首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
This paper discusses the evidence for the role of CREB in neural stem/progenitor cell (NSPC) function and oncogenesis and how these functions may be important for the development and growth of brain tumours. The cyclic-AMP response element binding (CREB) protein has many roles in neurons, ranging from neuronal survival to higher order brain functions such as memory and drug addiction behaviours. Recent studies have revealed that CREB also has a role in NSPC survival, differentiation and proliferation. Recent work has shown that over-expression of CREB in transgenic animals can impart oncogenic properties on cells in various tissues and that aberrant CREB expression is associated with tumours in patients. It is the central position of CREB, downstream of key developmental and growth signalling pathways, which give CREB the ability to influence a spectrum of cell activities, such as cell survival, growth and differentiation in both normal and cancer cells.  相似文献   

7.
8.
Although usually considered to be a constitutively expressed protein, in the primate ovary the expression of CREB (cAMP response element-binding protein) is extinguished after ovulation, and its loss is temporally associated with the cessation of proliferation of luteal cells and the ultimate commitment of the corpus luteum to undergo regression. To determine the cellular consequences of the loss of CREB expression, we expressed a nonphosphorylatable mutant of CREB (CREB M1) in primary cultures of rat granulosa cells using a replication-defective adenovirus vector. Expression of CREB M1 did not block granulosa cell differentiation as assessed by acquisition of the ability to produce estrogen and progesterone in response to FSH or forskolin. However, granulosa cells expressing CREB M1, but not adenovirus-directed beta-galactosidase or enhanced green fluorescent protein, exhibited a 35% reduction in viability that was further reduced to 65% after stimulation with 10 microM forskolin. These results demonstrate that the trophic effects of cAMP (proliferation and survival) on ovarian granulosa cells are functionally separate from the effects of cAMP on differentiation and provide novel evidence that CREB may function as a cell survival factor in the ovary. The separation of signaling pathways that govern differentiation and survival in the ovary thereby provides a mechanism by which progesterone production, which is absolutely essential for the maintenance of pregnancy, can continue despite the cessation of proliferation of luteal cells and their commitment to cell death (luteolysis).  相似文献   

9.
10.
11.
cAMP反应序列结合蛋白及其家族与转录调节   总被引:8,自引:0,他引:8  
cAMP反应序列结合蛋白(cAMP-responsiveelementbindingprotein,CREB)经磷酸化激活后,可参与cAMP诱导的多种靶基因的转录调控。新近研究表明,CREB的转录调节作用可能是通过CREB结合蛋白(CREB-bindingprotein,CBP)实现的。在神经系统中,CREB可能介导神经递质诱导的基因表达,并能通过放大神经营养因子的信号,参与神经细胞增殖、分化、存活等生物效应。  相似文献   

12.
We demonstrated previously that leukotriene D4 (LTD4) regulates proliferation of intestinal epithelial cells through a CysLT receptor by protein kinase C (PKC)epsilon-dependent stimulation of the mitogen-activated protein kinase ERK1/2. Our current study provides the first evidence that LTD4 can activate 90-kDa ribosomal S6 kinase (p90RSK) and cAMP-responsive element-binding protein (CREB) via pertussis-toxin-sensitive Gi protein pathways. Transfection and inhibitor experiments revealed that activation of p90RSK, but not CREB, is a PKCepsilon/Raf-1/ERK1/2-dependent process. LTD4-mediated CREB activation was not affected by expression of kinase-dead p90RSK but was abolished by transfection with the regulatory domain of PKCalpha (a specific dominant-inhibitor of PKCalpha). Kinase-negative mutants of p90RSK and CREB (K-p90RSK and K-CREB) blocked the LTD4-induced increase in cell number and DNA synthesis (thymidine incorporation). Compatible with these results, flow cytometry showed that LTD4 caused transition from the G0/G1 to the S+G2/M cell cycle phase, indicating increased proliferation. Similar treatment of cells transfected with K-p90RSK resulted in cell cycle arrest in the G0/G1 phase, consistent with a role of p90RSK in LTD4-induced proliferation. On the other hand, expression of K-CREB caused a substantial buildup in the sub-G0/G1 phase, suggesting a role for CREB in mediating LTD4-mediated survival in intestinal epithelial cells. Our results show that LTD4 regulates proliferation and survival via distinct intracellular signaling pathways in intestinal epithelial cells.  相似文献   

13.
The phosphoinositide 3-OH kinase (PI3K)/Akt pathway has been implicated in regulating several important cellular processes, including apoptosis, survival, proliferation, and metabolism. Using both pharmacological and genetic means, we demonstrate here that PI3K/Akt plays a crucial role in the proliferation of adult hippocampal neural progenitor cells. PI3K/Akt transduces intracellular signals from multiple mitogens, including basic fibroblast growth factor (FGF-2), Sonic hedgehog (Shh), and insulin-like growth factor 1 (IGF-1). In addition, retroviral vector-mediated over-expression of wild type Akt increased cell proliferation, while a dominant negative Akt inhibited proliferation. Furthermore, wild type Akt over-expression reduced glial (GFAP) and neuronal (beta-tubulin III) marker expression during differentiation, indicating that it inhibits cell differentiation. We also show that activation of the cAMP response element binding protein (CREB), which occurs in cells stimulated by FGF-2, is limited when Akt signaling is inhibited, demonstrating a link between Akt and CREB. Over-expression of wild type CREB increases progenitor proliferation, whereas dominant negative CREB only slightly decreases proliferation. These results indicate that PI3K/Akt signaling integrates extracellular signaling information to promote cellular proliferation and inhibit differentiation in adult neural progenitors.  相似文献   

14.
Lysophospholipids regulate a wide array of biological processes including cell survival and proliferation. In our previous studies, we found that in addition to SRE, CRE is required for maximal c-fos promoter activation triggered by lysophosphatidic acid (LPA). c-fos is an early indicator of various cells into the cell cycle after mitogenic stimulation. However, role of CREB activation in LPA-stimulated proliferation has not been elucidated yet. Here, we investigate how LPA induces proliferation in Rat-2 fibroblast cell via CREB activation. We found that total cell number and BrdU-positive cells were increased by LPA. Moreover, levels of c-fos mRNA and cyclin D1 protein were increased via LPA-induced CREB phosphorylation. Furthermore, LPA-induced Rat-2 cell proliferation was decreased markedly by ERK inhibitor (U0126) and partially by MSK inhibitor (H89). Taken together, these results suggest that CREB activation could partially up-regulate accumulation of cyclin D1 protein level and proliferation of LPA-stimulated Rat-2 fibroblast cells.  相似文献   

15.
16.
17.
18.
The proliferation and migration of Retinal Pigment Epithelium cells resulting from an epithelial-mesenchymal transition plays a key role in proliferative vitreoretinopathy, which leads to retinal detachment and the loss of vision. In neurons, glutamate has been shown to activate the Ras/Raf/MEK/ERK cascade, which participates in the regulation of proliferation, differentiation, and survival processes. Although glutamate-stimulation and the activation of ERK1/2 by different stimuli have been shown to promote RPE cell proliferation, the signaling pathway(s) linking these effects has not been established. We analyzed the molecular mechanisms leading to glutamate-induced proliferation by determining ERK1/2 and CREB phoshporylation in chick RPE cells in primary culture and the human-derived RPE cell line ARPE-19. This study shows for the first time, that glutamate promotes RPE cell proliferation by activating two distinct signaling pathways linked to selective glutamate receptor subtypes. Results demonstrate that glutamate stimulates RPE cell proliferation as well as ERK and CREB phosphorylation. These effects were mimicked by the mGluR agonist ACPD and by NMDA, and were prevented by the respective receptor inhibitors MCPG and MK-801, indicating a cause-effect relationship between these processes. Whereas mGluR promoted proliferation by activating the MEK/ERK/CREB cascade, NMDA stimulated proliferation through the MEK-independent activation of Ca(2+)/calmodulin-dependent kinases. The blockage of both signaling pathways to proliferation by KN-62 suggests the involvement of CaMKs in the control of glutamate-induced proliferation at a common step, downstream of CREB, possibly the regulation of cell cycle progression. Based on these findings, the participation of glutamate in the development of PVR can be considered.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号