首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In eukaryotic cells deoxyribonucleoside kinases belonging to three phylogenetic sub-families have been found: (i) thymidine kinase 1 (TK1)-like enzymes, which are strictly pyrimidine deoxyribonucleoside-specific kinases; (ii) TK2-like enzymes, which include pyrimidine deoxyribonucleoside kinases and a single multisubstrate kinase from Drosophila melanogaster (Dm-dNK); and (iii) deoxycytidine/deoxyguanosine kinase (dCK/dGK)-like enzymes, which are deoxycytidine and/or purine deoxyribonucleoside-specific kinases. We cloned and characterized two new deoxyribonucleoside kinases belonging to the TK2-like group from the insect Bombyx mori and the amphibian Xenopus laevis. The deoxyribonucleoside kinase from B. mori (Bm-dNK) turned out to be a multisubstrate kinase like Dm-dNK. But uniquely for a deoxyribonucleoside kinase, Bm-dNK displayed positive cooperativity with all four natural deoxyribonucleoside substrates. The deoxyribonucleoside kinase from X. laevis (Xen-PyK) resembled closely the human and mouse TK2 enzymes displaying their characteristic Michaelis-Menten kinetic with deoxycytidine and negative cooperativity with its second natural substrate thymidine. Bm-dNK, Dm-dNK and Xen-PyK were shown to be homodimers. Significant differences in the feedback inhibition by deoxyribonucleoside triphosphates between these three enzymes were found. The insect multisubstrate deoxyribonucleoside kinases Bm-dNK and Dm-dNK were only inhibited by thymidine triphosphate, while Xen-PyK was inhibited by thymidine and deoxycytidine triphosphate in a complex pattern depending on the deoxyribonucleoside substrate. The broad substrate specificity and different feedback regulation of the multisubstrate insect deoxyribonucleoside kinases may indicate that these enzymes have a different functional role than the other members of the TK2-like group.  相似文献   

2.
The family 3 beta-glucosidase from Thermotoga maritima is a highly thermostable enzyme (85 degrees C) that displays transglycosylation activity. In contrast, the beta-glucosidase from Cellvibrio gilvus is mesophilic (35 degrees C) and displays no such transglycosylation activity. Both enzymes consist of two domains, an N-terminal and a C-terminal domain, and the amino acid identities between the two enzymes in these domains are 32.4 and 36.4%, respectively. In an attempt to identify the molecular basis underpinning the display of transglycosylation activity and the requirements for thermal stability, eight chimeric genes were constructed by shuffling the two parental beta-glucosidase genes at four selected borders, two in the N-terminal domain and two in the C-terminal domain. Of the eight chimeric genes constructed, only two chimeric enzymes (Tm578/606Cg and Tm638/666Cg) gave catalytically active forms and these were the ones shuffled in the C-terminal domain. For these active chimeric enzymes, 80% (Tm578/606Cg) and 88% (Tm638/666Cg) of their amino acid sequences originated from T. maritima. With regard to their thermal profiles, the two active chimeric enzymes, Tm578/606Cg and Tm638/666Cg, displayed profiles intermediate to those of the two parental enzymes as they were optimally active at 65 and 70 degrees C, respectively. These two chimeric enzymes were optimally active at pH 4.1 and 3.9, which is closer to that observed for the T. maritima enzyme (pH 3.2-3.5) than that for the C. gilvus enzyme (pH 6.2-6.5). Kinetic parameters for the chimeric enzymes were investigated with five different substrates including pNP-beta-D-glucopyranoside. The kinetic parameters obtained for the chimeric enzymes were closer to those of the T. maritima enzyme than to those of the C. gilvus enzyme. Transglycosylation activity was observed for both chimeric enzymes and the activity of the Tm578/606Cg chimera was at a level twice that observed with the T. maritima enzyme. This study is an effective demonstration of the usefulness of chimeric enzymes in altering the characteristics of an enzyme.  相似文献   

3.
4.
The role of S-adenosylmethionine (SAM) as a precursor to organic radicals, generated by one-electron reduction of SAM and subsequent fission to form 5'-deoxyadenosyl radical and methionine, has been known for some time. Only recently, however, has it become apparent how widespread such enzymes are, and what a wide range of chemical reactions they catalyze. In the last few years several new SAM radical enzymes have been identified. Spectroscopic and kinetic investigations have begun to uncover the mechanism by which an iron sulfur cluster unique to these enzymes reduces SAM to generate adenosyl radical. Most recently, the first X-ray structures of SAM radical enzymes, coproporphyrinogen-III oxidase, and biotin synthase have been solved, providing a structural framework within which to interpret mechanistic studies.  相似文献   

5.
A combination of enzyme preparations from Trichoderma atroviride and Serratia marcescens was able to completely degrade high concentrations (100 g/L) of chitin from langostino crab shells to N-acetylglucosamine (78%), glucosamine (2%), and chitobiose (10%). The result was achieved at 32 degrees C in 12 days with no pre-treatment (size reduction or swelling) of the substrate and without removal of the inhibitory end-products from the mixture. Enzymatic degradation of three forms of chitin by Serratia/Trichoderma and Streptomyces/Trichoderma blends was carried out according to a simplex-lattice mixture design. Fitted polynomial models indicated that there was synergy between prokaryotic and fungal enzymes for both hydrolysis of crab chitin and reduction of turbidity of colloidal chitin (primarily endo-type activity). Prokaryotic/fungal enzymes were not synergistic in degrading chitosan. Enzymes from prokaryotic sources had much lower activity against chitosan than enzymes from T. atroviride.  相似文献   

6.
For bacteria, the structural integrity of its cell wall is of utmost importance for survival, and to this end, a rigid scaffold called peptidoglycan, comprised of sugar molecules and peptides, is synthesized and located outside the cytoplasmic membrane of the cell. Disruption of this peptidoglycan layer has for many years been a prime target for effective antibiotics, namely the penicillins and cephalosporins. Because this rigid layer is synthesized by a multi-step pathway numerous additional targets also exist that have no counterpart in the animal cell. Central to this pathway are four similar ligase enzymes, which add peptide groups to the sugar molecules, and interrupting these steps would ultimately prove fatal to the bacterial cell. The mechanisms of these ligases are well understood and the structures of all four of these ligases are now known. A detailed comparison of these four enzymes shows that considerable conformational changes are possible and that these changes, along with the recruitment of two different N-terminal binding domains, allows these enzymes to bind a substrate which at one end is identical and at the other has the growing polypeptide tail. Some insights into the structure-function relationships in these enzymes is presented.  相似文献   

7.
8.
The Xylella fastidiosa is a bacterium that is the cause of citrus variegated chlorosis (CVC). The shikimate pathway is of pivotal importance for production of a plethora of aromatic compounds in plants, bacteria, and fungi. Putative structural differences in the enzymes from the shikimate pathway, between the proteins of bacterial origin and those of plants, could be used for the development of a drug for the control of CVC. However, inhibitors for shikimate pathway enzymes should have high specificity for X. fastidiosa enzymes, since they are also present in plants. In order to pave the way for structural and functional efforts towards antimicrobial agent development, here we describe the molecular modeling of seven enzymes of the shikimate pathway of X. fastidiosa. The structural models of shikimate pathway enzymes, complexed with inhibitors, strongly indicate that the previously identified inhibitors may also inhibit the X. fastidiosa enzymes.  相似文献   

9.
Three acetyl esterases (AcEs) from the saprophytic bacteria Cellvibrio japonicus and Clostridium thermocellum, members of the carbohydrate esterase (CE) family 2, were tested for their activity against a series of model substrates including partially acetylated gluco-, manno- and xylopyranosides. All three enzymes showed a strong preference for deacetylation of the 6-position in aldohexoses. This regioselectivity is different from that of typical acetylxylan esterases (AcXEs). In aqueous medium saturated with vinyl acetate, the CE-2 enzymes catalyzed transacetylation to the same position, i.e., to the primary hydroxyl group of mono- and disaccharides. Xylose and xylooligosaccharides did not serve as acetyl group acceptors, therefore the CE-2 enzymes appear to be 6-O-deacetylases.  相似文献   

10.
The shikimate pathway is essential for survival of the apicomplexan parasites Plasmodium falciparum, Toxoplasma gondii and Cryptosporidium parvum. As it is absent in mammals it is a promising therapeutic target. Herein, we describe the genes encoding the shikimate pathway enzymes in T. gondii. The molecular arrangement and phylogeny of the proteins suggests homology with the eukaryotic fungal enzymes, including a pentafunctional AROM. Current rooting of the eukaryotic evolutionary tree infers that the fungi and apicomplexan lineages diverged deeply, suggesting that the arom is an ancient supergene present in early eukaryotes and subsequently lost or replaced in a number of lineages.  相似文献   

11.
Drug resistance in Gram-negative bacteria, such as Acinetobacter baumannii, is emerging as a significant healthcare problem. New antibiotics with a novel mechanism of action are urgently needed to overcome the drug resistance. Methionine aminopeptidase (MetAP) carries out an essential cotranslational methionine excision in many bacteria and is a potential target to develop such novel antibiotics. Two putative MetAP genes were identified in A. baumannii genome, but whether they actually function as MetAP enzymes was not known. Therefore, we established an efficient E. coli expression system for their production as soluble and metal-free proteins for biochemical characterization. We demonstrated that both could carry out the metal-dependent catalysis and could be activated by divalent metal ions with the order Fe(II) ≈ Ni(II) > Co(II) > Mn(II) for both. By using a set of metalloform-selective inhibitors discovered on other MetAP enzymes, potency and metalloform selectivity on the A. baumannii MetAP proteins were observed. The similarity of their catalysis and inhibition to other MetAP enzymes confirmed that both may function as competent MetAP enzymes in A. baumannii and either or both may serve as the potential drug target.  相似文献   

12.
The arylamine N-acetyltransferases are important xenobiotic-metabolizing enzymes that catalyze an acetyl group transfer from acetylCoA to arylamine substrates. NAT enzymes possess an active-site loop (the active-site P-loop) involved in substrate binding and selectivity. The Gly/Ala residue present at the start of the active-site P-loop, although conserved in all NAT enzymes, is not involved in the catalytic mechanism or substrate binding. Here we show that a small amino acid (such as Gly or Ala) at this position is important not only for maintaining the functions of the active-site P-loop but, more surprisingly, also important for maintaining the overall structural integrity of NAT enzymes. Our data thus suggest that in addition to its role in substrate binding and selectivity, the active-site P-loop could play a wider structural role in NAT enzymes.  相似文献   

13.
Twenty-eight enzymes, encoded by different genes and secreted by different mutant strains of Chrysosporium lucknowense, were subjected to MALDI-TOF MS peptide fingerprinting followed by analysis of the MS data using the GlycoMod tool from the ExPASy proteomic site. Various N-linked glycan structures were discriminated in the C. lucknowense proteins as a result of the analysis. N-Glycosylated peptides with modifications matching the oligosaccharide compositions contained in the GlycoSuiteDB were found in 12 proteins. The most frequently encountered N-linked glycan, found in 9 peptides from 7 proteins, was (Man)(3)(GlcNAc)(2), that is, the core pentasaccharide structure forming mammalian-type high-mannose and hybrid/complex glycans in glycoproteins from different organisms. Nine out of 12 enzymes represented variably N-glycosylated proteins carrying common (Hex)(0-4)(HexNAc)(0-6)+(Man)(3)(GlcNAc)(2) structures, most of them being hybrid/complex glycans. Various glycan structures were likely formed as a result of the enzymatic trimming of a 'parent' oligosaccharide with different glycosidases. The N-glycosylation patterns found in C. lucknowense proteins differ from those reported for the extensively studied enzymes from Aspergilli and Trichoderma species, where high-mannose glycans of variable structure have been detected.  相似文献   

14.
Leprosy is an infectious disease caused by Mycobacterium leprae. M. leprae has undergone a major reductive evolution leaving a minimal set of functional genes for survival. It remains non-cultivable. As M. leprae develops resistance against most of the drugs, novel drug targets are required in order to design new drugs. As most of the essential genes mediate several biosynthetic and metabolic pathways, the pathway predictions can predict essential genes. We used comparative genome analysis of metabolic enzymes in M. leprae and H. sapiens using KEGG pathway database and identified 179 non-homologues enzymes. On further comparison of these 179 non-homologous enzymes to the list of minimal set of 48 essential genes required for cell-wall biosynthesis of M. leprae reveals eight common enzymes. Interestingly, six of these eight common enzymes map to that of peptidoglycan biosynthesis and they all belong to Mur enzymes. The machinery for peptidoglycan biosynthesis is a rich source of crucial targets for antibacterial chemotherapy and thus targeting these enzymes is a step towards facilitating the search for new antibiotics.  相似文献   

15.
Organic co-solvents can expand the use of enzymes in lignocellulose deconstruction through making substrates more soluble and thus more accessible. In choosing the most adequate co-solvent for feruloyl esterases, hydrolysis of methyl p-hydroxycinnamates by three pure enzymes (and a multi-enzyme preparation) was evaluated. Low concentrations of dimethylsulfoxide (DMSO) enhanced hydrolysis by two of the enzymes while at levels >20%, activity was reduced. DMSO also enhanced acetyl esterase-type activity of the enzymes. The co-solvent effect was different for each enzyme-substrate couple, indicating that other factors are also involved. Kinetic studies with a Talaromyces stipitatus feruloyl esterase showed low concentrations of dimethylsulfoxide enhanced the hydrolytic rate while Km also increased. Moreover, long-term incubation (96 h) of an Aspergillus niger feruloyl esterase in dimethylsulfoxide:water provided to the enzyme the ability to hydrolyze methyl p-coumarate, suggesting an active-site re-arrangement. Dimethylsulfoxide (10-30%) is proposed as an adequate co-solvent for feruloyl esterase treatment of water-insoluble substrates.  相似文献   

16.
Chronic myeloid leukemia (CML) is a clonal disorder characterized by proliferation of hematopoietic cells that possess the BCR-ABL fusion gene resulting in the production of a 210 kDa chimeric tyrosine kinase protein. CML, when left untreated, progresses to a blast phase during which the disease turns aggressive and shows poor response to known treatment regimens. We have studied a Siddha herbal agent, Semecarpus anacardium Linn. nut milk extract (SA) for its antileukemic activity and its effect on the changes in energy metabolism in leukemic mice. Leukemia was induced in BALB/c mice by tail vein injection of BCR-ABL(+) 12B1 murine leukemia cell line. This resulted in an aggressive leukemia, similar to CML in blast crisis, myeloid subtype, confirmed by histopathological study and RT-PCR for the p210 mRNA in the peripheral blood, spleen and liver. Leukemia-bearing mice showed a significant increase in lipid peroxides, glycolytic enzymes, a decrease in gluconeogenic enzymes and significant decrease in the activities of TCA cycle and respiratory chain enzymes as compared to control animals. SA treatment was compared with standard drug imatinib mesylate. SA administration to leukemic animals resulted in clearance of the leukemic cells from the bone marrow and internal organs on histopathological examination and this was confirmed by RT-PCR for the p210 mRNA. Treatment with SA significantly reversed the changes seen in the levels of the lipid peroxides, the glycolytic enzymes, the gluconeogenic enzymes and the mitochondrial enzymes. These effects are probably due to the flavonoids, polyphenols and other compounds present in SA which result in total regression of leukemia and correction of the alterations in energy metabolism. Study of animals treated with SA alone did not reveal any adverse effects. On the basis of the observed results, SA can be considered as a readily accessible, promising and novel antileukemic chemotherapeutic agent.  相似文献   

17.
The heme biosynthesis pathway in the yeast Saccharomyces cerevisiae is a highly regulated system, but the mechanisms accounting for this regulation remain unknown. In an attempt to identify rate-limiting steps in heme synthesis, which may constitute potential regulatory points, we constructed yeast strains overproducing two enzymes of the pathway: the porphobilinogen synthase (PBG-S) and deaminase (PBG-D). Biochemical analysis of the enzyme-overproducing strains revealed intracellular porphobilinogen and porphyrin accumulation. These results indicate that both enzymes play a rate-limiting role in yeast heme biosynthesis.  相似文献   

18.
Commercial non-chitinase enzymes from Aspergilus niger, Acremonium cellulolyticus and Trichoderma viride were investigated for potential utilization in the preparation of 2-acetamido-2-deoxy-D-glucose (N-acetyl-D-glucosamine, GlcNAc) from chitin. Among the tested enzymes, cellulase A. cellulolyticus exhibited highest chitinolytic activity per weight toward amorphous chitin and beta-chitin from squid pen. The optimum pH of the enzyme was 3 where it produced two major hydrolytic products, GlcNAc and N,N'-diacetylchitobiose ([GlcNAc](2)). The product ratio, GlcNAc:[GlcNAc](2), increased while the total yield decreased as the pH was raised from 3. All of the [GlcNAc](2) produced at pH 3 can be converted in situ to GlcNAc by mixing cellulase A. cellulolyticus with one of several other enzymes from A. niger resulting in a higher yield of GlcNAc. An appropriate mixing ratio of cellulase A. cellulolyticus to another enzyme was 9:1 (w/w) and an optimum substrate concentration was 20 mg/mL.  相似文献   

19.
Cellulases and hemicellulases are two classes of enzymes produced by filamentous fungi and secreted into the cultivation medium. Both classes of enzymes consist of a subset of classes of which the fungi produce several enzymes with varying molecular mass and pI but similar enzymatic activities. Current methods are limited in their ability to quantify all of these enzymes when all are present simultaneously in a mixture. Five different cellulases (two cellobiohydrolases and three endoglucanases) and one hemicellulase (endoxylanase) were separated using capillary electrophoresis (CE) in a fused silica capillary at pH values close to neutral. The improvement of the separation of these six proteins by the addition of alpha,omega-diaminoalkanes with chain lengths from three to seven carbon units was investigated. Dynamically coating the capillary with 1,3-diaminopropane resulted in separation of the six enzymes and the reproducibility of the migration times was between 0.6 and 1.9%. Two cases-quantitative determination of the enzyme concentrations in cultivation samples and investigation of adsorption of the enzymes onto cellulose-demonstrated the advantages and perspectives of CE analysis of these broad groups of enzymes.  相似文献   

20.
In Azotobacter vinelandii the rhdA gene codes for a protein (RhdA) of the rhodanese-homology superfamily. By combining proteomics, enzymic profiles and ultrastructural observations, the phenotype of an A. vinelandii rhdA mutant was analyzed. We found that the A. vinelandii rhdA mutant, and not the wild-type strain, accumulated polyhydroxybutyrate. RhdA deficiency enhanced the expression of enzymes of the polyhydroxybutyrate biosynthetic operon, and affected the activity of specific tricarboxylic acid cycle enzymes. The effect was dramatic on aconitase, in spite of comparable expression of aconitase polypeptides in both strains. By using a model system, we found that RhdA triggered protection from oxidants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号