首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel form of protein-saccharide linkage consisting of single N-acetylglucosamine (GlcNAc) residues attached in O-linkages directly to the polypeptide backbone has been described (Holt, G. D., and G. W. Hart, 1986, J. Biol. Chem., 261:8049-8057). This modification was found on proteins distributed throughout the cell, although proteins bearing O-linked GlcNAc moieties were particularly abundant in the cytosolic and nuclear envelope fractions of rat liver. In the accompanying article (Snow, C. M., A. Senior, and L. Gerace, 1987, J. Cell. Biol., 104: 1143-1156), the authors describe monoclonal antibodies directed against eight proteins localized to the nuclear pore complex. These proteins occur on the cytoplasmic and nucleoplasmic (but not lumenal) sides of nuclear membranes. In this report, we demonstrate that all members of this group of pore complex proteins bear multiple O-linked GlcNAc residues. Further, we show that the O-linked GlcNAc moieties are linked via serine (and possibly threonine) side chains to these proteins. Perturbing the O-linked GlcNAc residues either by covalently attaching galactose to them or by releasing them with beta-N-acetylglucosaminidase strongly diminishes the immunoreactivity of the proteins with all of the monoclonal antibodies. However, the O-linked GlcNAc moieties are only part of the epitopes recognized, since O-GlcNAc-containing limit pronase fragments of nuclear pore complex proteins cannot be immunoprecipitated by these antibodies. These findings, taken together with those in the accompanying article, are a direct demonstration that proteins of the cytoplasm and nucleoplasm bear O-linked GlcNAc residues.  相似文献   

2.
The localization and characterization of oligosaccharide sequences in the cat testis was investigated using 12 lectins in combination with the beta-elimination reaction, N-Glycosidase F and sialidase digestion. Leydig cells expressed O-linked glycans with terminal alphaGalNAc (HPA reactivity) and N-glycans with terminal/internal alphaMan (Con A affinity). The basement membrane showed terminal Neu5Acalpha2,6Gal/GalNAc, Galbeta1,3GalNAc, alpha/betaGalNAc, and GlcNAc (SNA, PNA, HPA, SBA, GSA II reactivity) in O-linked oligosaccharides, terminal Galbeta1,4GlcNAc (RCA120 staining) and alphaMan in N-linked oligosaccharides; in addition, terminal Neu5acalpha2,3Galbeta1,4GlcNac, Forssman pentasaccharide, alphaGal, alphaL-Fuc and internal GlcNAc (MAL II, DBA, GSA I-B4, UEA I, KOH-sialidase-WGA affinity) formed both O- and N-linked oligosaccharides. The Sertoli cells cytoplasm contained terminal Neu5Ac-Galbeta1,4GlcNAc, Neu5Ac-betaGalNAc as well as internal GlcNAc in O-linked glycans, alphaMan in N-linked glycoproteins and terminal Neu5Acalpha2,6Gal/ GalNAc in both O- and N-linked oligosaccharides. Spermatogonia exhibited cytoplasmic N-linked glycoproteins with alphaMan residues. The spermatocytes cytoplasm expressed terminal Neu5Acalpha2,3Galbeta1,4 GlcNAc and Galbeta1,3GalNAc in O-linked oligosaccharides, terminal Galbeta1,4GlcNAc and alpha/betaGalNAc in N-linked glycoconjugates. The Golgi region showed terminal Neu5Acalpha2,3Galbeta1,4GlcNac, Galbeta1,4GlcNAc, Forssman pentasaccharide, and alphaGalNAc in O-linked oligosaccharides, alphaMan and terminal betaGal in N-linked oligosaccharides. The acrosomes of Golgi-phase spermatids expressed terminal Galbeta1,3GalNAc, Galbeta1,4GlcNAc, Forssmann pentasaccharide, alpha/betaGalNAc, alphaGal and internal GlcNAc in O-linked oligosaccharides, terminal alpha/betaGalNAc, alphaGal and terminal/internal alphaMan in N-linked glycoproteins. The acrosomes of cap-phase spermatids lacked internal Forssman pentasaccharide and alphaGal, while having increased alpha/betaGalNAc. The acrosomes of elongated spermatids did not show terminal Galbeta1,3GalNAc, displayed terminal Galbeta1,4GlcNAc and alpha/betaGalNAc in N-glycans and Neu5Ac-Galbeta1,3GalNAc in O-linked oligosaccharides.  相似文献   

3.
A 58-kDa Golgi protein (gp58) was previously identified and found to be concentrated in cis Golgi cisternae in several cell types (Saraste, J., Palade, G.E., and Farquhar, M.G. (1987) J. Cell Biol. 105, 2021-2029). In this study the protein was partially purified from rat pancreas and mouse myeloma cells in order to characterize its oligosaccharides. It migrated on sodium dodecyl sulfate-polyacrylamide gels as a 57-58-kDa doublet under reducing conditions or as a single approximately 116-kDa band under nonreducing conditions. Pancreatic gp58 was susceptible to alpha-N-acetylgalactosaminidase digestion and it bound concanavalin A, Helix pomatia, Dolichos biflorus, soybean agglutinin, and Bauhinia purpurea lectins, but not Ricinus communis agglutinin or lectins from Griffonia simplicifolia-1, Arachis hypogaea, and Limulus polyphemus. It bound Ricinus communis agglutinin after galactosylation with GlcNAc galactosyltransferase. These data demonstrate that pancreatic p58 contains immature N-linked moieties with nonreducing terminal GlcNAc residues as well as the initiating GalNAc of O-linked glycoproteins. Myeloma gp58 was sensitive to endo-beta-N-acetylglucosaminidase H, and oligosaccharide analysis of its [3H]glucosamine-labeled glycopeptides indicated that it also contained immature N-linked glycans. Some of the latter consist of high mannose chains (high affinity for concanavalin A, endo-beta-N-acetylglucosaminidase H-sensitive), but the predominant (95%) species are neutral tri- or tetraantennary N-linked chains containing GlcNAc (no binding to concanavalin A). Glycopeptides from biosynthetically labeled myeloma cells did not contain detectable base labile oligosaccharides, indicating that unlike pancreatic p58, myeloma gp58 may not be an O-linked glycoprotein. Neither pancreatic nor myeloma gp58 contained terminally processed oligosaccharides, indicating that gp58 has not been modified by trans-Golgi glycosyltransferases. Thus, the oligosaccharide content of gp58 is consistent with the assumption that this protein is retained in the cis Golgi cisternae during biosynthesis instead of being transported across the Golgi stacks and targeted back to the cis Golgi from the trans side.  相似文献   

4.
Only a few nuclear pore complex (NPC) proteins, mainly in vertebrates and yeast but none in plants, have been well characterized. As an initial step to identify plant NPC proteins, we examined whether NPC proteins from tobacco are modified by N-acetylglucosamine (GlcNAc). Using wheat germ agglutinin, a lectin that binds specifically to GlcNAc in plants, specific labeling was often found associated with or adjacent to NPCs. Nuclear proteins containing GlcNAc can be partially extracted by 0.5 M salt, as shown by a wheat germ agglutinin blot assay, and at least eight extracted proteins were modified by terminal GlcNAc, as determined by in vitro galactosyltransferase assays. Sugar analysis indicated that the plant glycans with terminal GlcNAc differ from the single O-linked GlcNAc of vertebrate NPC proteins in that they consist of oligosaccharides that are larger in size than five GlcNAc residues. Most of these appear to be bound to proteins via a hydroxyl group. This novel oligosaccharide modification may convey properties to the plant NPC that are different from those of vertebrate NPCs.  相似文献   

5.
We have studied the effects of brefeldin A (BFA) and monensin on the processing of the oligosaccharides of thyrotropin (TSH), free alpha-subunits, and cellular glycoproteins of mouse pituitary tissue to clarify the subcellular sites of action of BFA. BFA was previously shown to inhibit the translocation of glycoproteins from the rough endoplasmic reticulum to the Golgi apparatus but action at other sites was possible. Pituitaries from hypothyroid mice were incubated with [35S]methionine, [3H]mannose, [3H]galactose, [3H]fucose, N-[3H]acetylmannosamine, or [35S]sulfate for 2 hr in the absence or presence of 5 micrograms of BFA/ml or 2 microM monensin. TSH and free alpha-subunits were immunoprecipitated from tissue lysates and analyzed by sodium dodecyl sulfate-gel electrophoresis. The tryptic glycopeptides of TSH were separated using high-performance liquid chromatography. Total glycoproteins in cell lysates were precipitated using trichloroacetic acid. Labeled oligosaccharides were released from the tryptic glycopeptides of TSH and cellular glycoproteins by endoglycosidase H and they were analyzed by paper chromatography. Compared with control incubations, BFA caused the intracellular accumulation of glycoproteins having less than expected amounts of Man9GlcNAc2 units, but with excess Man8GlcNAc2, Man7GlcNAc2, Man6GlcNAc2, and Man5GlcNAc2 units. There was a lesser accumulation of glucose-containing oligosaccharides, especially Glc1Man9GlcNAc2. Monensin also caused the accumulation of certain high mannose species, but the pattern differed from that seen for BFA, since Man9GlcNAc2 units were preserved and there was less excess of Man8GlcNAc2, Man7GlcNAc2, Man6GlcNAc2, and Man5GlcNAc2 units. BFA did not block the initial attachment of oligosaccharides at any of the three Asn-glycosylation sites of TSH, but caused the accumulation of Man5-8GlcNAc2 units at each site. Both monensin and BFA inhibited fucosylation, sulfation, and sialylation more markedly than mannose incorporation. Thus, in addition to its previously described action of inhibiting rough endoplasmic reticulum to Golgi transport, BFA appears to partially inhibit the glucose-trimming enzymes as well as some Golgi enzymes.  相似文献   

6.
Histochemical characterization of the equine guttural pouches was performed using lectins combined with sialidase digestion and deglycosylation pre-treatments.The goblet cells contained O- and N-linked oligosaccharides with α-Fuc, GlcNAc moieties whereas β-GalNAc, β-Gal-(1–3)-GalNAc, β-Gal-(1–4)-GlcNAc and α-Gal residues belonged only to O-linked glycoproteins. The acinar and ductal cells expressed α-Man/α-Glc in N-linked oligosaccharides, GlcNAc in both O- and N-glycoproteins and β-GalNAc, β-Gal-(1–3)-GalNAc, β-Gal-(1–4)-GlcNAc and α-Gal residues included in O-linked glycoproteins. The Golgi area of the epithelial lining expressed α-Fuc in O-linked glycoproteins, internal GlcNAc in N-linked glycoproteins and large amounts of sialic acid residues linked to subterminal β-GalNAc, Galβ1,4GlcNAc and Galβ1,3GalNAc. High amounts of sulpho-carbohydrates and of sialic acids (α2,3–6), linked to-α/β-Gal and sialic acids (α2–6) linked to β-GalNAc, were also demonstrated.Such diversity of the mucin saccharide residues may be implicated in the binding of macromolecules such as those of bacterial or viral etiology, thus playing a role in the organism's host-defense mechanism in the guttural pouches.  相似文献   

7.
《The Journal of cell biology》1984,98(5):1720-1729
1- Deoxynojirimycin is a specific inhibitor of glucosidases I and II, the first enzymes that process N-linked oligosaccharides after their transfer to polypeptides in the rough endoplasmic reticulum. In a pulse- chase experiment, 1- deoxynojirimycin greatly reduced the rate of secretion of alpha 1-antitrypsin and alpha 1-antichymotrypsin by human hepatoma HepG2 cells, but had marginal effects on secretion of the glycoproteins C3 and transferrin, or of albumin. As judged by equilibrium gradient centrifugation, 1- deoxynojirimycin caused alpha 1- antitrypsin and alpha 1-antichymotrypsin to accumulate in the rough endoplasmic reticulum. The oligosaccharides on cell-associated alpha 1- antitrypsin and alpha 1-antichymotrypsin synthesized in the presence of 1- deoxynojirimycin , remained sensitive to Endoglycosidase H and most likely had the structure Glu1- 3Man9GlcNAc2 . Tunicamycin, an antibiotic that inhibits addition of N-linked oligosaccharide units to glycoproteins, had a similar differential effect on secretion of these proteins. Swainsonine , an inhibitor of the Golgi enzyme alpha- mannosidase II, had no effect on the rates of protein secretion, although the proteins were in this case secreted with an abnormal N- linked, partially complex, oligosaccharide. We conclude that the movement of alpha 1-antitrypsin and alpha 1-antichymotrypsin from the rough endoplasmic reticulum to the Golgi requires that the N-linked oligosaccharides be processed to at least the Man9GlcNAc2 form; possibly this oligosaccharide forms part of the recognition site of a transport receptor for certain secretory proteins.  相似文献   

8.
《The Journal of cell biology》1989,109(6):2693-2702
A membrane-associated galactosyltransferase has been purified to homogeneity from the fission yeast, Schizosaccharomyces pombe. The enzyme has a molecular weight of 61,000 and is capable of transfering galactose from UDP-galactose (UDP-Gal) to a variety of mannose-based acceptors to form an alpha-1,2 galactosyl mannoside linkage. Immunofluorescence localization of the protein is consistent with the presence of the enzyme in the Golgi apparatus of S. pombe. This, together with the presence of terminal, alpha-linked galactose on the N- linked oligosaccharides of S. pombe secretory proteins, suggests that the galactosyltransferase is an enzyme involved in the processing of glycoproteins transported through the Golgi apparatus in fission yeast.  相似文献   

9.
The O-linked oligosaccharides of mucin-type glycoproteins contain N- acetyl-D-galactosamine (GalNAc) that is not found in N-linked glycoproteins. Because Helix pomatia lectin interacts with terminal GalNAc, we used this lectin, bound to particles of colloidal gold, to localize such sugar residues in subcellular compartments of intestinal goblet cells. When thin sections of low temperature Lowicryl K4M embedded duodenum or colon were incubated with Helix pomatia lectin- gold complexes, no labeling could be detected over the cisternal space of the nuclear envelope and the rough endoplasmic reticulum. A uniform labeling was observed over the first and several subsequent cis Golgi cisternae and over the last (duodenal goblet cells) or the two last (colonic goblet cells) trans Golgi cisternae as well as forming and mature mucin droplets. However, essentially no labeling was detected over several cisternae in the central (medial) region of the Golgi apparatus. The results strongly suggest that core O-glycosylation takes place in cis Golgi cisternae but not in the rough endoplasmic reticulum. The heterogenous labeling for GalNAc residues in the Golgi apparatus is taken as evidence that termination of certain O- oligosaccharide chains by GalNAc occurs in trans Golgi cisternae.  相似文献   

10.
The aim of this work was the characterization of the glycoconjugates of the premeiotic spermatogenetic cells of the testis of an urodele amphibian, Pleurodeles waltl, by means of lectins in combination with several chemical and enzymatic procedures, in order to establish the distribution of N- and O-linked oligosaccharides in these cells. In the cytoplasm of the primordial germ cells, primary and secondary spermatogonia and primary spermatocytes, a granular structure can be observed close to the nucleus. These granules contain four types of sugar chains according to their appearance during the differentiation process: 1. some oligosaccharides that are identified in all the four cell types above mentioned, which include N-linked oligosaccharides with Fuc, Gal beta1,4GlcNAc and Neu5Ac alpha2,3Gal beta1,4GlcNAc and O-linked oligosaccharides with Gal beta1,4GlcNAc and Neu5Ac alpha2,3Gal beta1,4GlcNAc; 2. other glycan chains that are not present in the primary spermatocytes (N-linked oligosaccharides with DBA-positive GalNAc, GlcNAc, and a slight amount of Neu5Ac alpha2,6Gal/GalNAc and O-linked oligosaccharides with WGA-positive GlcNAc); 3. the sugar chains that are not in the earliest step of spermatogenesis (formed by both N-linked and O-linked oligosaccharides with Glc); and 4. other that appear at the earliest and latest stages, but not in the intermediate ones, (N-linked oligosaccharides with Man and O-linked oligosaccharides with SBA- and HPA-positive GalNAc and PNA-positive Gal beta1,3GalNAc). This structure could be related with the Drosophila spectrosome and fusome, unusual cytoplasmic organelles implicated in cystic germ cell development. Data from the present work, as compared with those from mammals and other vertebrates, suggest that, although no dramatic changes in the glycosylation pattern are observed, some cell glycoconjugates are modified in a predetermined way during the early steps of the spermatogenetic differentiation process.  相似文献   

11.
We are interested in determining whether carbohydrates are important regulatory determinants in the intracellular transport and secretion of glycoproteins. In the present study, we have used swainsonine, an indolizidine alkaloid, to modify the structure of N-glycosidically linked complex oligosaccharides. By inhibiting Golgi mannosidase II, swainsonine prevents the trimming of GlcNAc(Man)5(GlcNAc)2 to GlcNAc-(Man)3(GlcNAc)2, resulting in the formation of hybrid-type oligosaccharides. We find, from pulse-chase experiments using [35S]methionine and immunoprecipitation of individual proteins from culture media, that swainsonine treatment (1 microgram/ml) accelerated the secretion of glycoproteins (transferrin, ceruloplasmin, alpha 2-macroglobulin, and alpha 1-antitrypsin) by decreasing the lag period by 10-15 min relative to untreated cultures. The enhanced secretion was specific for glycoproteins since the secretion of albumin, a nonglycoprotein, was unaffected. When alpha 1-antitrypsin was immunoprecipitated from the cell lysates, sodium dodecyl sulfate-polyacrylamide gel electrophoresis fluorographic analysis demonstrated that the conversion of the high-mannose precursor to the hybrid form in swainsonine-treated cells occurred more rapidly (by about 10 min) than the conversion to the complex form in control cells. Since both the hybrid and complex forms of alpha 1-antitrypsin are terminally sialylated by sialyltransferase in the trans-Golgi, these results suggest that swainsonine-modified glycoproteins traverse the Golgi more rapidly than their normal counterparts. Therefore, accelerated transport within this organelle may account for the decreased lag period of glycoprotein secretion in the swainsonine-treated cultures.  相似文献   

12.
This report describes the structural analyses of the O- and N-linked oligosaccharides contained in glycoproteins synthesized by 48-hr-old Schistosoma mansoni schistosomula. Schistosomula were prepared by mechanical transformation of cercariae and were then incubated in media containing either [2-3H] mannose, [6-3H]glucosamine, or [6-3H]galactose to metabolically radiolabel the oligosaccharide moieties of newly synthesized glycoproteins. Analysis by SDS-polyacrylamide gel electrophoresis and fluorography demonstrated that many glycoproteins were metabolically radiolabeled with the radioactive mannose and glucosamine precursors, whereas few glycoproteins were labeled by the radioactive galactose precursor. Glycopeptide were prepared from the radiolabeled glycoproteins by digestion with pronase and fractionated by chromatography on columns of concanavalin A-Sepharose and pea lectin-agarose. The structures of the oligosaccharide chains in the glycopeptides were analyzed by a variety of techniques. The major O-linked sugars were not bound by concanavalin A-Sepharose and consisted of simple O-linked monosaccharides that were terminal O-linked N-acetylgalactosamine, the minor type, and terminal O-linked N-acetylglucosamine, the major type. The N-linked oligosaccharides were found to consist of high mannose- and complex-type chains. The high mannose-type N-linked chains, which were bound with high affinity by concanavalin A-Sepharose, ranged in size from Man6GlcNAc2 to Man9GlcNAc2. The complex-type chains contained mannose, fucose, N-acetylglucosamine, and N-acetylgalactosamine. No sialic acid was present in any metabolically radiolabeled glycoproteins from schistosomula.  相似文献   

13.
The main reaction of N-glycosylation of proteins is the transfer 'en bloc' of the oligosaccharide moieties of lipid intermediates to an asparagine residue of the nascent protein. For the past 15 years, a few laboratories including ours have shown that the process was accompanied by the release of oligosaccharide-phosphates and of neutral oligosaccharides possessing one GlcNAc (OS-Gn(1)) or two GlcNAc (OS-Gn(2)) at the reducing end. The aim of this review is to gather the evidence for the different origins of these soluble oligomannosides, to examine their subcellular location and intracellular trafficking. Furthermore, using Brefeldin A we demonstrated that this released oligomannoside material could be the substrate for the Golgi glycosidases and glycosyltransferases. Indeed, released oligomannoside never reach the Golgi vesicles either because they are directly produced in the cytosol as has been demonstrated for oligosaccharide-phosphates and for neutral oligosaccharides possessing one GlcNAc at the reducing end or because they are actively transported out of the rough endoplasmic reticulum to the cytosol. One of the functions of oligomannoside trafficking between rough endoplasmic reticulum, cytosol and lysosomes could be to prevent these oligosaccharides for competing with glycosylation in the Golgi.  相似文献   

14.
Purified human milk beta-N-acetylglucosaminide beta 1, 4 galactosyltransferase (EC 2.4.1.38) was used to galactosylate N-acetylglucosamine (GlcNAc) residues present in ultra-thin sections of Lowicryl K4M-embedded rat and pig liver. Both endogenous galactose and galactosylated transferase products could be revealed by Ricinus communis lectin I-gold complexes (RcL I-g15). Without galactosyltransferase (GT) treatment, labeling for galactose (gal) was limited to the trans region of rat and pig hepatocyte Golgi apparatus. After exposure to GT, additional labeling was found over cis Golgi apparatus cisternae. RcL I-g15 labeling was sensitive to a purified preparation of endoglucosaminidase F/peptide N-glycosidase F (at pH 9). This indicates that endogenous gal and gal transferred by GT to terminal GlcNAc residues are present N-linked oligosaccharides. The RcL I-g15 labeling produced by GT was insensitive to extensive washing with solutions containing either EDTA and urea or SDS and 2-mercaptoethanol or 0.1 M GlcNAc. Substrate inhibition studies showed that 50 mM GlcNAc specifically inhibited the additional RcL I-g15 labeling produced by GT. The use of purified glycosyltransferases therefore appears to allow specific detection of oligosaccharide substrates and their high resolution localization in thin sections by electron microscopy.  相似文献   

15.
Tris caused the distention of the Golgi cisternae in primary cultured rat hepatocytes and perturbed the functions occurring there. Proteolytic cleavage of precursors of both albumin and complement C3 was inhibited, whereas that of prohaptoglobin was not affected by Tris. These effects on the proteolytic cleavages resemble those of acidotropic amines (Oda, K., and Ikehara, Y. (1985) Eur. J. Biochem. 152, 605-609; Oda, K., Koriyama, Y., Yamada, E., and Ikehara, Y. (1986) Biochem. J. 240, 739-745). However, the effects of Tris significantly differed from acidotropic amines on the basis of its effects on the processing of N-linked oligosaccharides of glycoproteins. Both alpha 1-protease inhibitor and haptoglobin secreted from the Tris-treated cells were found to contain almost equal amounts of endo-beta-N-acetylglucosaminidase H-sensitive and -resistant oligosaccharides, whereas the glycoproteins from both the control and methylamine-treated cells were resistant to the enzyme. The endo-beta-N-acetylglucosaminidase-sensitive oligosaccharides were analyzed to be Man8-5GlcNAc by high resolution gel permeation chromatography, suggesting that trimming of alpha-mannose residues from the precursor Man9GlcNAc2 is incomplete in the Tris-treated cells. On the other hand, Tris did not significantly inhibit incorporation of radioactive monosaccharides (N-acetylglucosamine, galactose, and fucose) into the glycoproteins. However, two-dimensional gel electrophoresis in combination with neuraminidase digestion demonstrated that sialylation was markedly inhibited by Tris. Taken together, our results reveal that Tris inhibits not only the sialic acid addition which takes place in the trans Golgi region, but also the trimming step of high mannose-type oligosaccharides, which is thought to occur before glycoproteins reach the trans Golgi region.  相似文献   

16.
The lectin jacalin immobilized on agarose was found to bind a variety of glycoproteins known to contain typical O-linked oligosaccharides, including human IgA, C1 inhibitor, chorionic gonadotropin, plasminogen, bovine protein Z, bovine coagulation factor X, and fetuin. These proteins were eluted from columns of jacalin-agarose specifically by alpha-galactopyranosides such as melibiose and alpha-methylgalactopyranoside but not by lactose or other sugars. Treatment of asialofetuin with endo--alpha--N--acetylgalactosaminidase eliminated its affinity for the lectin column, and other proteins known to contain only N-linked oligosaccharides such as ovalbumin, transferrin, and alpha 1-acid glycoprotein were not retained by the lectin. Binding of proteins with O-linked oligosaccharides to the lectin column did not require divalent cations and was affected little by changes in pH and ionic strength over a wide range. Virtually all of the glycosidically linked oligosaccharides of fetuin, chorionic gonadotropin, and plasminogen are known to be sialated. Thus, binding of these glycoproteins to jacalin, which is known to have affinity for the core disaccharide, 1-beta-galactopyranosyl-3-(alpha-2-acetamido-2-deoxygalactopyranoside ), in O-linked oligosaccharides of these proteins, was not prevented by the presence of sialic acids. Affinity of oligosaccharides for jacalin did appear to be reduced by occurrence of sialic acids as it was found that higher concentrations of melibiose were required to elute asialofetuin than fetuin from jacalin-agarose. Results of the present study indicate that affinity chromatography using this lectin is a widely applicable technique for identifying and purifying proteins bearing O-linked oligosaccharides.  相似文献   

17.
We have used Chinese hamster ovary (CHO) cells and a murine lymphoma cell line to study the recycling of the 215-kD and the 46-kD mannose 6-phosphate receptors to various regions of the Golgi to determine the site where the receptors first encounter newly synthesized lysosomal enzymes. For assessing return to the trans-most Golgi compartments containing sialyltransferase (trans-cisternae and trans-Golgi network), the oligosaccharides of receptor molecules on the cell surface were labeled with [3H]galactose at 4 degrees C. Upon warming to 37 degrees C, the [3H]galactose residues on both receptors were substituted with sialic acid with a t1/2 approximately 3 hrs. Other glycoproteins acquired sialic acid at least 8-10 times slower. Return of the receptors to the trans-Golgi cisternae containing galactosyltransferase could not be detected. Return to the cis/middle Golgi cisternae containing alpha-mannosidase I was measured by adding deoxymannojirimycin, a mannosidase I inhibitor, during the initial posttranslational passage of [3H]mannose-labeled glycoproteins through the Golgi, thereby preserving oligosaccharides which would be substrates for alpha-mannosidase I. After removal of the inhibitor, return to the early Golgi with subsequent passage through the Golgi complex was measured by determining the conversion of the oligosaccharides from high mannose to complex-type units. This conversion was very slow for the receptors and other glycoproteins (t1/2 approximately 20 h). Exposure of the receptors and other glycoproteins to the dMM-sensitive alpha-mannosidase without movement through the Golgi apparatus was determined by measuring the loss of mannose residues from these proteins. This loss was also slow. These results indicate that both Man-6-P receptors routinely return to the Golgi compartment which contains sialyltransferase and recycle through other regions of the Golgi region less frequently. We infer that the trans-Golgi network is the major site for lysosomal enzyme sorting in CHO and murine lymphoma cells.  相似文献   

18.
The receptor for epidermal growth factor (EGF) in the human epidermoid carcinoma cell line A-431 is a glycoprotein of apparent molecular weight = 170,000. During biosynthesis, the receptor is first detected as a precursor of apparent Mr = 160,000. In this report we describe our studies on the structures of the oligosaccharide moieties of the mature receptor and its precursor. A-431 cells were grown in medium containing radioactive sugars and the radiolabeled receptors were purified by immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Radiolabeled glycopeptides were prepared from the purified receptor by proteolysis, and their structures were examined by a variety of techniques. The mature EGF receptor contains both complex-type and high mannose-type Asn-linked oligosaccharides in the approximate ratio of 2 to 1, while the precursor contains only high mannose-type chains. A number of experimental results demonstrate that the mature receptor does not contain oligosaccharides in O-linkage through N-acetylgalactosamine to either serine or threonine. The high mannose-type oligosaccharides in both precursor and mature receptor can be cleaved by endo-beta-N-acetylglucosaminidase H and occur in the mature receptor as Man9GlcNAc2 (6%), Man8GlcNAc2 (49%), Man7GlcNAc2 (25%), and Man6GlcNAc2 (20%), whereas, in the receptor precursor the high mannose chains occur primarily as Man8GlcNAc2 (70%). The complex-type oligosaccharides in the mature receptor are predominantly tri- or tetraantennary species and are unusual in several respects. (i) Many of the chains do not contain sialic acid, while the remaining chains contain 1-2 sialic acid residues. (ii) Half of the [3H] mannose-derived radioactivity was recovered as [3H] fucose and the remaining half as [3H] mannose, indicating that there may be an average of 3 fucose residues/chain. (iii) About one-third of the [3H] glucosamine-derived radioactivity in these glycopeptides was recovered as N-acetylgalactosamine and these residues are all alpha-linked and occur at the nonreducing termini. These data demonstrate that the complex-type Asn-linked oligosaccharides in the EGF receptor from A-431 cells contain sugar residues related to human blood type A. In light of other recent studies, these results suggest that in A-431 cells blood group determinants in surface glycoproteins are contained in Asn-linked but not O-linked oligosaccharides.  相似文献   

19.
Among the four acidic oligosaccharide fractions obtained by paper electrophoresis of the hydrazinolysate of the plasma membrane glycoproteins of rat erythrocytes, one was further separated into two by prolonged paper electrophoresis using 120-cm paper. Three fractions were mixtures of monosialyl oligosaccharides and two of disialyl oligosaccharides. After desialylation, their neutral portions were fractionated by Bio-Gel P-4 column chromatography and by affinity chromatography using a Con A-Sepharose column. Structural studies of the neutral oligosaccharides, thus obtained, indicated that at least 26 different complex-type oligosaccharides are present as a neutral portion of the acid oligosaccharides. Structurally they can be classified into bi-, tri-, and tetraantennary oligosaccharides with Manα1 → 6(Manα1 → 3)Manβ1 → 4GlcNAcβ1 → 4(±Fucα1 → 6)GlcNAcOT as their common cores. Galβ1 → 3Galβ1 → 4GlcNAc, Siaα2 → 3Galβ1 → 4GlcNAc, Siaα2 → 6Galβ1 → 4GlcNAc, and a series of Siaα2 → (Galβ1 → 4GlcNAcβ1 → 3)n · Galβ1 → 4GlcNAc were found as their outer chains. Their structures together with the structures of neutral oligosaccharides reported in the preceding paper indicated that the outer chain moieties of the asparagine-linked sugar chains of rat erythrocyte membrane glycoproteins are formed not by random concerted action of glycosyl transferases in Golgi membrane but by the mechanism in which the formation of one outer chain will regulate the elongation of others.  相似文献   

20.
Herpes simplex virus type-1 glycoprotein C (gC1) contains several O-linked oligosaccharides clustered near N-linked chains, and Pronase digestion produces glycopeptides carrying both oligosaccharide types. We have taken advantage of this fact to investigate the temporal relationship between the initiation of O-linked chains and the processing of N-linked oligosaccharides. gC1 was isolated from herpes-simplex-virus-infected BHK (baby-hamster kidney) cells after short labelling periods with [3H]glucosamine, and the labelled Pronase-cleaved glycopeptides fractionated on concanavalin A-Sepharose. N-[3H]Acetylgalactosamine, mostly convertible into free N-[3H]acetylgalactosaminitol on mild alkaline-borohydride treatment, was found in glycopeptides with an affinity to concanavalin A-Sepharose corresponding to that of glycopeptides carrying Man8GlcNAc2 or larger N-linked chains. Since there is evidence that the processing of N-linked chains up to Man8GlcNAc2 involves enzymes located in the rough endoplasmic reticulum, current results strongly suggest that gC1 acquires O-linked N-acetylgalactosamine before the glycoprotein routing to the Golgi apparatus. The addition of the second sugar to the nascent O-linked chain appeared to occur after a relatively long lag time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号