首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
2.
3.
4.
5.
Data are presented which document the first known effect of retinoic acid on progesterone receptor (PR) gene expression. Treatment of T-47D human breast cancer cells with retinoic acid for 48 h resulted in a marked concentration-dependent decrease in the level of PR mRNA and immunoreactive protein which was similar to the known effect of progestins on these parameters. Retinoic acid, however, did not bind to PR, nor did it cause the previously demonstrated increase in PR molecular weight observed after progestin exposure. When T-47D cells were treated with retinoic acid for 6 h rather than 48 h, no reduction in the level of PR protein was noted at any retinoic acid concentration whereas the effects of retinoic acid on PR mRNA at 6 and 48 h were the same. Examination of the time course of the effects of retinoic acid revealed a rapid decrease in PR mRNA levels detectable 1 h after and maximal 6 h after treatment of T-47D cells with retinoic acid. These effects of retinoic acid contrasted with previously demonstrated progestin effects on PR mRNA which were not apparent until 3 h after and were not maximal until 12 h after treatment. As expected, the PR protein concentration was unaffected for at least 6 h but was maximally decreased 24-48 h after retinoic acid treatment. In summary, retinoic acid treatment of T-47D cells caused a decrease in the cellular PR concentration by decreasing levels of receptor mRNA and protein, suggesting that retinoic acid is capable of modulating sensitivity to progestins in human breast cancer cells.  相似文献   

6.
We have examined the effects of estrogen and progestin agonist and antagonist ligands on regulation of progesterone receptor (PR) protein and mRNA levels in a variety of human breast cancer cell lines. By Northern blot analysis, using human PR cDNA probes, PR mRNA in T47D and MCF-7 cells appears as five species of approximately 11.4, 5.8, 5.3, 3.5, and 2.8 kilobases. PR mRNA species are not detected in the PR protein-negative breast cancer cell lines MDA-MB-231 and LY2. T47D cells contain high levels of PR mRNA and protein (detected by hormone binding assay or Western blot analysis), and the PR protein and mRNA content of T47D cells are reduced to about 10% of the control level within 48 h of treatment with 10 nM promegestone; 17, 21-dimethyl-19-nor-pregna-4,9-diene-3, 20-dione (R5020) or 16 alpha-ethyl-21-hydroxy-19-nor-pregn-4-ene-3,20-dione (ORG2058), both potent progestins. In contrast, treatment of T47D cells with the antiprogestin 17 beta-hydroxy-11 beta-[4-dimethylaminophenyl]-17 alpha-(1-propynyl)-estra- 4, 9-dien-3-one) (RU38486) reduces PR protein and mRNA levels only transiently. PR protein and mRNA are virtually undetectable in control MCF-7 cells grown in the absence of estrogens. When estradiol is administered to MCF-7 cells, the PR mRNA and protein levels increase gradually and proportionately (10- or 40-fold, respectively, in 3 days).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
8.
9.
10.
11.
12.
A 24 hr incubation of T-47D human breast cancer cells with R5020, a synthetic progestin, resulted in a 200-250% increase in the specific binding of human growth hormone (hGH) and epidermal growth factor (EGF) by these cells. This effect was specific for progestins in that similar responses were observed with progesterone, medroxyprogesterone acetate and ORG 2058 but no significant increases in hGH or EGF binding were observed in cells incubated with testosterone, estradiol or hydrocortisone. Increased binding was due to an increase in the concentration of receptors (hGH, control = 6,490 +/- 500, progestin treated = 13,180 +/- 3,270 sites/cell; EGF, control = 33,380 +/- 7,410, progestin treated = 67,460 +/- 20,330 sites/cell) while the affinity constants for the hormone-receptor interactions were unchanged by progestin treatment. The specific binding of insulin, calcitonin, transferrin and concanavalin A was unaffected by these treatments. It is concluded that expression of hGH and EGF receptors in this breast cancer cell line is regulated by progestins.  相似文献   

13.
A Geier  R Bella  R Beery  B Lunenfeld 《Steroids》1990,55(6):283-288
The susceptibility of the progesterone receptor, liganded either by the antiprogestin RU 486 or by the progestin ORG 2058, to chymotrypsin and trypsin degradation was investigated. The nuclear fraction was isolated from T47D cells previously exposed either to 0.1 microM [3H]RU 486 or to 0.1 microM [3H]ORG 2058. The proteolytic digestion was performed on the micrococcal nuclease hydrolysate. The molecular weights of the receptor fragments were calculated, in high salt buffer, from the sedimentation coefficients determined on a sucrose gradient and from the Stokes radii estimated by gel filtration on an Agarose A-0.5 m column. Micrococcal nuclease solubilized receptor forms with molecular weights of 80,000 and 75,000 for the antiprogestin- or progestin-liganded receptor, respectively. Chymotrypsin degraded these receptor forms to fragments with molecular weights of 23,000 either for the antiprogestin- or progestin-liganded receptor. Similar molecular weights of 23,000 were calculated for the progesterone receptor liganded either by the antiprogestin RU 436 or the progestin ORG 2058 following trypsin cleavage. We conclude that the degradation pattern of the progesterone receptor liganded either by the antiprogestin RU 486 or the progestin ORG 2058 following chymotrypsin or trypsin digestion seems to be similar.  相似文献   

14.
15.
Long-term growth inhibition, arrest in G(1) phase and reduced activity of both cyclin D1-Cdk4 and cyclin E-Cdk2 are elicited by progestin treatment of breast cancer cells in culture. Decreased cyclin expression, induction of p18(INK4c) and increased association of the CDK inhibitors p21(WAF1/Cip1) and p27(Kip1) with cyclin E-Cdk2 have been implicated in these responses. To determine the role of decreased cyclin expression, T-47D human breast cancer cells constitutively expressing cyclin D1 or cyclin E were treated with the progestin ORG 2058. Overexpression of cyclin E had only a modest effect on growth inhibition. Although cyclin E expression was maintained during progestin treatment, cyclin E-Cdk2 activity decreased by approximately 60%. This was accompanied by p27(Kip1) association with cyclin E-Cdk2, indicating that both cyclin E down-regulation and p27(Kip1) recruitment contribute to the decrease in activity. In contrast, overexpression of cyclin D1 induced progestin resistance and cell proliferation continued despite decreased cyclin E-Cdk2 activity. Progestin treatment of cyclin D1-overexpressing cells was associated with increased p27(Kip1) association with cyclin E-Cdk2. Thus the ability of cyclin D1 to confer progestin resistance does not depend on sequestration of p27(Kip1) away from cyclin E-Cdk2, providing evidence for a critical function of cyclin D1 other than as a high-capacity "sink" for p27(Kip1). These data indicate that regulation of cyclin D1 is a critical element of progestin inhibition in breast cancer cells and suggest that breast cancers overexpressing cyclin D1 may respond poorly to progestin therapy.  相似文献   

16.
17.
RNA turnover in Trypanosoma brucei.   总被引:14,自引:4,他引:10       下载免费PDF全文
  相似文献   

18.
19.
The expression of the progesterone receptor (PR) was studied in the chicken bursa of Fabricius (BF) in both sexes from the time of hatching until the bursal involution. Steroid binding studies, immunohistochemistry, and autoradiography were used to characterize and localize the receptor. Three different polyclonal antibodies (IgG-RB, IgG-G3, and IgG-RB2) directed against the chick oviduct progesterone receptor were used for the studies. With immunohistochemistry, no receptor-positive cells were detected in the bursae of young chicks. The first receptor-positive cells were occasionally seen at the age of 10 wk in the frozen sections, not in the paraffin sections. In older female chicks, the staining became more abundant. In males, the PR was expressed only after estradiol treatment. The staining was located in the nuclei of the subepithelial and the interfollicular cells, which were probably mesenchymal in origin. The bursal epithelium and the lymphocytes were not stained. By using a combined technique of autoradiography and immunohistochemistry, we were able to demonstrate that the same cells also concentrated tritiated ORG 2058 (a specific synthetic progestin) in their nuclei. In steroid binding studies with tritiated ORG 2058, the receptor concentration after the age of 10 wk was 50 to 120 fmol/mg protein. Low-level ORG 2058 binding was also detected in young chicks of both sexes before the age of 10 wk. The progestin-binding molecule resembled the progesterone receptor of the chick oviduct in molecular size (studied with HPLC) and binding properties. The PR expression in the BF was preceded by the expression of PR in the oviduct stromal cells and by an increase in oviduct epithelial proliferation, indicating the BF is affected by factors associated with sexual maturation. It is concluded that the subepithelial and the interfollicular stromal cells in the BF, but not the epithelial or follicular cells, are estradiol-sensitive in both sexes immediately after hatching. The endogenous estrogens, however, are not able to induce PR until after the onset of sexual maturation, and only in females. This implies that estrogen and progesterone may affect the structural organization of the BF through the stromal cells, but probably not before the onset of puberty.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号