUDY: Species differentiation between thermophilic Campylobacter is difficult by phenotypic methods and the developed rt-PCR provides an easy and fast method for such differentiation. Detection of C. jejuni by colony hybridization may increase the isolation rate of this species from pig faeces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号