首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
An increase in ultraviolet (UV) B radiation on the earth's surface is a feature of current global climate changes. It has been reported that alternative oxidase (AOX) may have a protective role against oxidative stress induced by environmental stresses, such as UV-B. To better understand the characteristic tolerance of plants to UV-B radiation, the effects of enhanced UV-B radiation on the activity and expression of AOX in red kidney bean (Phaseolus vulgaris) leaves were investigated in the present study. The results show that the total respiration rate and AOX activity in red kidney bean leaves increased significantly during treatment with enhanced UV-B. However, cytochrome oxidase (COX) activity did not change significantly. The H2O2 content was also markedly increased and reached a maximum of 4.45 mmol·L^-1·g^-1 DW (dry weight) at 24 h of UV-B treatment, before dropping rapidly. Both alternative pathway content and alternative pathway activity were increased in the presence of exogenous H2O2. Immunoblotting analysis with anti-AOX monoclonal antibody revealed that expression of the AOX protein increased in red kidney bean leaves under enhanced UV-B radiation, reaching a peak at 72 h. In addition, AOX expression in red kidney bean leaves was induced by exogenous H2O2. These data indicate that the increase in AOX activity in red kidney bean leaves under enhanced UV-B radiation was mainly due to H2O2-induced AOX expression.  相似文献   

2.
An increase in ultraviolet(UV)B radiation on the earth's surface is a feature of current global climate changes.It hasbeen reported that alternative oxidase(AOX)may have a protective role against oxidative stress induced by environmentalstresses,such as UV-B.To better understand the characteristic tolerance of plants to UV-B radiation,the effects ofenhanced UV-B radiation on the activity and expression of AOX in red kidney bean(Phaseolus vulgaris)leaves wereinvestigated in the present study.The results show that the total respiration rate and AOX activity in red kidney bean leavesincreased significantly during treatment with enhanced UV-B.However,cytochrome oxidase(COX)activity did not changesignificantly.The H_2O_2 content was also markedly increased and reached a maximum of 4.45 mmol.L~(-1)·g~(-1)DW(dry weight)at 24 h of UV-B treatment,before dropping rapidly.Both alternative pathway content and alternative pathway activity wereincreased in the presence of exogenous H_2O_2.Immunoblotting analysis with anti-AOX monoclonal antibody revealed thatexpression of the AOX protein increased in red kidney bean leaves under enhanced UV-B radiation,reaching a peak at 72h.In addition,AOX expression in red kidney bean leaves was induced by exogenous H_2O_2.These data indicate that theincrease in AOX activity in red kidney bean leaves under enhanced UV-B radiation was mainly due to H_2O_2-induced AOXexpression.  相似文献   

3.
The activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione S-transferase (GST) as well as proline content were studied in leaves and roots of 14 day-old pea plants treated with NiSO4 (10, 100, 200 μm) for 1, 3, 6 and 9 days. Exposure of pea plants to nickel (Ni) resulted in the decrease in CuZnSOD as well as total SOD activities in both leaves and roots. The activity of APX in leaves of plants treated with 100 and 200 μm Ni increased following the 3rd day after metal application, while in roots at the end of the experiment the activity of this enzyme was significantly reduced. In both organs CAT activity generally did not change in response to Ni treatment. The activity of GST in plants exposed to high concentrations of Ni increased, more markedly in roots. In both leaves and roots after Ni application accumulation of free proline was observed, but in the case of leaves concentration of this amino acid increased earlier and to a greater extent than in roots. The results indicate that stimulation of GST activity and accumulation of proline in the tissues rather than antioxidative enzymes are involved in response of pea plants to Ni stress.  相似文献   

4.
To understand the response of potato to salt stress, antioxidant enzyme activities and ion content were analyzed for a sensitive and a tolerant cultivar. Nodal cuttings of the tolerant cultivar, Kennebec, and the sensitive cultivar, Concord, were exposed to media without or with 30, 60, 90 or 120 mmol/L NaCI for 4 weeks. On exposure to NaCI, the length and fresh and dry weight of both shoots and roots of Concord showed greater decrease than those of Kennebec. The decrease in shoot growth was more severe than that of the root for both cultivars. The K^+ content of shoots and roots of both cultivars was reduced in a dose-dependent manner by exposure to NaCl; the Na^+ content increased. Activities of ascorbate peroxidase, catalase and glutathione reductase were increased in NaCl-exposed shoots of Kennebec; the corresponding activities in NaCI-exposed shoots of Concord were decreased. Roots of both cultivars showed similar changes in the activities of these enzymes on exposure to NaCI. These studies established that enzyme activities in Concord shoots are inversely related to the NaCI concentration, whereas those in Kennebec do not show a dose dependency, which is also the case for the roots of both cultivars. Our findings suggest that an increase in activity of antioxidant enzymes, such as ascorbate peroxidase, catalase and glutathione reductase, can contribute to salt tolerance in Kennebec, a salt resistant cultivar of potato.  相似文献   

5.
Zuo S P  Li X W  Ma Y Q 《农业工程》2010,30(4):226-232
Chinese farmers frequently use a wheat–potato cropping system. The land area planted to transgenic potatoes is increasing because transgenic potatoes have greater resistance to pests and diseases. However, little is known about the bio-compatibility of transgenic potatoes with wheat straw. The objective of this tissue culture study was to determine the allelopathic effects of wheat straw on transgenic potato seedlings. Seedlings were cultured on normal MS medium (normal treatment) and nutrient-deficient MS medium (acclimated treatment) and then transferred to MS medium, which contained wheat straw powder. Wheat straw powder inhibited potato seedling growth in both treatments. Among the parameters analyzed in this study, inhibition was greatest for plant fresh weight and least for plant height. The inhibitive effects of wheat straw were greater for seedling roots compared to shoots. Resistance to allelopathic pressure from wheat straw was greater in acclimated seedlings compared to normal seedlings. This suggested that previous pressure may have induced tolerance in the transgenic potato seedlings. Furthermore, growth inhibition of potato seedlings from the normal treatment increased as the amount of wheat straw powder in the culture medium increased. Calculations indicated that the presence of wheat straw would lead to a 55% reduction in the total biomass of normal potato seedlings compared to a 39% reduction for acclimated seedlings. Parameters such as net photosynthesis rate (Pn) and quantum yield (Y(II)) changed as the nutrient content of the culture medium increased or decreased, but the changes in the parameters were smaller for acclimated seedlings compared to normal seedlings. This suggests that nutrient status during the culture period could help transgenic potato seedlings adapt and compensate for energy loss from seedlings in defending against allelopathic pressure. In summary, the results show that previous exposure to pressures such as nutrient deficiency may increase the allelopathic pressure resistance of transgenic potato seedlings.  相似文献   

6.
Chinese farmers frequently use a wheat–potato cropping system. The land area planted to transgenic potatoes is increasing because transgenic potatoes have greater resistance to pests and diseases. However, little is known about the bio-compatibility of transgenic potatoes with wheat straw. The objective of this tissue culture study was to determine the allelopathic effects of wheat straw on transgenic potato seedlings. Seedlings were cultured on normal MS medium (normal treatment) and nutrient-deficient MS medium (acclimated treatment) and then transferred to MS medium, which contained wheat straw powder. Wheat straw powder inhibited potato seedling growth in both treatments. Among the parameters analyzed in this study, inhibition was greatest for plant fresh weight and least for plant height. The inhibitive effects of wheat straw were greater for seedling roots compared to shoots. Resistance to allelopathic pressure from wheat straw was greater in acclimated seedlings compared to normal seedlings. This suggested that previous pressure may have induced tolerance in the transgenic potato seedlings. Furthermore, growth inhibition of potato seedlings from the normal treatment increased as the amount of wheat straw powder in the culture medium increased. Calculations indicated that the presence of wheat straw would lead to a 55% reduction in the total biomass of normal potato seedlings compared to a 39% reduction for acclimated seedlings. Parameters such as net photosynthesis rate (Pn) and quantum yield (Y(II)) changed as the nutrient content of the culture medium increased or decreased, but the changes in the parameters were smaller for acclimated seedlings compared to normal seedlings. This suggests that nutrient status during the culture period could help transgenic potato seedlings adapt and compensate for energy loss from seedlings in defending against allelopathic pressure. In summary, the results show that previous exposure to pressures such as nutrient deficiency may increase the allelopathic pressure resistance of transgenic potato seedlings.  相似文献   

7.
Superoxlde dlsmutase (SOD) is ubiquitous in aerobic organisms and constitutes the first link In the enzyme scavenging system of reactive oxygen species. In the present study, species and organ diversity of SOD activity In a solution and In an in-gel assay system, as well as the effects of hydrogen peroxide (H202) on SOD activity, were Investigated. In a solution assay system, SOD activity of jackfruIt root, shoot, leaves, axes, and cotyledons, of maize embryos and endosperms, of mung bean leaves and seeds, of sacred lotus axes and cotyledons, and of rice and wheat leaves was Increased by 1-15 mmol/L H2O2. However, SOD activity In rice root and seeds, maize roots and leaves, mung bean roots and shoots, and wheat seeds was decreased by 1-15 mmol/L H2O2. The SOD activity of wheat root and soybean roots, leaves, axes, and cotyledons was Increased by 1-4 mmol/L H2O2, but was decreased by concentrations of H2O2 〉4 mmol/L. The SOD activity of soybean shoots was not affected by 1-15 mmol/L H2O2. The SOD activity In crude mltochondrla of jackfruIt, maize, and upas seeds, as well as In purified mitochondria of jackfruIt, was also Increased by 1-15 mmol/L H2O2. In the In-gel assay system, the SOD In jackfruIt cotyledons was comprised of Mn-SOD, Cu/Zn-SOD, and Fe-SOD, the crude mltochondria of jackfruit seeds and maizes embryo was comprised of Mn-SOD and Cu/ Zn-SOD, and the crude mltochondria of maize seeds was comprised of Mn-SOD only. In the present study, H2O2 markedly Inhibited Cu/Zn-SOD and Fe-SOD activity.  相似文献   

8.
In the present paper, an experiment was conducted to study the effects of soil moisture content on dry nursery seedling quality in Guangzhou in 1995. Through comparing the difference of dry nursery seedlings and wet nursery seedlings, we found a close relationship between soil moisture content and seedling growth. The seedling emergence of dry nursery seedling was more even, tidy and faster, and the survival rate was higher than that of wet nursery seedling. Dry nursery seedlings had small plant stature, slow leaf stretching speed and low individual seedling dry weight, but had high dry/fresh weight ratio. This was abeneficial factor for seedlings to recover from transplanting shock more quickly. As com-pared with the wet nursery seedlings, dry nursery seedlings had poor rooting ability,but had more vigorous white roots and fewer rust roots. It was the possibly important reasonfor dry nursery seedlings to form strong“explosive force”.  相似文献   

9.
Boron deficiency induced a dramatic inhibition in sunflower plant growth, shown by a reduction in dry mass of roots and shoots of plants grown for 10 d in nutrient solution supplied with 0.02 μM B. This low B supply facilitated the appearance of brown purple pigmentation on the plant leaves over the entire growth period. Compared to B-sufficient (BS) leaves, leakage from B-deficient (BD) leaves was 20 fold higher for potassium, 38 fold for sucrose, and 6 fold for phenolic compounds. High level of membrane peroxidation was detected by measuring peroxidase activities as well as peroxidative products in BD sunflower plants. Soluble and bound peroxidase activities measured in BD thylakoid membranes were accelerated two fold compared to those detected in BS-membranes. No detectable change in soluble peroxidase activity in roots whereas a 4 fold stimulation in bound peroxidase activity was detected. Thylakoid membranes subjected to low B supply showed enhancement in lipoxygenase activity and malondialdehyde (MDA) content in parallel with 40 and 30 % decrease of linoleic and linolenic acid contents (related to total unsaturated fatty acids). A slower rate of Hill reaction activity (40 %) and a suppressed flow of electron transfer of the whole chain (30 %) were detected in BD thylakoid membranes. This reduction was accompanied with a decline in the activity of photosystem 2 shown by a diminished rate of oxygen evolution (42 %) coupled with a quenching (27.5 %) in chlorophyll a fluorescence emission spectra at 685 nm (F685). Thus B is an important element for membrane maintenance, protection, and function by minimizing or limiting production of free oxygen radicals in thylakoid membranes of sunflower leaves. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Coronatine Alleviates Water Deficiency Stress on Winter Wheat Seedlings   总被引:1,自引:0,他引:1  
With the aim to determine whether coronatine(COR) alleviates drought stress on wheat,two winter wheat(Triticum aestivum L.) cultivars,ChangWu134(drought-tolerant) and Shan253(drought-sensitive) were studied under hydroponic conditions.Seedlings at the three-leaf stage were cultured in a Hoagland solution containing COR at 0.1 μM for 24 h,and then exposed to 20% polyethylene glycol 6000(PEG6000).Under simulated drought(SD),COR increased the dry weight of shoots and roots of the two cultivars significantly;the root/shoot ratio also increased by 30% for Shan253 and 40% for ChangWu134.Both cultivars treated with COR under SD(0.1COR+PEG) maintained significantly higher relative water content,photosynthesis,transpiration,intercellular concentration of CO2 and stomatal conductance in leaves than those not treated with PEG.Under drought,COR significantly decreased the relative conductivity and malondialdehyde production,and the loss of 1,1-diphenyl-2-picrylhydrazyl scavenging activity in leaves was significantly alleviated in COR-treated plants.The activity of peroxidase,catalase,glutathione reductase and ascorbate peroxidase were adversely affected by drought.Leaves of plants treated with COR under drought produced less abscisic acid(ABA) than those not treated.Thus,COR might alleviate drought effects on wheat by reducing active oxygen species production,activating antioxidant enzymes and changing the ABA level.  相似文献   

11.
铝胁迫对海莲幼苗保护酶系统及脯氨酸含量的影响   总被引:3,自引:2,他引:1  
马丽  杨盛昌 《广西植物》2009,29(5):648-652
为探讨Al~(3+)胁迫对海莲的影响,研究了10~50 mmol/L Al~(3+)处理下海莲幼苗叶片和根系的过氧化物酶(POD)、过氧化氢酶(CAT)、超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)的活性以及可溶性蛋白质、丙二醛(MDA)和游离脯氨酸(Pro)含量的变化。结果表明,海莲幼苗能耐受50 mmol/L的Al~(3+)胁迫处理,具有较高的耐铝性。但在50 mmol/L Al~(3+)处理时,海莲幼苗叶片和根系的质膜系统膜脂过氧化加重,MDA含量增加;细胞活性氧代谢失衡。在保护酶系统中,Al~(3+)处理促进了叶片中APX和POD活性的提高,降低了CAT的活性,SOD的活性呈下降趋势;海莲根部POD和SOD活性均显著提高,而CAT活性下降。25~50 mmol/LAl~(3+)处理下,海莲叶片和根部可溶性蛋白质含量均显著下降;Pro的含量在叶片和根均有显著增加。  相似文献   

12.
We investigated the impact of drought and arbuscular mycorrhizal (AM) fungi on the morphological structure and physiological function of shoots and roots of male and female seedlings of the dioecious plant Populus cathayana Rehder. Pot-grown seedlings were subjected to well watered or water-limiting conditions (drought) and were grown in soil that was either inoculated or not inoculated with the AM fungus Rhizophagus intraradices. No significant differences were found in the infection rates between the two sexes. Drought decreased root and shoot growth, biomass and root morphological characteristics, whereas superoxide radical (O2–) and hydrogen peroxide content, peroxidase (POD) activity, malondialdehyde (MDA) concentration and proline content were significantly enhanced in both sexes. Male plants that formed an AM fungal symbiosis showed a significant increase in shoot and root morphological growth, increased proline content of leaves and roots, and increased POD activity in roots under both watering regimes; however, MDA concentration in the roots decreased. By contrast, AM fungi either had no effect or a slight negative effect on the shoot and root growth of female plants, with lower root biomass, total biomass and root/shoot ration under drought. In females, MDA concentration increased in leaves and roots under both watering regimes, and the proline content and POD activity of roots increased under drought conditions; however, POD activity significantly decreased under well-watered conditions. These findings suggest that AM fungi enhanced the tolerance of male plants to drought by improving shoot and root growth, biomass and the antioxidant system. Further investigation is needed to unravel the complex effects of AM fungi on the growth and antioxidant system of female plants.  相似文献   

13.
Treatment of triadimefon on detached leaves of mung bean (Phaseolus radiatus L. ) seedlings increased the levels of chlorophyll and soluble proteins. Declined activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate-peroxidase (AsA-POD) and contents of ascorbate (ASA) and glutathione (GSH) were observed during the senescence of detached young leaves. Triadimefon at concentration of 20 mg/L promoted the activities of POD, AsA-POD and levels of AsA and GSH, but had no effect on the activities of SOD and CAT. On the other hand, the levels of malondialdehyde (MDA) were increased and the increase of which was markedly negative correlated with the activities of POD, AsA-POD and with the contents of AsA and GSH during the senescence of leaves. MDA contents were decreased by triadimefon treatment. These resuits suggested that triadimefon retarded the senescence of leaves in mung bean seedlings in terms of enhancing the protective ability of plant tissues against membrane lipid peroxidation.  相似文献   

14.
Seedling stage is a critical period for survival and growth under drought stress. In the current study, we determined effects of drought stress on physiological and biochemical parameters of leaves and roots of Lycium ruthenicum Murr. seedling. The variables measured were lipid peroxidation (in terms of malondialdehyde (MDA) content), osmotic substances (free proline, soluble protein, and soluble sugar), and antioxidative enzymes (peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT)). Free proline, soluble sugar, and MDA of leaves and roots increased with increasing stress level. Leaves displayed higher accumulations of free proline and MDA than roots. However, roots showed higher total soluble sugar than leaves. Under drought stress, soluble proteins in leaves and roots decreased initially and then increased. Meanwhile, measured proteins were higher in leaves. Under drought stress, SOD, POD, and CAT activities in leaves increased initially and then decreased but increased with increasing drought stress level in roots. Under drought the level of accumulation of osmotics was higher in the leaves than in the roots, while increased activity of antioxidant enzymes persisted in the stressed roots longer that in the leaves.  相似文献   

15.
采用温室盆栽试验研究不同NaCl浓度(0、50 和85 mmol/L)持续胁迫接种摩西球囊霉和地表球囊霉 2种AM真菌对加工番茄耐盐性的影响。结果显示:(1)在0 mmol/L NaCl处理条件下,2种菌的番茄菌根化苗的根系活力、叶片中可溶性糖、可溶性蛋白、根系脯氨酸含量以及超氧化物歧化酶和过氧化物酶活性均高于非菌根植株,且丙二醛含量低于非菌根植株,但差异不显著。(2)在50、85 mmol/L NaCl浓度胁迫下,接种2种菌根真菌可显著提高番茄植株根系活力,促进叶片中可溶性糖、可溶性蛋白及根系脯氨酸含量的积累,显著提高叶片中与抗逆相关的超氧化物歧化酶和过氧化物酶的活性,减少丙二醛在根系中的积累;随着NaCl浓度的增加,效果更为明显。(3)RT-PCR分析显示,AM真菌和盐胁迫共同调控H+转运无机焦磷酸酶H+- PPase的表达,随NaCl浓度的增加,AVP1基因表达量下降,但菌根化番茄植株的AVP1基因表达量显著高于非菌根植株。研究表明,接种AM真菌后,菌根化植株可通过显著促进幼苗体内渗透调节物质积累和抗氧化酶活性的提高,有效降低体内膜脂过氧化水平,同时过量表达AVP1基因增加了番茄植株中离子向液泡膜的转运,从而缓解盐胁迫对植株的伤害,增强番茄幼苗对盐胁迫的耐性。  相似文献   

16.
外源NO对NaCl胁迫下辣椒幼苗氧化损伤的保护效应   总被引:5,自引:0,他引:5  
以辣椒品种陇椒2号为试验材料,研究了外源NO供体硝普钠(SNP)对辣椒幼苗氧化损伤的影响.结果显示,在100 mmol/L NaCl胁迫下,辣椒叶片的MDA含量、质膜相对透性和脯氨酸含量均增加,保护酶SOD、CAT活性降低,而POD活性只在胁迫18 d时降低.0.1 mmol/L SNP处理可减缓NaCl胁迫下辣椒幼苗叶片MDA含量的上升,降低叶片质膜相对透性,并诱导SOD、POD和CAT活性增加,提高脯氨酸含量,表明外源NO可以通过提高盐胁迫下辣椒幼苗叶片组织的抗氧化能力来缓解氧化损伤.而SNP相似物NaNO2和K3Fe(CN)6处理对盐胁迫引起的氧化损伤并没有起到明显的缓解作用,进一步证实了NO对辣椒幼苗耐盐性具有专一性的调节作用.  相似文献   

17.
不同基因型苦荞幼苗对低磷胁迫的响应   总被引:1,自引:0,他引:1  
采用沙培法,以4个不同耐低磷苦荞(Fagopyrum tataricum(L.) Gaertn)品种为材料,设正常磷处理(P1,2 mmol/L对照)、低磷胁迫(P2,1 mmol/L)和极低磷胁迫(P3,0.2 mmol/L) 3个处理,研究低磷胁迫对苦荞苗期农艺性状、生理生化指标以及植株磷利用的影响。结果显示:(1)低磷胁迫下,苦荞苗期株高、茎粗、叶面积、地上部干重、根系干重、根系平均直径、根系表面积、根系体积等指标均有所下降;主根伸长、根冠比有所升高,但不同品种的升降幅度有所不同。(2)低磷胁迫使苦荞叶绿素含量、可溶性蛋白含量和根系活力均有所下降,根系的SOD活性、POD活性、酸性磷酸酶活性、可溶性糖含量、游离脯氨酸含量显著增加,且表现为耐低磷苦荞品种的增幅大于不耐低磷苦荞。(3)低磷胁迫使苦荞植株全磷含量和单株磷积累量下降,却使磷利用效率升高。研究结果表明耐低磷品种通过主根伸长下扎以及分泌较多的酸性磷酸酶,合理吸收与利用土壤磷素,通过保持叶片较高的叶绿素含量维持较强的光合能力,通过保持较高的抗氧化酶活性降低膜脂过氧化伤害,最大程度的适应低磷环境。  相似文献   

18.
铜对大叶相思-根瘤菌共生固氮体系的影响   总被引:11,自引:0,他引:11  
报道了两种根瘤菌 (大叶相思、美丽胡枝子 )对Cu2 + 的耐受性以及植物 根瘤菌共生固氮体系在Cu2 + 胁迫下结瘤、固氮和生长的变化 ,讨论了大叶相思在矿山尾矿废弃地作为先锋植物结瘤固氮的可能性 .结果表明 ,大叶相思根瘤菌对Cu2 + 离子的耐受性较强 ,可以耐受Cu2 + <0 80mmol的离子浓度 ,Cu2 +对它的半致死浓度为 0 12 9mmol.在无菌砂培无重金属影响条件下 ,其固氮酶活性为 2 7C2 H4 ·μg·g-1·h-1,当Cu2 + >0 12 5mmol会导致大叶相思固氮酶活性急剧下降 ,其有效半抑制浓度 (EC50 )为0 15 1mmol,Cu2 + 为 0 5 0mmol完色抑制大叶相思固氮酶活性 ,不阻碍结瘤 ,但严重抑制植物生长发育 ,引起植物叶片白化、植株矮化 .在外加N源不接菌和不加N源接菌两种处理组间 ,Cu2 + <0 12 5mmol时 ,以不加N接菌处理对大叶相思生长有利 .大叶相思对Cu2 + 吸收积累根部高于地上组织 .  相似文献   

19.
NO对镉胁迫下小麦根系生长发育的生理影响   总被引:1,自引:0,他引:1       下载免费PDF全文
为了探究外源物一氧化氮(NO)供体硝普钠(sodium nitroprusside,SNP)对Cd2+胁迫下小麦根系生长发育和活性氧代谢的影响,以小麦(Triticum aestivum L.)为材料,研究10 mmol/L CdCl2胁迫下,30 μmol/L硝普钠(含一氧化氮NO)对小麦根系生长发育和活性氧代谢的影响。结果显示,外施SNP后,Cd2+胁迫下的小麦根长度、鲜重与干重较单独镉胁迫处理分别上升了48.0%、107.7%和87.3%,根系超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)的活性分别上升了28.5%、7.4%、19.2%和9.8%,根中超氧自由基(O2.-)和过氧化氢(H2O2)的含量分别降低了80.5%和47.0%;同时外施SNP,使镉胁迫下小麦根中的可溶性糖含量和脯氨酸含量分别上升了24.7%和22.1%;使根中丙二醛(MDA)含量降低了30.2%;使根系活力上升了15.3%。因此,外源NO在一定程度上可以显著提高小麦根的抗氧化能力,增强小麦的抗逆性,缓解镉对小麦根系的毒害,进而促进小麦幼苗根系的生长发育。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号