首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
A human mitochondrial isozyme of C1-tetrahydrofolate (THF) synthase was previously identified by its similarity to the human cytoplasmic C1-THF synthase. All C1-THF synthases characterized to date, from yeast to human, are trifunctional, containing the activities of 5,10-methylene-THF dehydrogenase, 5,10-methenyl-THF cyclohydrolase, and 10-formyl-THF synthetase. Here we report on the enzymatic characterization of the recombinant human mitochondrial isozyme. Enzyme assays of purified human mitochondrial C1-THF synthase protein revealed only the presence of 10-formyl-THF synthetase activity. Gel filtration and crosslinking studies indicated that human mitochondrial C1-THF synthase exists as a homodimer in solution. Steady-state kinetic characterization of the 10-formyl-THF synthetase activity was performed using (6R,S)-H4-PteGlu1, (6R,S)-H4-PteGlu3, and (6R,S)-H4-PteGlu5 substrates. The (6R,S)-H4-PteGlun Km dropped from greater than 500 microM for the monoglutamate to 15 microM and 3.6 microM for the tri- and pentaglutamates, respectively. The Km values for formate and ATP also are lowered when THF polyglutamates are used. The formate Km dropped 79-fold and the ATP Km dropped more than 5-fold when (6R,S)-H4-PteGlu5 was used as the substrate in place of (6R,S)-H4-PteGlu1.  相似文献   

2.
The enzymatic conversion of leukotriene A4 into 5,6-dihydroxy-7,9,11,14-eicosatetraenoic acid, catalyzed by mouse liver cytosolic epoxide hydrolase (EC 3.3.2.3), was recently described (Haeggstr?m, J., Meijer, J. and R?dmark, O. (1986) J. Biol. Chem. 261, 6332-6337). In the present study, we report analytical data confirming the stereochemistry of this novel enzymatic metabolite of leukotriene A4. By steric analysis of the vicinal diol and comparison with synthetic material, the structure was established as (5S,6R)-dihydroxy-7,9-trans-11,14-cis-eicosatetraenoic acid. Apparent kinetic constants of this reaction were determined and found to be 5 microM and 550 nmol.mg-1.min-1, for Km and Vmax, respectively. Also, a semipurified preparation of human liver cytosolic epoxide hydrolase avidly catalyzed the same hydrolysis of leukotriene A4 (apparent Km was 8 microM). The enzyme was not inactivated by leukotriene A4, as judged by time-course experiments with a second substrate addition.  相似文献   

3.
5,10-Methenyltetrahydrofolate synthetase (EC 6.3.3.2), which catalyzes the ATP- and Mg2+ -dependent isomerization of 5-formyl- to 5,10-methenyltetrahydrofolate, has been purified 10,000-fold from Lactobacillus casei using sequential affinity chromatography on immobilized 5-formyltetrahydrofolate and ATP. The enzyme is homogeneous when examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, is monomeric with a molecular mass of 23,000 Da, and contains a high proportion of hydrophobic amino acids and a single cysteine residue. At 30 degrees C, the turnover number is 88 min-1, and the Km values at pH 6 for 5-formyltetrahydrofolate and Mg-ATP are 0.6 and 1.0 microM, respectively. The enzyme is specific for (6S)-5-formyltetrahydrofolate, but ATP can be replaced by other nucleoside 5'-triphosphates with varying efficiency. The purified enzyme is markedly stabilized by the non-ionic detergent, Tween 20.  相似文献   

4.
The fission yeast Schizosaccharomyces pombe contains a gene on chromosome I that encodes a hypothetical nudix hydrolase, YA9E. The gene, designated aps1, has been cloned and the protein has been purified from Escherichia coli with a yield of 10 mg of Aps1/L of culture. Aps1, composed of 210 amino acids with a calculated molecular mass of 23 724 Da, behaves as a monomer with a sedimentation coefficient of 1.92 S as determined by analytical ultracentrifugation. The effective hydrodynamic radius is about 29 A as determined by both analytical ultracentrifugation and gel-filtration chromatography. Aps1, whose expression was detected in S. pombe by Western blotting, is an enzyme that catalyzes the hydrolysis of dinucleoside oligophosphates, with Ap6A and Ap5A being the preferred substrates. The major reaction products are ADP and p4A from Ap6A and ADP and ATP from Ap5A. Values of Km for Ap6A and Ap5A are 19 microM and 22 microM, respectively, and the corresponding values of kcat are 2.0 s-1 and 1.7 s-1, respectively. The enzyme has limited activity on Ap4A and negligible activity on Ap3A, ADP-ribose, and NADH. Aps1 catalyzes the hydrolysis of mononucleotides with decreasing activity in order from p5A to AMP. Optimal activity with Ap6A as substrate is observed at pH 7.6 and in the presence of 0.1-1 mM MnCl2. Aps1 is the first nudix hydrolase isolated from S. pombe, and it is the first enzyme identified with this specific substrate specificity and reaction products.  相似文献   

5.
The combined activities of rabbit liver cytosolic serine hydroxymethyltransferase and C1-tetrahydrofolate synthase convert tetrahydrofolate and formate to 5-formyltetrahydrofolate. In this reaction C1-tetrahydrofolate synthase converts tetrahydrofolate and formate to 5,10-methenyltetrahydrofolate, which is hydrolyzed to 5-formyltetrahydrofolate by a serine hydroxymethyltransferase-glycine complex. Serine hydroxymethyltransferase, in the presence of glycine, catalyzes the conversion of chemically synthesized 5,10-methenyltetrahydrofolate to 5-formyltetrahydrofolate with biphasic kinetics. There is a rapid burst of product that has a half-life of formation of 0.4 s followed by a slower phase with a completion time of about 1 h. The substrate for the burst phase of the reaction was shown not to be 5,10-methenyltetrahydrofolate but rather a one-carbon derivative of tetrahydrofolate which exists in the presence of 5,10-methenyltetrahydrofolate. This derivative is stable at pH 7 and is not an intermediate in the hydrolysis of 5,10-methenyltetrahydrofolate to 10-formyltetrahydrofolate by C1-tetrahydrofolate synthase. Cytosolic serine hydroxymethyltransferase catalyzes the hydrolysis of 5,10-methenyltetrahydrofolate pentaglutamate to 5-formyltetrahydrofolate pentaglutamate 15-fold faster than the hydrolysis of the monoglutamate derivative. The pentaglutamate derivative of 5-formyltetrahydrofolate binds tightly to serine hydroxymethyltransferase and dissociates slowly with a half-life of 16 s. Both rabbit liver mitochondrial and Escherichia coli serine hydroxymethyltransferase catalyze the conversion of 5,10-methenyltetrahydrofolate to 5-formyltetrahydrofolate at rates similar to those observed for the cytosolic enzyme. Evidence that this reaction accounts for the in vivo presence of 5-formyltetrahydrofolate is suggested by the observation that mutant strains of E. coli, which lack serine hydroxymethyltransferase activity, do not contain 5-formyltetrahydrofolate, but both these cells, containing an overproducing plasmid of serine hydroxymethyltransferase, and wild-type cells do have measurable amounts of this form of the coenzyme.  相似文献   

6.
6-Pyruvoyl-tetrahydropterin synthase, which catalyzes the first step in the conversion of 7,8-dihydroneopterin triphosphate to tetrahydrobiopterin, was purified approximately 140,000-fold to apparent homogeneity from human liver. The molecular mass of the enzyme is estimated to be 83 kDa. 7,8-Dihydroneopterin triphosphate was a substrate of the enzyme in the presence of Mg2+, and the pH optimum of the reaction was 7.5 in Tris HCl buffer. The Km value for 7,8-dihydroneopterin triphosphate was 10 microM. The product of this enzymatic reaction was the presumed intermediate 6-pyruvoyl-tetrahydropterin. This latter compound was converted to tetrahydrobiopterin in the presence of NADPH and partially purified sepiapterin reductase from human liver. The conditions and the effect of N-acetylserotonin on this reaction, and on the formation of the intermediates 6-(1'-hydroxy-2'-oxopropyl)-tetrahydropterin and 6-(1' oxo-2'-hydroxypropyl)-tetrahydropterin have been studied.  相似文献   

7.
Dimethylglycine dehydrogenase (EC 1.5.99.2) and sarcosine dehydrogenase (EC 1.5.99.1) are flavoproteins which catalyze the oxidative demethylation of dimethylglycine to sarcosine and sarcosine to glycine, respectively. During these reactions tightly bound tetrahydropteroylpentaglutamate (H4PteGlu5) is converted to 5,10-methylene tetrahydropteroylpentaglutamate (5,10-CH2-H4PteGlu5), although in the absence of H4PteGlu5, formaldehyde is produced. Single turnover studies using substrate levels of the enzyme (2.3 microM) showed pseudo-first-order kinetics, with apparent first-order rate constants of 0.084 and 0.14 s-1 at 23 and 48.3 microM dimethylglycine, respectively, for dimethylglycine dehydrogenase and 0.065 s-1 at 47.3 microM sarcosine for sarcosine dehydrogenase. The rates were identical in the absence or presence of bound tetrahydropteroylglutamate (H4PteGlu). Titration of the enzymes with substrate under anaerobic conditions did not disclose the presence of an intermediate semiquinone. The effect of dimethylglycine concentration upon the rate of the dimethylglycine dehydrogenase reaction under aerobic conditions showed nonsaturable kinetics suggesting a second low-affinity site for the substrate which increases the enzymatic rate. The Km for the high-affinity active site was 0.05 mM while direct binding for the low-affinity site could not be measured. Sarcosine and dimethylthetin are poor substrates for dimethylglycine dehydrogenase and methoxyacetic acid is a competitive inhibitor at low substrate concentrations. At high dimethylglycine concentrations, increasing the concentration of methoxyacetic acid produces an initial activation and then inhibition of dimethylglycine dehydrogenase activity. When these compounds were added in varying concentrations to the enzyme in the presence of dimethylglycine, their effects upon the rate of the reaction were consistent with the presence of a second low-affinity binding site on the enzyme which enhances the reaction rate. When sarcosine is used as the substrate for sarcosine dehydrogenase the kinetics are Michaelis-Menten with a Km of 0.5 mM for sarcosine. Also, methoxyacetic acid is a competitive inhibitor of sarcosine dehydrogenase with a Ki of 0.26 mM. In the absence of folate, substrate and product determinations indicated that 1 mol of formaldehyde and of sarcosine or glycine were produced for each mole of dimethylglycine or sarcosine consumed with the concomitant reduction of 1 mol of bound FAD.  相似文献   

8.
DNA photolyase catalyzes the photoreversal of pyrimidine dimers. The enzymes from Escherichia coli and yeast contain a flavin chromophore and a folate cofactor, 5,10-methenyltetrahydropteroylpolyglutamate. E. coli DNA photolyase contains about 0.3 mol of folate/mol flavin, whereas the yeast photolyase contains the full complement of folate. E. coli DNA photolyase is reconstituted to a full complement of the folate by addition of 5,10-methenyltetrahydrofolate to cell lysates or purified enzyme samples. The reconstituted enzyme displays a higher photolytic cross section under limiting light. Treatment of photolyase with sodium borohydride or repeated camera flashing results in the disappearance of the absorption band at 384 nm and is correlated with the formation of modified products from the enzyme-bound 5,10-methenyltetrahydrofolate. Photolyase modified in this manner has a decreased photolytic cross section under limiting light. Borohydride reduction results in the formation of 5,10-methylenetetrahydrofolate and 5-methyltetrahydrofolate, both of which are released from the enzyme. Repeated camera flashing results in photodecomposition of the enzyme-bound 5,10-methenyltetrahydrofolate and release of the decomposition products. Finally, it is observed that photolyase binds 10-formyltetrahydrofolate and appears to cyclize it to form the 5,10-methenyltetrahydrofolate chromophore.  相似文献   

9.
When 14C-labeled (14S, 15S)-14,15-trans-oxido-5,8-cis-10,12-trans-eicosatetraenoic acid (14,15-leukotriene A4) was incubated with cytosolic epoxide hydrolase purified from mouse liver, one major radiolabeled product appeared. The structure was assigned as (14R, 15S)-14,15-dihydroxy-5,8-cis-10,12-trans-eicosatetraenoic acid (14,15-DHETE), based on analytical data as well as enzyme mechanistic considerations. The formation of this compound was dependent on time and enzyme concentration and was abolished after heat treatment of the enzyme. The apparent Km and Vmax values at 37 degrees C were 11 microM and 900 nmol X mg-1 X min-1 respectively. This enzymatic hydrolysis of 14,15-leukotriene A4 represents an additional mode of formation for 14,15-DHETE, a compound previously found to modulate functions of human leukocytes.  相似文献   

10.
Glycine N-methyltransferase (EC 2.1.1.20) catalyzes the methylation of glycine by S-adenosylmethionine to form sarcosine and S-adenosylhomocysteine. The enzyme was previously shown to be abundant in both the liver and pancreas of the rat, to consist of four identical monomers, and to contain tightly bound folate polyglutamates in vivo. We now report that the inhibition of glycine N-methyltransferase by (6S)-5-CH(3)-H(4)PteGlu(5) is noncompetitive with regard to both S-adenosylmethionine and glycine. The enzyme exhibits strong positive cooperativity with respect to S-adenosylmethionine. Cooperativity increases with increasing concentrations of 5-CH(3)-H(4)PteGlu(5) and is greater at physiological pH than at pH 9.0, the pH optimum. Under the same conditions, cooperativity is much greater for the pancreatic form of the enzyme. The V(max) for the liver form of the enzyme is approximately twice that of the pancreatic enzyme, while K(m) values for each substrate are similar in the liver and pancreatic enzymes. For the liver enzyme, at pH 7.0 half-maximal inhibition is seen at a concentration of about 0.2 microM (6S)-5-CH(3)-H(4)PteGlu(5), while at pH 9.0 this value is increased to about 1 microM. For the liver form of the enzyme, 50% inhibition with respect to S-adenosylmethionine at pH 7.4 occurs at about 0.27 microM. The dissociation constant, K(s), obtained from binding data at pH 7.4 is 0.095. About 1 mol of (6S)-5-CH(3)-H(4)PteGlu(5) was bound per tetramer at pH 7.0, and 1.6 mol were bound at pH 9.0. The degree of binding and inhibition were closely parallel at each pH. At equal concentrations of (6R,6S)- and (6S)-5-CH(3)-H(4)PteGlu(5), the natural (6S) form was about twice as inhibitory. These studies indicate that glycine N-methyltransferase is a highly allosteric enzyme, which is consistent with its role as a regulator of methyl group metabolism in both the liver and the pancreas.  相似文献   

11.
Cell extracts of Methanobacterium thermoautotrophicum possess a methenyl-tetrahydromethanopterin (methenyl-H4MPT) cyclohydrolase. The enzyme catalyzes the hydrolysis of methenyl-H4MPT to formyltetrahydromethanopterin (formyl-H4MPT). The reaction is reversible and both the rate and extent of the reaction depend on the pH and the buffer used. Similarly, the nonenzymatic hydrolysis of methenyl-H4MPT is highly dependent on pH and buffer. An active derivative of methenyl-H4MPT was obtained in 94% yield by reacting H4MPT with formic acid in the presence of excess acetic acid under anoxic conditions at 80 degrees C for 3 h. H NMR spectroscopy and fast atom bombardment mass spectrometry revealed the product to be a derivative of methenyl-H4MPT which had lost the alpha-hydroxyglutarylphosphate unit. In spite of this loss, this derivative served both as a substrate for methanogenesis and for the cyclohydrolase. Comparison of the properties of the products of the enzymatic and nonenzymatic hydrolyses indicates that the enzymatic reaction yields N5-formyl-H4MPT whereas the nonenzymatic reaction yields N10-formyl-H4MPT.  相似文献   

12.
Methenyltetrahydrofolate synthetase (5-formyltetrahydrofolate cyclodehydrase (cyclo-ligase) (ADP-forming) EC 6.3.3.2) catalyzes the ATP- and Mg2+-dependent transformation of 5-formyltetrahydrofolate (leucovorin) to 5,10-methenyltetrahydrofolate. The enzyme has been purified 49,000-fold from human liver by a two-column procedure with Blue Sepharose followed by folinate-Sepharose chromatography. It appears as a single band both on SDS-polyacrylamide gel electrophoresis (Mr 27,000) and on isoelectric focusing (pI = 7.0) and is monomeric, with a molecular weight of 27,000 on gel filtration. Initial-velocity studies suggest that the enzyme catalyzes a sequential mechanism and at 30 degrees C and pH 6.0 the turnover number is 1000 min-1. The enzyme has a higher affinity for its pentaglutamate substrate (Km = 0.6 microM) than for the monoglutamate (Km = 2 microM). The antifolate methotrexate has no inhibitory effect at concentrations up to 350 microM, while methotrexate pentaglutamate is a competitive inhibitor with a Ki = 15 microM. Similarly, dihydrofolate monoglutamate is a weak inhibitor with a Ki = 50 microM, while the pentaglutamate is a potent competitive inhibitor with a Ki of 3.8 microM. Thus, dihydrofolate and methotrexate pentaglutamates could regulate enzyme activity and help explain why leucovorin fails to rescue cells from high concentrations of methotrexate.  相似文献   

13.
Gerratana B  Arnett SO  Stapon A  Townsend CA 《Biochemistry》2004,43(50):15936-15945
The simplest carbapenem antibiotic, (5R)-carbapen-2-em-3-carboxylic acid, is biosynthesized from primary metabolites in Pectobacterium carotorova by the action of three enzymes, carboxymethylproline synthase (hereafter named CarB), carbapenam synthetase, and carbapenem synthase. CarB, a member of the crotonase superfamily, catalyzes the formation of (2S,5S)-5-carboxymethylproline from malonyl-CoA and l-pyrroline-5-carboxylate. In this study we show that, in addition, CarB catalyzes the independent decarboxylation of malonyl-CoA and methylmalonyl-CoA and the hydrolysis of CoA esters such as acetyl-CoA and propionyl-CoA. The steady-state rate constants for these reactions are reported. We have identified the intermediates in the CarB reactions with l-pyrroline-5-carboxylate and malonyl-CoA or methylmalonyl-CoA as the CoA esters of (2S,5S)-5-carboxymethylproline and (2S,5S)-6-methyl-5-carboxymethylproline, respectively. The data provided indicate that these intermediates partition between completing turnover and dissociating from the enzyme. On the basis of the steady-state rate constants measured for the CarB-catalyzed hydrolysis of synthetic (2S,5S)-5-carboxymethylprolyl-CoA and for the CarB reaction with malonyl-CoA and l-pyrroline-5-carboxylate, we have calculated the rate constants for each step of these reactions. The results identify CarB as a particularly interesting member of the crotonase superfamily that combines in one net reaction three activities of this superfamily, decarboxylation, C-C bond formation, and CoA ester hydrolysis.  相似文献   

14.
The phosphodiesterase from snake venom catalyzes the hydrolysis of the Rp diastereomer of thymidine 5'-(4-nitrophenyl [17O,18O]phosphate) in H216O with retention of configuration at phosphorus. This result is in agreement with those previously reported for the hydrolysis of chiral phosphorothioate substrates (Bryant, F. R., and Benkovic, S. J. (1979) Biochemistry 18, 2825-2828; Burgers, P. M. J., Eckstein, F., and Hunneman, D. H. (1979) J. Biol. Chem. 254, 7476-7478). The hydrolysis reaction catalyzed by this enzyme occurs via formation of a covalent nucleotidylated enzyme intermediate.  相似文献   

15.
C K Barlowe  D R Appling 《Biochemistry》1990,29(30):7089-7094
An NAD(+)-dependent 5,10-methylenetetrahydrofolate (THF) dehydrogenase has been purified to homogeneity from the yeast Saccharomyces cerevisiae. The purified enzyme exhibits a final specific activity of 5.4 units mg-1 and is represented by a single protein of apparent Mr = 33,000-38,000 as determined by sodium dodecyl sulfate gel electrophoresis. A native Mr = 64,000 was determined by gel filtration, suggesting a homodimer subunit structure. Cross-linking experiments with dimethyl suberimidate confirmed the dimeric structure. The enzyme is specific for NAD+ and is not dependent on Mg2+ for activity. The forward reaction initial velocity kinetics are consistent with a sequential reaction mechanism. With this model, Km values for NAD+ and (6R,S)-5,10-methylene-THF are 1.6 and 0.06 mM, respectively. In contrast to all other previously described eukaryotic 5,10-methylene-THF dehydrogenases, the purified enzyme is apparently monofunctional, with undetectable 5,10-methenyl-THF cyclohydrolase and 10-formyl-THF synthetase activities. Subcellular fractionation of yeast indicates the enzyme is cytoplasmic, with no NAD(+)-dependent 5,10-methylene-THF dehydrogenase detectable in mitochondria. The activity was found in all yeast strains examined, at all stages of growth from the lag phase through the stationary phase.  相似文献   

16.
The flavoenzyme proline dehydrogenase catalyzes the first step of proline catabolism, the oxidation of proline to pyrroline-5-carboxylate. Here we report the first crystal structure of an irreversibly inactivated proline dehydrogenase. The 1.9 A resolution structure of Thermus thermophilus proline dehydrogenase inactivated by the mechanism-based inhibitor N-propargylglycine shows that N5 of the flavin cofactor is covalently connected to the -amino group of Lys99 via a three-carbon linkage, consistent with the mass spectral analysis of the inactivated enzyme. The isoalloxazine ring has a butterfly angle of 25 degrees , which suggests that the flavin cofactor is reduced. Two mechanisms can account for these observations. In both, N-propargylglycine is oxidized to N-propargyliminoglycine. In one mechanism, this alpha,beta-unsaturated iminium compound is attacked by the N5 atom of the now reduced flavin to produce a 1,4-addition product. Schiff base formation between Lys99 and the imine of the 1,4-addition product releases glycine and links the enzyme to the modified flavin. In the second mechanism, hydrolysis of N-propargyliminoglycine yields propynal and glycine. A 1,4-addition reaction with propynal coupled with Schiff base formation between Lys99 and the carbonyl group tethers the enzyme to the flavin via a three-carbon chain. The presumed nonenzymatic hydrolysis of N-propargyliminoglycine and the subsequent rebinding of propynal to the enzyme make the latter mechanism less likely.  相似文献   

17.
A partial characterization of the enzymatic hydrolysis of 11-cis- and all-trans-retinyl palmitate by bovine retinal pigment epithelium microsomes was carried out using a micro-radiometric method to quantitate liberated palmitic acid. Retinyl ester hydrolase (REH) activity was examined in the absence of detergent. Hydrolysis of 11-cis- and all-trans-retinyl palmitate was protein- and time-dependent. Optimal enzyme activity occurred at slightly alkaline pH (8-9). Apparent kinetic constants (Vmax and Km) for the 11-cis-REH were 2.1 nmol/min/mg protein and 66 microM, respectively. All-trans-REH demonstrated a lower maximum velocity of 0.3 nmol/min/mg protein and a slightly higher substrate affinity of 27 microM. Further characterization of 11-cis-retinyl palmitate hydrolysis involved monitoring formation of reaction products, 11-cis retinol and palmitic acid, which were found to be released in essentially a 1:1 stoichiometry. Addition of all-trans retinyl bromoacetate, a known inhibitor of lecithin:retinol acyltransferase reduced both 11-cis and all-trans-REH activities but to significantly different degrees (50 and 76%, respectively). Although the microsomal preparation exhibited LRAT activity, acyl transfer was not readily reversible as labeled palmitic acid was not transferred to added acyl acceptor compounds. These findings suggest that hydrolysis of 11-cis-retinyl palmitate by bovine retinal pigment epithelium microsomes may occur at a catalytic site distinct from that for the all-trans isomer and that this hydrolysis is not representative of a reverse transesterification reaction.  相似文献   

18.
D-Sorbitol-6-phosphate 2-dehydrogenase catalyzes the NADH-dependent conversion of D-fructose 6-phosphate to D-sorbitol 6-phosphate and improved production and purification of the enzyme from Escherichia coli is reported. Preliminary inhibition studies of the enzyme revealed 5-phospho-D-arabinonohydroxamic acid and 5-phospho-D-arabinonate as new substrate analogue inhibitors of the F6P catalyzed reduction with IC50 values of (40 +/- 1) microM and (48 +/- 3) microM and corresponding Km/IC50 ratio values of 14 and 12, respectively. Furthermore, we report here the phosphomannose isomerase substrate D-mannose 6-phosphate as the best inhibitor of E. coli D-sorbitol-6-phosphate 2-dehydrogenase yet reported with an IC50 = 7.5 +/- 0.4 microM and corresponding Km/IC50 ratio = about 76.  相似文献   

19.
T-protein is a component of the glycine cleavage system and catalyzes the tetrahydrofolate-dependent reaction. To determine the folate-binding site on the enzyme, 14C-labeled methylenetetrahydropteroyltetraglutamate (5,10-CH2-H4PteGlu4) was enzymatically synthesized from methylenetetrahydrofolate (5, 10-CH2-H4folate) and [U-14C]glutamic acid and subjected to cross-linking with the recombinant Escherichia coli T-protein using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, a zero-length cross-linker between amino and carboxyl groups. The cross-linked product was digested with lysylendopeptidase, and the resulting peptides were separated by reversed-phase high performance liquid chromatography. Amino acid sequencing of the labeled peptides revealed that three lysine residues at positions 78, 81, and 352 were involved in the cross-linking with polyglutamate moiety of 5, 10-CH2-H4PteGlu4. The comparable experiment with 5,10-CH2-H4folate revealed that Lys-81 and Lys-352 were also involved in cross-linking with the monoglutamate form. Mutants with single or multiple replacement(s) of these lysine residues to glutamic acid were constructed by site-directed mutagenesis and subjected to kinetic analysis. The single mutation of Lys-352 caused similar increase (2-fold) in Km values for both folate substrates, but that of Lys-81 affected greatly the Km value for 5,10-CH2-H4PteGlu4 rather than for 5,10-CH2-H4folate. It is postulated that Lys-352 may serve as the primary binding site to alpha-carboxyl group of the first glutamate residue nearest the p-aminobenzoic acid ring of 5,10-CH2-H4folate and 5,10-CH2-H4PteGlu4, whereas Lys-81 may play a key role to hold the second glutamate residue through binding to alpha-carboxyl group of the second glutamate residue.  相似文献   

20.
Soluble phosphodiesterase (EC 3.1.4.1) activity is 3-5-fold lower in superficial colonic epithelial cells compared to that in cells isolated from the lower colonic crypt. Higher phosphodiesterase activity in lower crypt cells is correlated with a 5-fold higher rate of incorporation of [3H]thymidine into DNA in these cells. DEAE-cellulose chromatography of the soluble fraction of superficial and proliferative colonic epithelial cells resulted in separation of three enzyme forms: (1) fraction I, an enzyme which hydrolyzes both cAMP and cGMP with high affinity (apparent Km cAMP = 5 +/- 1 microM, Km cGMP = 2.5 +/- 0.5 microM) and is stimulated 3-6-fold by Ca2+ plus calmodulin; (2) fraction II, a form which hydrolyzes both cAMP and cGMP with low affinity (S0.5 cAMP = 52 +/- 7 microM, S0.5 cGMP = 17 +/- 4 microM), exhibits positive copperativity with respect to substrate and shows cGMP stimulation of cAMP hydrolysis and (3) fraction III, a cAMP-specific form which exhibits biphasic kinetics, a low Km for cAMP (Km cAMP = 5 +/- 1 microM) and does not hydrolyze cGMP. The pattern of distribution of phosphodiesterase activities on DEAE-cellulose was similar in superficial and proliferative colonic epithelial cells. The higher specific activity in proliferative cells was reflected in higher activities of each of the three chromatographically distinct forms of the enzyme. In contrast to epithelial cells, the soluble fraction of homogenates of the submucosa and supporting cells exhibited phosphodiesterase forms I and II and was lacking in the form corresponding to fraction III of epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号