首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alamethicin is a 19-amino-acid residue hydrophobic peptide of the peptaibol family that has been the object of numerous studies for its ability to produce voltage-dependent ion channels in membranes. In this work, for the first time electron paramagnetic resonance spectroscopy was applied to study the interaction of alamethicin with oriented bicelles. We highlighted the effects of increasing peptide concentrations on both the peptide and the membrane in identical conditions, by adopting a twofold spin labeling approach, placing a nitroxide moiety either on the peptide or on the phospholipids. The employment of bicelles affords additional spectral resolution, thanks to the formation of a macroscopically oriented phase that allows to gain information on alamethicin orientation and dynamics. Moreover, the high viscosity of the bicellar solution permits the investigation of the peptide aggregation properties at physiological temperature. We observed that, at 35 °C, alamethicin adopts a transmembrane orientation with the peptide axis forming an average angle of 25° with respect to the bilayer normal. Moreover, alamethicin maintains its dynamics and helical tilt constant at all concentrations studied. On the other hand, by increasing the peptide concentration, the bilayer experiences an exponential decrease of the order parameter, but does not undergo micellization, even at the highest peptide to lipid ratio studied (1:20). Finally, the aggregation of the peptide at physiological temperature shows that the peptide is monomeric at peptide to lipid ratios lower than 1:50, then it aggregates with a rather broad distribution in the number of peptides (from 6 to 8) per oligomer.  相似文献   

2.
Alamethicin F50/5 is a hydrophobic peptide that is devoid of charged residues and that induces voltage-dependent ion channels in lipid membranes. The peptide backbone is likely to be involved in the ion conduction pathway. Electron spin-echo spectroscopy of alamethicin F50/5 analogs in which a selected Aib residue (at position n = 1, 8, or 16) is replaced by the TOAC amino-acid spin label was used to study torsional dynamics of the peptide backbone in association with phosphatidylcholine bilayer membranes. Rapid librational motions of limited angular amplitude were observed at each of the three TOAC sites by recording echo-detected spectra as a function of echo delay time, 2τ. Simulation of the time-resolved spectra, combined with conventional EPR measurements of the librational amplitude, shows that torsional fluctuations of the peptide backbone take place on the subnanosecond to nanosecond timescale, with little temperature dependence. Associated fluctuations in polar fields from the peptide could facilitate ion permeation.  相似文献   

3.
Edwards TE  Sigurdsson ST 《Biochemistry》2005,44(38):12870-12878
Electron paramagnetic resonance (EPR) spectroscopy was used to examine changes in internal structure and dynamics of the hammerhead ribozyme upon metal ion induced folding, changes in pH, and the presence and absence of ribozyme inhibitors. A nitroxide spin-label was attached to nucleotide U7 of the HH16 catalytic core, and this modified ribozyme was observed to retain catalytic activity. U7 was shown by EPR spectroscopy to be more mobile in the ribozyme-product complex than in either the unfolded ribozyme or the ribozyme-substrate complex. A two-step divalent metal ion dependent folding pathway was observed for the ribozyme-substrate complex with a weak first transition observed at 0.25 mM Mg2+ and a strong second transition observed around 10 mM Mg2+, in agreement with studies using other biophysical and biochemical techniques. Previously, ribozyme activity was observed in the absence of divalent metal ions and the presence of high concentrations of monovalent metal ions, although the activity was less than that observed in the presence of divalent metal ions. Here, we observed similar dynamics for U7 in the presence of 4 M Na+ or Li+, which were distinctively different than that observed in the presence of 10 mM Mg2+, indicating that U7 of the catalytic core forms a different microenvironment under monovalent versus divalent metal ion conditions. Interestingly, the catalytically efficient microenvironment of U7 was similar to that observed in a solution containing 1 M Na+ upon addition of one divalent metal ion per ribozyme. In summary, these results demonstrate that changes in local dynamics, as detected by EPR spectroscopy, can be used to study conformational changes associated with RNA folding and function.  相似文献   

4.
A simplified kinetic model scheme is presented that addresses the main reactions of two recently reported peptide self-replicators. Experimentally observed differences in the autocatalytic efficiency between these two systems-- caused by variations in the peptide sequences--and the possible effect of chiral amplification under heterochiral reaction conditions were evaluated. Our numerical simulations indicated that differences in the catalytic performance are exclusively due to pronounced variations in the rate parameters that control the reversible and hydrophobic interactions in the reaction system but neither to alterations in the underlying reaction network nor to changes in the stoichiometry of the involved aggregation processes. Model predictions further demonstrated the possible existence of chiral amplification if peptide self-replication is performed under heterochiral reaction conditions. Pointing into the direction of a possible cause for biomolecular homochirality, it was found that in open flow reactors, keeping the system under non-equilibrium conditions, a remarkable amplification of enantiomeric excess could be achieved. According to our modeling, this is due to a chiroselective autocatalytic effect and a meso-type separation process both of which are assumed to be intrinsic for the underlying dynamics of heterochiral peptide self-replication.  相似文献   

5.
Neuropeptide Y (NPY) and its homolog, peptide YY, are present respectively in neurons and endocrine cells within the mammalian small intestine. In this study, we examined the actions of NPY on ion transport in the porcine distal jejunum mucosa-submucosa in vitro. Peptide YY and NPY were equieffective in producing rapid and sustained decreases in basal short-circuit current (Isc), a bioelectrical measure of active ion transport, eliciting half-maximal decreases at respective serosal concentrations of 0.8 and 30 nmol/l. NPY-induced changes in Isc were due to increased mucosa-to-serosa and net Cl fluxes and were not affected by the absence of extracellular HCO3 ions. NPY activity was correlated with the magnitude of the basal Isc and appeared to depend on the spontaneous production of eicosanoids. The peptide also decreased Isc stimulated by forskolin and 8-bromo-cyclic AMP, but the ionic bases for this effect were complex and differed from those determined under basal conditions. NPY attenuated increases in Isc produced by electrical stimulation of enteric neurons with an IC50 = 5 nmol/l. The actions of the peptide on basal and cyclic AMP-induced ion transport were abolished by the neuronal conduction blocker tetrodotoxin, but not by the opiate antagonist naloxone. The alpha-adrenoceptor blocker phentolamine diminished the effects of NPY on basal, but not cyclic AMP-induced Isc. These results indicate that NPY is capable of modulating NaCl transport in the porcine jejunal mucosa under several different conditions. Furthermore, the effects of the peptide are mediated in part through noradrenergic nerves as well as enteric neurons of unknown chemical identity.  相似文献   

6.
The backbone dynamics of the channel-forming peptide antibiotic zervamicin IIB (Zrv-IIB) in methanol were studied by 15N nuclear magnetic resonance relaxation measurements at 11.7, 14.1 and 18.8 T magnetic fields. The anisotropic overall rotation of the peptide was characterized based on 15N relaxation data and by hydrodynamic calculations. 'Model-free' analysis of the relaxation data showed that the peptide is fairly rigid on a sub-nanosecond time-scale. The residues from the polar side of Zrv-IIB helix are involved in micro-millisecond time-scale conformational exchange. The conformational exchange observed might indicate intramolecular processes or specific intermolecular interactions of potential relevance to Zrv-IIB ion channel formation.  相似文献   

7.
Composition variation of a complex peptide mixture under enzymatic transformation can be tracked by mass spectrometry (MS). In this report, papain-catalyzed esterification of fibroin peptides was investigated at the individual peptide level using liquid chromatography-mass spectrometry with selected ion monitoring. Optimal conditions for maximizing ester formation were obtained using a water-to-pentanol ratio of 1:9 at pH 2.8 and 40°C; however, the optimum conditions varied for individual peptides. The optimum pH levels were 2.5 and 2.8 for the tetrapeptides with a tyrosine or a valine residue and those with alanine or serine residues, respectively. The optimum pH shifted to 3.4 for dipeptide esters with a tyrosine residue. Tetrapeptides had a relatively higher rate of esterification above 50°C. Alhough, the profiles of peptides and their esters in the esterification reaction were significantly affected by the reaction conditions, alanyl-glycine ester represented the largest fraction in the mixture under most reaction conditions. As demonstrated here, MS analysis of peptide mixtures can be used to elucidate specific reaction conditions for the enrichment of particular peptide products.  相似文献   

8.
The objective of this study was to evaluate the relationship between conformational flexibility and solution stability of a linear RGD peptide (Arg-Gly-Asp-Phe-OH; 1) and a cyclic RGD peptide (cyclo-(1, 6)-Ac-Cys-Arg-Gly-Asp-Phe-Pen-NH2; 2); as a function of pH. Previously, it was found that cyclic peptide 2 was 30-fold more stable than linear peptide 1. Therefore, this study was performed to explain the increase in chemical stability based on the preferred conformation of the peptides. Molecular dynamics simulations and energy minimizations were conducted to evaluate the backbone flexibility of both peptides under simulated pH conditions of 3, 7 and 10 in the presence of water. The reactive sites for degradation for both molecules were also followed during the simulations. The backbone of linear peptide 1 exhibited more flexibility than that of cyclic peptide 2, which was reflected in the rotation about the phi and psi dihedral angles. This was further supported by the low r.m.s. deviations of the backbone atoms for peptide 2 compared with those of peptide 1 that were observed among structures sampled during the molecular dynamics simulations. The presence of a salt bridge between the side chain groups of the Arg and Asp residues was also indicated for the cyclic peptide under simulated conditions of neutral pH. The increase in stability of the cyclic peptide 2 compared with the linear peptide 1, especially at neutral pH, is due to decreased structural flexibility imposed by the ring, as well as salt bridge formation between the side chains of the Arg and Asp residues in cyclic peptide 2. This rigidity would prevent the Asp side chain carboxylic acid from orienting itself in the appropriate position for attack on the peptide backbone.  相似文献   

9.
The effects of terminal ion pairs on the stability of a beta-hairpin peptide corresponding to the C-terminal residues of the B1 domain of protein G were determined using thermal unfolding as monitored by nuclear magnetic resonance and circular dichroism spectroscopy. Molecular dynamics (MD) simulations were also performed to examine the effect of ion pairs on the structures. Eight peptides were studied including the wild type (G41) and the N-terminal modified sequences that had the first residue deleted (E42), replaced with a Lys (K41), or extended by an additional Gly (G40). Acetylated variants were made to examine the effect of removing the positive N-terminal charge on beta-hairpin stability. The rank in stability determined experimentally is K41 > E42 approximately G41 approximately G40 > Ac-K41 > Ac-E42 approximately Ac-G41 > Ac-G40. The Tm of the K41 peptide is 12 degrees C higher than G41, while the Tm values for the acetylated peptides are less than their unacetylated forms by more than 15 degrees C. NOE cross-peaks between side-chain methylene groups at the N- and C-termini and larger CalphaH shifts compared to random values are seen for K41. The addition of 20% methanol increases the stability in K41 and G41. The MD studies complement these results by showing that the charged N-terminus is important to stability. The type of ion pair observed varies with peptide, and when formed the simulations show that the ion pair can prevent fraying of the beta-strands through electrostatic and hydrophobic contacts. Therefore, introducing favorable electrostatic interactions at the N- and C-termini can substantially enhance beta-hairpin stability and help define the structure.  相似文献   

10.
Shafer AM  Nakaie CR  Deupi X  Bennett VJ  Voss JC 《Peptides》2008,29(11):1919-1929
To probe the binding of a peptide agonist to a G-protein coupled receptor in native membranes, the spin-labeled amino acid analogue 4-amino-4-carboxy-2,2,6,6-tetramethylpiperidino-1-oxyl (TOAC) was substituted at either position 4 or 9 within the substance P peptide (RPKPQQFFGLM-NH2), a potent agonist of the neurokinin-1 receptor. The affinity of the 4-TOAC analog is comparable to the native peptide while the affinity of the 9-TOAC derivative is approximately 250-fold lower. Both peptides activate receptor signaling, though the potency of the 9-TOAC peptide is substantially lower. The utility of these modified ligands for reporting conformational dynamics during the neurokinin-1 receptor activation was explored using EPR spectroscopy, which can determine the real-time dynamics of the TOAC nitroxides in solution. While the binding of both the 4-TOAC substance P and 9-TOAC substance P peptides to isolated cell membranes containing the neurokinin-1 receptor is detected, a bound signal for the 9-TOAC peptide is only obtained under conditions that maintain the receptor in its high-affinity binding state. In contrast, 4-TOAC substance P binding is observed by solution EPR under both low- and high-affinity receptor states, with evidence of a more strongly immobilized peptide in the presence of GDP. In addition, to better understand the conformational consequences of TOAC substitution into substance P as it relates to receptor binding and activation, atomistic models for both the 4- and 9-TOAC versions of the peptide were constructed, and the molecular dynamics calculated via simulated annealing to explore the influence of the TOAC substitutions on backbone structure.  相似文献   

11.
Summary The presence of bioactive peptides in the gut and their possible electrophysiological effects on the intestinal epithelium were studied in two teleost species, the tilapia (Oreochromis mossambicus) and the goldfish (Carassius auratus). Vasoactive intestinal polypeptide-like immunoreactive nerve fibres were found beneath the intestinal epithelium of both species. Galanin-, metenkephalin-and calcitonin gene-related peptide-like immunoreactive nerve fibres were found exclusively in the mucosa of the tilapia. Both species had vasoactive intestinal polypeptide-, enkephalin- or neuropeptide Y-like immunoreactive endocrine cells; calcitonin gene-related peptide-like immunoreactive endocrine cells were additionally found in the tilapia. Somatostatin- and dopamine--hydroxylase-like immunoreactivities were not observed. Nerve cell bodies in the myenteric plexus of both species showed immunoreactivity for calcitonin gene-related peptide-, vasoactive intestinal polypeptide-, and galanin-like peptide. Enkephalin-like immunoreactive nerve cell bodies were present in the tilapia only. None of the peptides had a pronounced electrogenic effect. However, calcitonin gene-related peptide added to stripped intestinal epithelium of the tilapia, reduced the ion selectivity, and addition of galanin increased the ion selectivity. In goldfish intestine, both galanin and calcitonin gene-related peptide were without effect. Enkephalin counteracted the serotonin-induced reduction of the ion selectivity of the goldfish intestinal epithelium, but had no effect on the tilapia epithelium. In both species, vasoactive intestinal polypeptide reduced the ion selectivity of the intestinal epithelium, and neuropeptide Y induced an increase of the ion selectivity. Somatostatin showed no effect on the epithelial ion selectivity of either species. Tetrodotoxin did not inhibit the effects of the peptides studied. The changes in ion selectivity suggest that the enterocytes may be under the regulatory control of these peptides.  相似文献   

12.
Molecular dynamics simulations of alamethicin in methanol were carried out with either a regular alpha-helical conformation or the x-ray crystal structure as starting structures. The structures rapidly converged to a well-defined hydrogen-bonding pattern with mixed alpha-helical and 3(10)-helical hydrogen bonds, consistent with NMR structural characterization, and did not unfold throughout the 1-ns simulation, despite some sizable backbone fluctuations involving reversible breaking of helical hydrogen bonds. Bending of the helical structure around residues Aib10-Aib13 was associated with reversible flips of the peptide bonds involving G11 (Aib10-G11 or G11-L12 peptide bonds), yielding discrete structural states in which the Aib10 carbonyl or (rarely) the G11 carbonyl was oriented away from the peptide helix. These peptide bond reversals could be accommodated without greatly perturbing the adjacent helical structure, and intramolecular hydrogen bonding was generally maintained in bent states through the formation of new (non-alpha or 3[10]) hydrogen bonds with good geometries: G11 NH-V9 CO (inverse gamma turn), Aib13 NH-Aib8 CO (pi-helix) and, rarely, L12 NH- Q7 NH (pi-helix). These observations may reconcile potentially conflicting NMR structural information for alamethicin in methanol, in which evidence for conformational flexibility in the peptide sequence before P14 (G11-Aib13) contrasts with the stability of backbone amide NH groups to exchange with solvent. Similar reversible reorientation of the Thr11-Gly12 peptide bond of melittin is also observed in dynamics simulations in methanol (R. B. Sessions, N. Gibbs, and C. E. Dempsey, submitted). This phenomenon may have some role in the orientation of the peptide carbonyl in solvating the channel lumen in membrane ion channel states of these peptides.  相似文献   

13.
Antimicrobial peptides are promising alternative to traditional antibiotics and antitumor drugs for the battle against new antibiotic resistant bacteria strains and cancer maladies. The study of their structural and dynamics properties at physiological conditions can help to understand their stability, delivery mechanisms, and activity in the human body. In this article, we have used molecular dynamics simulations to study the effects of solvent environment, temperature, ions concentration, and peptide concentration on the structural properties of the antimicrobial hybrid peptide Cecropin A–Magainin 2. In TFE/water mixtures, the structure of the peptide retained α‐helix contents and an average hinge angle in close agreement with the experimental NMR and CD measurements reported in literature. Compared to the TFE/water mixture, the peptide simulated at the same ionic concentration lost most of its α‐helix structure. The increase of peptide concentration at both 300 and 310 K resulted in the peptide aggregation. The peptides in the complex retained the initial N‐ter α‐helix segment during all the simulation. The α‐helix stabilization is further enhanced in the high salt concentration simulations. The peptide aggregation was not observed in TFE/water mixture simulations and, the peptide aggregate, obtained from the water simulation, simulated in the same conditions did dissolve within few tens of nanoseconds. The results of this study provide insights at molecular level on the structural and dynamics properties of the CA‐MA peptide at physiological and membrane mimic conditions that can help to better understand its delivery and interaction with biological interfaces. © 2014 Wiley Periodicals, Inc. Biopolymers 103: 1–14, 2015.  相似文献   

14.
GonzÁLez Bosc, L. V., P. A. Elustondo, M. C. Ortiz and N. A. Vidal. Effect of atrial natriuretic peptide on sodium-glucose cotransport in the rat small intestine. Peptides 18(10) 1491–1495, 1997.—Atrial natriuretic peptide (ANP) decreases sodium absorption in small intestine of rats in vitro under sodium concentration-gradient conditions (SCG) and this effect may be mediated by the inhibition of the sodium/glucose cotransporter (SGLT). In order to assess this hypothesis, the effects of ANP, phloridzine (Phlz) and methylene blue (MB), added alone or together, using a voltage clamp technique in Ussing’s chamber with SCG were studied. ANP and Phlz significantly decreased potential difference and short circuit current. Effects of Phlz and ANP were not additive. The addition of MB alone did not affect ion transport, whereas it abolished ANP effects. These data suggest that ANP blocks the SGLT through mechanisms mediated by cGMP and/or NO.  相似文献   

15.
We have performed experimental and computational studies to investigate the influences of phospholipids, methionine oxidation and acidic pH on amyloid fibril formation by a peptide derived from human apolipoprotein C-II (apoC-II), a known component of proteinaceous atherosclerotic plaques. Fibril growth monitored by thioflavin T fluorescence revealed inhibition under lipid-rich and oxidising conditions. We subsequently performed fully-solvated atomistic molecular dynamics (MD) simulations of the peptide monomer to study its conformations under both fibril favouring (neutral and low pH) and inhibiting (lipid-rich and oxidising) conditions. Examination of the chain topology, backbone hydrogen-bonding patterns and aromatic sidechain orientations of the peptide under different conditions reveals that, while the peptide adopts similar structures under the fibril-favouring conditions, significantly different structures are obtained under fibril-disruptive conditions. Based on our results, we advance hypotheses for the roles of peptide conformation on aggregation and fibrillisation propensities.  相似文献   

16.
Two 700-ps molecular dynamics simulations of human alpha-lactalbumin have been compared. Both were initiated from an X-ray structure determined at pH 6.5. One simulation was designed to represent native conditions and the other the protein in solution at pH 2.0 without a bound calcium ion. The low pH conditions were modelled by protonating the aspartate, glutamate, and histidine side chains and the protein C-terminus. Significant changes were observed for the C-terminal region of the sequence in the simulation at low pH. Most notably an alpha-helix, helix D, and the C-terminal 3(10) helix were substantially disrupted relative to the simulation at high pH. These perturbations to the native fold are similar to those observed in an X-ray structure of alpha-lactalbumin at pH 4.2. In addition, larger fluctuations about side chain torsion angles were observed in the low pH simulation than in that corresponding to the higher pH. These structural and dynamical changes might be representative of the early stages of the transition to the molten-globule state of the protein known to be formed under low pH conditions in solution.  相似文献   

17.
Summary Experiments have been performed in batch fermentation, using a defined medium, to investigate the effects of phosphate and ammonium ion concentrations on solvent production usingClostridium acetobutylicum. Solvent production occurred under conditions of either ammonium- or phosphate-limitation, but the optimum conditions were observed to be where both of these nutrients were slightly in excess of growth requirements. A greater excess of nutrients caused the fermentation to be acidogenic rather than solventogenic.  相似文献   

18.
Muff S  Caflisch A 《Proteins》2008,70(4):1185-1195
The effects of a single-point mutation on folding thermodynamics and kinetics are usually interpreted by focusing on the native structure and the transition state. Here, the entire conformational spaces of a 20-residue three-stranded antiparallel beta-sheet peptide (double hairpin) and of its single-point mutant W10V are sampled close to the melting temperature by equilibrium folding-unfolding molecular dynamics simulations for a total of 40 micros. The folded state as well as the most populated free energy basins in the denatured state are isolated by grouping conformations according to fast relaxation at equilibrium. Such kinetic analysis provides more detailed and useful information than a simple projection of the free energy. The W10V mutant has the same native structure as the wild type peptide, and similar folding rate and stability. In the denatured state, the N-terminal hairpin is about 20% more structured in W10V than the wild type mainly because of van der Waals interactions. Notably, the W10V mutation influences also the van der Waals energy at the transition state ensemble causing a shift in the ratio of fluxes between two different transition state regions on parallel folding pathways corresponding to nucleation at either of the two beta-hairpins. Previous experimental studies have focused on the effects of denaturant-dependent or temperature-dependent changes in the structure of the denatured state. The atomistic simulations show that a single-point mutation in the central strand of a beta-sheet peptide results in remarkable changes in the topography of the denatured state ensemble. These changes modulate the relative accessibility of parallel folding pathways because of kinetic partitioning of the denatured state. Therefore, the observed dependence of the folding process on the starting ensemble raises questions on the biological significance of in vitro folding studies under strongly denaturing conditions.  相似文献   

19.
Despite the important functions of protein transmembrane domains, their structure and dynamics are often scarcely known. The SNARE proteins VAMP/synaptobrevin and syntaxin 1 are implicated in membrane fusion. Using different spectroscopic approaches we observed a marked sensitivity of their transmembrane domain structure in regard to the lipid/peptide ratio. In the dilute condition, peptides corresponding to the complete transmembrane domain fold into an α-helix inserted at ∼ 35° to the normal of the membranes, an observation in line with molecular simulations. Upon an increase in the peptide/lipid ratio, the peptides readily exhibited transition to β-sheet structure. Moreover, the insertion angle of these β-sheets increased to 54° and was accompanied by a derangement of lipid acyl chains. For both proteins the transition from α-helix to β-sheet was reversible under certain conditions by increasing the peptide/lipid ratio. This phenomenon was observed in different model systems including multibilayers and small unilamellar vesicles. In addition, differences in peptide structure and transitions were observed when using distinct lipids (DMPC, DPPC or DOPC) thus indicating parameters influencing transmembrane domain structure and conversion from helices to sheets. The putative functional consequences of this unprecedented dynamic behavior of a transmembrane domain are discussed.  相似文献   

20.
The octapeptide repeat region of human prion protein is known to bind four Cu(II) ions per molecule. A peptide, Octa(4), representing this region was tested for inhibitory effects on copper-catalyzed oxidation of l-ascorbate or glutathione and on generation of OH(*) during the former reaction. The result indicated that the catalytic activity of the first Cu(II) ion bound to an Octa(4) molecule was completely suppressed. The valence state of the copper under reducing conditions was Cu(II), as determined by a newly developed method using bathocuproinedisulfonate under acidic conditions. Furthermore, it was shown that Escherichia coli cells expressing the octapeptide repeat region were significantly resistant to copper treatment compared with control cells. The results taken together indicate that prion protein can function to sequester copper ions in the redox-inactive state, rendering copper-induced generation of reactive oxygen species impossible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号